Триангуляции крупномасштабная структура. Способ триангуляции целей

Триангуляционную схему (рис. 1) условно можно разделить на три части: излучательный (или осветительный) канал, контролируемая поверхность, приёмный канал.

Рис. 1. Принципиальная схема триангуляционного измерителя: 1 - излучательный канал,
2 - контролируемая поверхность, 3 - приёмный канал.

Первая часть схемы – излучательный канал, который состоит из источника излучения и объектива, который формирует зондирующий пучок на контролируемой поверхности. В качестве источника излучения, как правило, используется лазерный диод. Распределение света, создаваемое такими источниками называется гауссовым (рис. 2, а).

Шириной d зондирующего пучка называется расстояние между точками профиля интенсивности на уровне Imax/e.

Перетяжкой гауссового пучка называется минимальная ширина пучка вдоль направления распространения. На рисунке 2, б перетяжка расположена в плоскости А. Очевидно, в этой плоскости интенсивность зондирующего пучка достигает максимального значения.

Рис. 2. а - распределение Гаусса (I – интенсивность, y – направление перпендикулярное распространению излучения), б - гауссовый пучок в продольном разрезе (z – направление распространения излучения).

Объектив состоит из одной или нескольких оптических линз. Относительное положение объектива и лазерного диода определяет настройку излучательного канала. Чтобы настроить лазерный модуль необходимо выставить перетяжку в центр диапазона измерения и отцентрировать зондирующий пучок.

Результатом хорошей настройки является отцентрированный пучок, ширина и интенсивность которого симметрично изменяются относительно центра диапазона измерения.

Вторая неотъемлемая часть триангуляционной измерительной схемы – это контролируемая поверхность. Каждая поверхность имеет свойство отражать или рассеивать падающее излучение. Рассеяние излучения поверхностью контролируемого объекта используется в триангуляции как физическая основа для получения информации о расстоянии до этой поверхности.

Задача триангуляционного датчика – измерить расстояние от выбранной точки на оси зондирующего пучка до физической точки поверхности с высокой точностью. Любая контролируемая поверхность характеризуется неровностью или степенью своей гладкости – шероховатостью Rz. Как правило, требуемая точность измерения обратно пропорциональна шероховатости контролируемой поверхности. Так, шероховатость поверхности кристаллов микроэлектроники, а значит и измеряемое расстояние до них, имеют масштаб от нескольких микрометров. А, например, в геодезической отрасли необходимо определять расстояния с точностью до сотен и тысяч метров.

Основу промышленного размерного контроля составляет определение параметров металлических поверхностей. Требуемая при этом точность контроля составляет от нескольких (атомная промышленность) до сотен мкм (железнодорожная отрасль).

Каждая поверхность имеет также свойство отражать или рассеивать падающее излучение. Рассеяние излучения поверхностью контролируемого объекта используется в триангуляции как физическая основа для получения информации о расстоянии до этой поверхности. Поэтому, контролируемая поверхность является неотъемлемой частью триангуляционной измерительной схемы.

Третья часть схемы триангуляционного измерителя – приемный канал, который состоит из проецирующего объектива и фотоприемника.

Проецирующий объектив формирует изображение зондирующего пятна в плоскости фотоприемника. Чем больше диаметр D объектива, тем выше его светосила. Иначе говоря, тем интенсивнее и качественнее строится изображение пятна.

В зависимости от конкретной реализации, для регистрации сформированного изображения качестве приемника используют либо фотодиодную линейку, либо позиционно-чувствительный приемник.

Схема триангуляционного измерителя, приведенная на рисунке 1, работает следующем образом. Излучательный канал 1 формирует изображение светового пятна на контролируемой поверхности 2. Далее рассеянный контролируемой поверхностью свет попадает в приемный канал 3. Таким образом, в плоскости фотоприемника создается изображение освещенного участка контролируемой поверхности (световое пятно). При смещении контролируемой поверхности на величину?z(рис. 1), световое пятно в плоскости фотоприемника смещается на величину?x. Зависимость смещения контролируемой поверхности?z от смещения светового пятна в плоскости фотоприемника?x, имеет следующий вид:

где - это расстояния от контролируемой поверхности 2 до проецирующего объектива приемного канала 3, и от проецирующего объектива до фотоприемника, притом, что контролируемая поверхность находится в центре диапазона измерений смещений, соответственно.

