Тангенс табличные значения. График функции котангенс, y = ctg x. Тригонометрические функции любого угла

Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.

Напомним, что прямой угол - это угол, равный 90 градусов. Другими словами, половина развернутого угла.

Острый угол - меньший 90 градусов.

Тупой угол - больший 90 градусов. Применительно к такому углу «тупой» - не оскорбление, а математический термин:-)

Нарисуем прямоугольный треугольник. Прямой угол обычно обозначается . Обратим внимание, что сторона, лежащая напротив угла, обозначается той же буквой, только маленькой. Так, сторона, лежащая напротив угла A, обозначается .

Угол обозначается соответствующей греческой буквой .

Гипотенуза прямоугольного треугольника - это сторона, лежащая напротив прямого угла.

Катеты - стороны, лежащие напротив острых углов.

Катет , лежащий напротив угла , называется противолежащим (по отношению к углу ). Другой катет , который лежит на одной из сторон угла , называется прилежащим .

Синус острого угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе:

Косинус острого угла в прямоугольном треугольнике - отношение прилежащего катета к гипотенузе:

Тангенс острого угла в прямоугольном треугольнике - отношение противолежащего катета к прилежащему:

Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:

Котангенс острого угла в прямоугольном треугольнике - отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

Обратите внимание на основные соотношения для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.

Давайте докажем некоторые из них.

Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?

Мы знаем, что сумма углов любого треугольника равна .

Знаем соотношение между сторонами прямоугольного треугольника. Это теорема Пифагора: .

Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов - свое соотношение, для сторон - свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?

С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.

Синус, косинус и тангенс - их еще называют тригонометрическими функциями угла - дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

Мы тоже нарисуем таблицу значений синуса, косинуса, тангенса и котангенса для «хороших» углов от до .

Обратите внимание на два красных прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.

Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.

1. В треугольнике угол равен , . Найдите .

Задача решается за четыре секунды.

Поскольку , .

2 . В треугольнике угол равен , , . Найдите .

Найдем по теореме Пифагора.

Задача решена.

Часто в задачах встречаются треугольники с углами и или с углами и . Основные соотношения для них запоминайте наизусть!

Для треугольника с углами и катет, лежащий напротив угла в , равен половине гипотенузы .

Треугольник с углами и - равнобедренный. В нем гипотенуза в раз больше катета.

Мы рассмотрели задачи на решение прямоугольных треугольников - то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника . Об этом - в следующей статье.

В таблице значения тангенсов от 0° до 360°.

Таблица тангенсов нужна, когда у вас под рукой нет калькулятора. Чтобы узнать, чему равен тангенс угла, просто найдите его в таблице. Для начала короткая версия таблицы:

https://uchim.org/matematika/tablica-tangensov — uchim.org

Таблица тангенсов для 0°-180°

tg(1°) 0.0175
tg(2°) 0.0349
tg(3°) 0.0524
tg(4°) 0.0699
tg(5°) 0.0875
tg(6°) 0.1051
tg(7°) 0.1228
tg(8°) 0.1405
tg(9°) 0.1584
tg(10°) 0.1763
tg(11°) 0.1944
tg(12°) 0.2126
tg(13°) 0.2309
tg(14°) 0.2493
tg(15°) 0.2679
tg(16°) 0.2867
tg(17°) 0.3057
tg(18°) 0.3249
tg(19°) 0.3443
tg(20°) 0.364
tg(21°) 0.3839
tg(22°) 0.404
tg(23°) 0.4245
tg(24°) 0.4452
tg(25°) 0.4663
tg(26°) 0.4877
tg(27°) 0.5095
tg(28°) 0.5317
tg(29°) 0.5543
tg(30°) 0.5774
tg(31°) 0.6009
tg(32°) 0.6249
tg(33°) 0.6494
tg(34°) 0.6745
tg(35°) 0.7002
tg(36°) 0.7265
tg(37°) 0.7536
tg(38°) 0.7813
tg(39°) 0.8098
tg(40°) 0.8391
tg(41°) 0.8693
tg(42°) 0.9004
tg(43°) 0.9325
tg(44°) 0.9657
tg(45°) 1
tg(46°) 1.0355
tg(47°) 1.0724
tg(48°) 1.1106
tg(49°) 1.1504
tg(50°) 1.1918
tg(51°) 1.2349
tg(52°) 1.2799
tg(53°) 1.327
tg(54°) 1.3764
tg(55°) 1.4281
tg(56°) 1.4826
tg(57°) 1.5399
tg(58°) 1.6003
tg(59°) 1.6643
tg(60°) 1.7321
tg(61°) 1.804
tg(62°) 1.8807
tg(63°) 1.9626
tg(64°) 2.0503
tg(65°) 2.1445
tg(66°) 2.246
tg(67°) 2.3559
tg(68°) 2.4751
tg(69°) 2.6051
tg(70°) 2.7475
tg(71°) 2.9042
tg(72°) 3.0777
tg(73°) 3.2709
tg(74°) 3.4874
tg(75°) 3.7321
tg(76°) 4.0108
tg(77°) 4.3315
tg(78°) 4.7046
tg(79°) 5.1446
tg(80°) 5.6713
tg(81°) 6.3138
tg(82°) 7.1154
tg(83°) 8.1443
tg(84°) 9.5144
tg(85°) 11.4301
tg(86°) 14.3007
tg(87°) 19.0811
tg(88°) 28.6363
tg(89°) 57.29
tg(90°)
tg(91°) -57.29
tg(92°) -28.6363
tg(93°) -19.0811
tg(94°) -14.3007
tg(95°) -11.4301
tg(96°) -9.5144
tg(97°) -8.1443
tg(98°) -7.1154
tg(99°) -6.3138
tg(100°) -5.6713
tg(101°) -5.1446
tg(102°) -4.7046
tg(103°) -4.3315
tg(104°) -4.0108
tg(105°) -3.7321
tg(106°) -3.4874
tg(107°) -3.2709
tg(108°) -3.0777
tg(109°) -2.9042
tg(110°) -2.7475
tg(111°) -2.6051
tg(112°) -2.4751
tg(113°) -2.3559
tg(114°) -2.246
tg(115°) -2.1445
tg(116°) -2.0503
tg(117°) -1.9626
tg(118°) -1.8807
tg(119°) -1.804
tg(120°) -1.7321
tg(121°) -1.6643
tg(122°) -1.6003
tg(123°) -1.5399
tg(124°) -1.4826
tg(125°) -1.4281
tg(126°) -1.3764
tg(127°) -1.327
tg(128°) -1.2799
tg(129°) -1.2349
tg(130°) -1.1918
tg(131°) -1.1504
tg(132°) -1.1106
tg(133°) -1.0724
tg(134°) -1.0355
tg(135°) -1
tg(136°) -0.9657
tg(137°) -0.9325
tg(138°) -0.9004
tg(139°) -0.8693
tg(140°) -0.8391
tg(141°) -0.8098
tg(142°) -0.7813
tg(143°) -0.7536
tg(144°) -0.7265
tg(145°) -0.7002
tg(146°) -0.6745
tg(147°) -0.6494
tg(148°) -0.6249
tg(149°) -0.6009
tg(150°) -0.5774
tg(151°) -0.5543
tg(152°) -0.5317
tg(153°) -0.5095
tg(154°) -0.4877
tg(155°) -0.4663
tg(156°) -0.4452
tg(157°) -0.4245
tg(158°) -0.404
tg(159°) -0.3839
tg(160°) -0.364
tg(161°) -0.3443
tg(162°) -0.3249
tg(163°) -0.3057
tg(164°) -0.2867
tg(165°) -0.2679
tg(166°) -0.2493
tg(167°) -0.2309
tg(168°) -0.2126
tg(169°) -0.1944
tg(170°) -0.1763
tg(171°) -0.1584
tg(172°) -0.1405
tg(173°) -0.1228
tg(174°) -0.1051
tg(175°) -0.0875
tg(176°) -0.0699
tg(177°) -0.0524
tg(178°) -0.0349
tg(179°) -0.0175
tg(180°) -0