При проектировании сетей триангуляции должны соблюдаться требования, приведенные в табл.1

Таблица 1

Показатель Класс
Средняя длина стороны треугольника, км 20-25 7-20 5-8 2-5
Относительная ошибка базисной выходной стороны 1:400000 1:300000 1:200000 1:100000
Примерная относительная ошибка стороны в слабом месте 1:150000 1:200000 1:120000 1:70000
Наименьшее значение угла треугольника, градус 40 20 20 20
Допустимая невязка треугольника, угл. с 3 4 6 6
Средняя квадртическая ошибка угла по невязкам треугольника, угл. с 0,7 1 1,5 2,0
Средняя квадратическая ошибка взаимного положения смежных пунктов, м 0,15 0,06 0,06 0,06

3.1. Расчет количества знаков

При проектировании сети триангуляции 3 и 4 классов необходимо рассчитать количество пунктов отдельного класса.

Требуемая плотность геодезических пунктов при общегосударственном картографировании территории страны зависит от масштаба топографической съемки, методов ее выполнения, а также от методов создания съемочного геодезического обоснования.

Таблица 2

Между длинами сторон треугольников разных классов должны соблюдаться следующие приближенные соотношения:

s 1= s 1 s 2 =0,58s 1 s 3 =0,33s 1 s 4 =0,19s 1 . (1)

Если за исходную принять длину стороны в триангуляции 1 класса, равную в среднем S 1 = 23 км, то по формулам (1) получим следующие длины сторон треугольников в сетях триангуляции 2-4 классов (табл. 3).

Таблица 3

В реальных сетях триангуляции треугольники несколько отступают от равносторонней формы. Однако в среднем для обширной по размерам геодезической сети соотношения (1) длин сторон треугольников должны более или менее точно соблюдаться, в противном случае общее число пунктов в сети может оказаться неоправданно завышенным. Среднее число пунктов разных классов на любой площади Р картографируемой территории можно рассчитать по формулам

где - площадь, обслуживаемая одним пунктом -го класса (i =1,2,3,4).Результаты вычислений следует округлять до целого десятка. В качестве примера по этим формулам определим число пунктов 3-4 классов на площади Р = 200 км 2 при n 1 = 0, n 2 =2 .

Для триангуляции 3 класса:

Для триангуляции 4 класса:

Следовательно, на площади снимаемой территории Р=200 км 2 должны запроектировать 11 пунктов, то есть 2 пункта 2 класса, 2 пункта 3 класса и 7 пунктов 4 класса.

3.2. Построение триангуляционной сети

При разработке графического проекта сети особое внимание следует обращать на выбор местоположения каждого отдельного пункта. Все пункты государственной геодезической сети должны быть расположены на командных вершинах местности. Это необходимо для того, чтобы, во-первых, обеспечить взаимную видимость между смежными пунктами при минимальных высотах геодезических знаков, во-вторых, возможность развития в будущем сети в любом направлении. Длины сторон между смежными пунктами должны соответствовать требованиям инструкции. Во всех случаях геодезические пункты должны находиться в таких местах, где будет обеспечена сохранность их положения в плане и по высоте в течение длительного времени. Поскольку на постройку геодезических знаков расходуется в среднем 50-60 % всех затрат на создание сети, необходимо уделять самое серьезное внимание выбору мест для установки пунктов на местности с целью снижения их высоты.

При проектировании сетей триангуляции разных классов важное значение имеет обеспечение надежной привязки сетей более низкого класса к сетям более высокого класса.

Рис. 1. Схемы привязки геодезических сетей к сторонам (а) и пунктам (б) триангуляции высшего класса

Рис.2. Схемы построения сетей триангуляции

После того как все пункты будут нанесены на карту, их соединяют прямыми линиями. На отдельном листе вычерчивают схему запроектированной сети, на которую выносят названия пунктов, длины сторон в километрах, значения углов в треугольниках с точностью до градуса, высоты земной поверхности с точностью до метра. Углы измеряют транспортиром по топографической карте. Суммы углов в треугольниках должны равняться 180º, а в полюсе центральной системы 360º. Длины сторон измеряются линейкой. Под схемой приводятся условные обозначения исходных сторон, сторон триангуляции и пунктов сети.

3.3. Расчет высот знаков

На пунктах геодезической сети строят геодезические знаки такой высоты, чтобы визирные лучи при угловых и линейных измерениях проходили по каждому направлению на заданной минимальной высоте над препятствием, не касаясь его. Сначала определяют приближенные высоты знаков l 1 ’ и l 2 ’ для каждой пары смежных пунктов, а затем корректируют их и находят окончательные значения высот l 1 и l 2 . Приближенные высоты знаков l 1 ’ и l 2 ’ (рис.3) вычисляют по формулам

где h 1 и h 2 - превышения вершины препятствия в точке С (c учетом высоты леса) над основаниями первого и второго знаков соответственно; а- установленная действующей инструкцией допустимая высота происхождения визирного луча над препятствием; u 1 и u 2 - поправки за кривизну Земли и рефракцию.

Знаки при h 1 и h 2 определяют по знакам разностей

h 1 =H c -H 1 ,

h 2 = H c -H 2 , (5)

где Н с - высота вершины препятствия в точке С; Н 1 и Н 2 - высота земной поверхности в местах установки первого и второго знаков.

Рис.3. Схема определения высоты геодезических знаков

Поправки v за кривизну Земли и рефракцию вычисляют по формуле

где k - коэффициент земной рефракции; R- радиус Земли; s- расстояние от препятствия до соответствующего пункта. При k = 0,13 и R=6371 км формула (6) примет вид

V=0,068s 2 , (7)

где v получают в метрах, a s выражено в километрах.

В том случае, если превышения h 1 и h 2 имеют один и тот же знак, а расстояния s 1 и s 2 существенно разные, высоты знаков l ’ 1 и l ’ 2 , вычисленные по формулам (4), будут значительно отличаться друг от друга: один знак низкий, а другой чрезмерно высокий (рис.4). Высокие знаки строить экономически невыгодно. Поэтому высоты знаков, вычисленные по формулам (4), необходимо откорректировать так, чтобы сумма квадратов окончательных высот знаков l 1 и l 2 была наименьшей, т. е. = min. При соблюдении данного требования расходы на постройку данной пары знаков будут, как правило, наименьшими, поскольку стоимость постройки каждого знака при прочих равных условиях почти пропорциональна квадрату его высоты.

Откорректированные высоты каждой пары знаков на концах стороны при соблюдении условия = min и выполнении требования о прохождении визирного луча на заданной высоте а над препятствием вычисляются по формулам

Рис.4. Схема корректирования высоты геодезического знака

На пункте с n направлениями будет получено n значений высоты знака, так как вычисления по каждой отдельной стороне (направлению) дадут разные значения высоты знака на данном пункте. За окончательную высоту принимают ту, при которой обеспечивается видимость по всем направлениям при минимальной (допустимой) высоте прохождения визирных лучей над препятствиями. Результаты расчетов высот геодезических знаков представить в таблице 4.

Таблица 4

Название точек Расстояния s 1 и s 2 Высоты Н,м Превышения h 1 и h 2 v, м а,м Приближенные высоты l 1 ’ и l 2 ’ Откорректи-рованные высоты Стандартные высоты знаков
Лискино 2,4 137,5 3,5 0,4 1,0 4,9 6,2
С 141,0
Попово 5,2 138,2 2,8 1,8 1,0 5,6 2,8

Для наиболее сложных сторон построить профили, на которых кроме поверхности земли красной линией показать открывшуюся видимость после установки геодезического знака.