Таблица тангенсов для 180° — 360°

tg(181°) 0.0175
tg(182°) 0.0349
tg(183°) 0.0524
tg(184°) 0.0699
tg(185°) 0.0875
tg(186°) 0.1051
tg(187°) 0.1228
tg(188°) 0.1405
tg(189°) 0.1584
tg(190°) 0.1763
tg(191°) 0.1944
tg(192°) 0.2126
tg(193°) 0.2309
tg(194°) 0.2493
tg(195°) 0.2679
tg(196°) 0.2867
tg(197°) 0.3057
tg(198°) 0.3249
tg(199°) 0.3443
tg(200°) 0.364
tg(201°) 0.3839
tg(202°) 0.404
tg(203°) 0.4245
tg(204°) 0.4452
tg(205°) 0.4663
tg(206°) 0.4877
tg(207°) 0.5095
tg(208°) 0.5317
tg(209°) 0.5543
tg(210°) 0.5774
tg(211°) 0.6009
tg(212°) 0.6249
tg(213°) 0.6494
tg(214°) 0.6745
tg(215°) 0.7002
tg(216°) 0.7265
tg(217°) 0.7536
tg(218°) 0.7813
tg(219°) 0.8098
tg(220°) 0.8391
tg(221°) 0.8693
tg(222°) 0.9004
tg(223°) 0.9325
tg(224°) 0.9657
tg(225°) 1
tg(226°) 1.0355
tg(227°) 1.0724
tg(228°) 1.1106
tg(229°) 1.1504
tg(230°) 1.1918
tg(231°) 1.2349
tg(232°) 1.2799
tg(233°) 1.327
tg(234°) 1.3764
tg(235°) 1.4281
tg(236°) 1.4826
tg(237°) 1.5399
tg(238°) 1.6003
tg(239°) 1.6643
tg(240°) 1.7321
tg(241°) 1.804
tg(242°) 1.8807
tg(243°) 1.9626
tg(244°) 2.0503
tg(245°) 2.1445
tg(246°) 2.246
tg(247°) 2.3559
tg(248°) 2.4751
tg(249°) 2.6051
tg(250°) 2.7475
tg(251°) 2.9042
tg(252°) 3.0777
tg(253°) 3.2709
tg(254°) 3.4874
tg(255°) 3.7321
tg(256°) 4.0108
tg(257°) 4.3315
tg(258°) 4.7046
tg(259°) 5.1446
tg(260°) 5.6713
tg(261°) 6.3138
tg(262°) 7.1154
tg(263°) 8.1443
tg(264°) 9.5144
tg(265°) 11.4301
tg(266°) 14.3007
tg(267°) 19.0811
tg(268°) 28.6363
tg(269°) 57.29
tg(270°) — ∞
tg(271°) -57.29
tg(272°) -28.6363
tg(273°) -19.0811
tg(274°) -14.3007
tg(275°) -11.4301
tg(276°) -9.5144
tg(277°) -8.1443
tg(278°) -7.1154
tg(279°) -6.3138
tg(280°) -5.6713
tg(281°) -5.1446
tg(282°) -4.7046
tg(283°) -4.3315
tg(284°) -4.0108
tg(285°) -3.7321
tg(286°) -3.4874
tg(287°) -3.2709
tg(288°) -3.0777
tg(289°) -2.9042
tg(290°) -2.7475
tg(291°) -2.6051
tg(292°) -2.4751
tg(293°) -2.3559
tg(294°) -2.246
tg(295°) -2.1445
tg(296°) -2.0503
tg(297°) -1.9626
tg(298°) -1.8807
tg(299°) -1.804
tg(300°) -1.7321
tg(301°) -1.6643
tg(302°) -1.6003
tg(303°) -1.5399
tg(304°) -1.4826
tg(305°) -1.4281
tg(306°) -1.3764
tg(307°) -1.327
tg(308°) -1.2799
tg(309°) -1.2349
tg(310°) -1.1918
tg(311°) -1.1504
tg(312°) -1.1106
tg(313°) -1.0724
tg(314°) -1.0355
tg(315°) -1
tg(316°) -0.9657
tg(317°) -0.9325
tg(318°) -0.9004
tg(319°) -0.8693
tg(320°) -0.8391
tg(321°) -0.8098
tg(322°) -0.7813
tg(323°) -0.7536
tg(324°) -0.7265
tg(325°) -0.7002
tg(326°) -0.6745
tg(327°) -0.6494
tg(328°) -0.6249
tg(329°) -0.6009
tg(330°) -0.5774
tg(331°) -0.5543
tg(332°) -0.5317
tg(333°) -0.5095
tg(334°) -0.4877
tg(335°) -0.4663
tg(336°) -0.4452
tg(337°) -0.4245
tg(338°) -0.404
tg(339°) -0.3839
tg(340°) -0.364
tg(341°) -0.3443
tg(342°) -0.3249
tg(343°) -0.3057
tg(344°) -0.2867
tg(345°) -0.2679
tg(346°) -0.2493
tg(347°) -0.2309
tg(348°) -0.2126
tg(349°) -0.1944
tg(350°) -0.1763
tg(351°) -0.1584
tg(352°) -0.1405
tg(353°) -0.1228
tg(354°) -0.1051
tg(355°) -0.0875
tg(356°) -0.0699
tg(357°) -0.0524
tg(358°) -0.0349
tg(359°) -0.0175
tg(360°) -0