3.4. Предрасчет точности элементов сети триангуляции

Для уверенного использования окончательного варианта проекта геодезической сети необходимо иметь надежные численные характеристики слабых ее элементов. На составленной схеме находим слабые стороны сети. Слабая сторона находится по принципу равно удаленности ее от исходной стороны.

В качестве критерия точности принимается средняя квадратическая ошибка измеренных величин

где µ - средняя квадратическая ошибка единицы веса;

Р F – вес рассматриваемой функции.

За ошибку единицы веса принимается ошибка измеренных величин. Так как сеть еще проектируется, углы и длины, участвующие в предрасчете, определяются по топографической карте.

Средняя квадратическая ошибка слабой стороны n-треугольника, входящего в центральную систему или геодезический четырехугольник, определяется по формуле

где m lgb - средняя квадратическая ошибка логарифма исходной стороны;

m β - средняя квадратическая ошибка измерения угла в рассматриваемом классе триангуляции;

R i – ошибка геометрической связи трегольника.

Средняя квадратическая ошибка слабой стороны n-треугольника, являющегося элементом простой цепи треугольников определяется по формуле

Вычисление ошибки геометрической связи выполняется по формуле:

R i =δ 2 А i + δ 2 В i + δ А i * δ В i , (12)

где А i и B i – связующие углы в треугольниках;

δ А i , δ В i - приращения логарифмов синусов углов А и В при изменении углов на 1" в единицах 6-го знака логарифма. Значение δ можно определить по формуле

δ А i =МctgA i (1¤ρ")10 6 =2,11ctgA i . (13)

При предрасчете точности слабой стороны по средним квадратическим ошибкам, полученным по двум ходам, вычисляется среднее весовое значение по формуле:

где m lgS 1 и m lgS 2 средние квадратические ошибки определения от базиса по 1 и 2 ходам.

Относительную ошибку найдем по формуле

Пример. Запроектированная сеть триангуляции 3 класса состоит из центральной системы (рис.5). Слабой является сторона «Кленово-Завихрастово», выполним предрасчет ее точности, результаты вычисления ошибки геометрической связи по первому и второму ходу представим в таблице 5.

Рис.5.Фрагмент сети

Таблица 5

Ход 1 Ход 2
А В R i А В R i
5,44 5,05
5,62 5,40
6,28 4,81
Сумма 17,34 Сумма 15,25

m lgS1 =5,11 ; m lgS2 =4,86; m Sn(ср) =3,52;

Вывод: Полученная относительная ошибка слабой стороны удовлетворяет требованиям инструкции для сети триангуляции 3 класса.

Предрасчет точности в триангуляции 4 класса выполняется аналогичным способом.

3.5. Расчет качества сети строгим способом

Расчет качества сети строгим способом произведем на примере сети, изображенной на рис.6. Для этой сети имеем имеем 9 независимых условных уравнений: 7 уравнений фигур, 1 условие горизонта, 1 полюсное условное уравнение. Исходные данные приведены в табл. 6

Таблица 6

Название пункта № угла Угол, º δ Название пункта № угла Угол, º δ
A 0.68 F 1.08
1.71 J 1.17
B 0.73 1.37
1.27 1.65
C 1.37 O 0.60
0.60 1.12
D 1.59 1.97
1.71 1.32
E 1.59 1.03
1.17 1.48
0.98

Рис.6. Сеть триангуляции 3 класса

Условные уравнения фигур:

(1) + (2) + (3) + W1 = 0

(4) + (5) + (6) + W2 = 0

(7) + (8) + (9) + W3 = 0

(10) + (11) + (12) + W4 = 0

(13) + (14) + (15) + W5 = 0

(16) + (17) + (18) + W6 = 0

(19) + (20) + (21) + W7 = 0

Условные уравнения горизонта

(1) + (5) + (8) + (11) + (14) + (17)+ W8 = 0

Полюсные условные уравнения.

После логарифмирования, приведя к линейному виду, будем иметь

δ 2 (2)-δ 3 (3)+δ 4 (4)-δ 6 (6)+δ 7 (7)-δ 9 (9)+δ 10 (10)-δ 12 (12)+δ 13 (13)-δ 15 (15)+δ 16 (16)-δ 18 (18)+W9=0

Для составления весовой функции определяем слабую сторону по известному базису.

На основании полученной системы уравнений составим таблицу коэффициентов условных уравнений и весовой функции (табл. 7). Значения δ n вычислены по формуле δ=2,11ctgβ.

Таблица 7

Коэффициенты условных уравнений

№ п/п a b c d e g h i k f s
+1 +1 -0.60 +1.40
+1 +1.59 +1.59 +4.18
+1 -1.59 -0.59
+1 +1.37 +2.37
+1 +1 +2.00
+1 -1.17 -0.17
+0.68
+1 +0.68 +1.68
+1 +1 +2.00
+1 -1.17 -0.17
0.7
+1 +0.73 +1.73
+1 +1 +1.32 +3.32
+1 -1.71 -1.71 -2.42
+1 +1.37 +1.37 +3.74
+1 +1 +2.00
+1 -1.27 -1.27 -1.54
+1 +1.71 +1.71 +4.42
+1 +1 +2.00
+1 -0.60 -0.60 -0.20
+1.00
+1 +1.00
+1 +1.00
+1 +1.00
Σ -0.06 1.81 28.75

Так как мы имеем большое число условных уравнений, наиболее целесообразно вычислять обратный вес функции методом двухгруппового уравнивания. Обратный вес вычисляется по формуле

где f – коэффициенты заданной функции, для которой находят среднюю квадратическую ошибку; a, b, … - коэффициенты первичного, вторичного и т.д. преобразованных уравнений второй группы; , , … - суммы коэффициентов заданной функции по тем поправкам первого, второго и т.д. уравнений фигур первой группы, которые входят в выражение функции;

n 1, n 2 , … - число поправок, входящих соответственно в первые, вторые и т.д. уравнения фигур первой группы.

При разделении уравнений на две группы в первую группу включают все уравнения фигур (для нашей сети, т.к. нет перекрывающихся треугольников). Во вторую группу войдут все остальные уравнения и весовая функция, т.е. уравнение горизонта, полюса и уравнение функции.

Таблица 8

Коэффициенты условных уравнений первой группы

№ п/п a b c d e g h f
-0.60
1.59
=0.99
=0
=0
1.32
-1.71
=-0.39
1.37
-1.27
=0.10
1.71
-0.60
=1.11
=0

I= 2 /n 1 + …+ 7 /n 7 = 0,33+0,05+0,003+0,41=0,79

Преобразованные коэффициенты вычисляются по формуле

А=а-[а]/n; В=b-[b]/n,

где А, В – преобразованные коэффициенты; n – число углов, входящих в треугольник; [а]/n – среднее значение непреобразованных коэффициентов в треугольнике; [а] – сумма непреобразованных коэффициентов в треугольнике.

Таблица 9

Таблица преобразованных уравнений второй группы и определение коэффициентов нормальных уравнений

N поправки i k I K f s
0,67 -0,60 0,07
1,59 -0,33 1,59 1,59 2,85
-1,59 -0,34 -1,59 -1,93
0,33
1,37 -0,33 1,30 0,97
0,67 -0,06 0,61
-1,17 -0,34 -1,24 -1,58
0,33 0,07
0,68 -0,33 ,84 0,51
0,67 0,17 0,84
-1,17 -0,34 -1,01 -1,35
0,33 -0,16
0,73 -0,33 1,06 0,73
0,67 0,32 1,32 2,31
-1,71 -0,34 -1,38 -1,71 -3,43
0,33 -0,33
1,37 -0,33 1,34 1,37 2,38
0,67 -0,04 0,63
-1,27 -0,34 -1,30 -1,27 -2,91
0,33 0,03
1,71 -0,33 1,34 1,71 2,72
0,67 -0,37 0,30
-0,60 -0,34 -0,97 -0,60 -1,91
0,33 0,37
}