Существуют также следующие таблицы тригонометрических функций по геометрии: таблица синусов, таблица косинусов и таблица котангенсов.

Всё для учебы » Математика в школе » Таблица тангенсов углов (углы, значения)

Чтобы добавить страницу в закладки, нажмите Ctrl+D.

Группа с кучей полезной информации (подпишитесь, если предстоит ЕГЭ или ОГЭ):

Знаки тригонометрических функций

Знак тригонометрической функции зависит исключительно от координатной четверти, в которой располагается числовой аргумент.

В прошлый раз мы учились переводить аргументы из радианной меры в градусную (см. урок «Радианная и градусная мера угла»), а затем определять эту самую координатную четверть. Теперь займемся, собственно, определением знака синуса, косинуса и тангенса.

угла α - это ордината (координата y) точки на тригонометрической окружности, которая возникает при повороте радиуса на угол α.

угла α - это абсцисса (координата x) точки на тригонометрической окружности, которая возникает при повороте радиуса на угол α.

угла α - это отношение синуса к косинусу.

Или, что то же самое, отношение координаты y к координате x .

Обозначение: sin α = y ; cos α = x ; tg α = y: x .

Все эти определения знакомы вам из курса алгебры старших классов. Однако нас интересуют не сами определения, а следствия, которые возникают на тригонометрической окружности. Взгляните:

Синим цветом обозначено положительное направление оси OY (ось ординат), красным - положительное направление оси OX (ось абсцисс).

На этом «радаре» знаки тригонометрических функций становятся очевидными. В частности:

  1. sin α > 0, если угол α лежит в I или II координатной четверти. Это происходит из-за того, что по определению синус - это ордината(координата y).

    А координата y будет положительной именно в I и II координатных четвертях;

  2. cos α > 0, если угол α лежит в I или IV координатной четверти. Потому что только там координата x (она же - абсцисса) будет больше нуля;
  3. tg α > 0, если угол α лежит в I или III координатной четверти. Это следует из определения: ведь tg α = y: x , поэтому он положителен лишь там, где знаки x и y совпадают.

    Это происходит в I координатной четверти (здесь x > 0, y > 0) и III координатной четверти (x < 0, y < 0).

Для наглядности отметим знаки каждой тригонометрической функции - синуса, косинуса и тангенса - на отдельных «радарах». Получим следующую картинку:

Заметьте: в своих рассуждениях я ни разу не говорил о четвертой тригонометрической функции - котангенсе.

Дело в том, что знаки котангенса совпадают со знаками тангенса - никаких специальных правил там нет.

Теперь предлагаю рассмотреть примеры, похожие на задачи B11 из пробного ЕГЭ по математике, который проходил 27 сентября 2011. Ведь лучший способ понять теорию - это практика. Желательно - много практики. Разумеется, условия задач были немного изменены.

Задача. Определите знаки тригонометрических функций и выражений (значения самих функций считать не надо):

  1. sin (3π/4);
  2. cos (7π/6);
  3. tg (5π/3);
  4. sin (3π/4) · cos (5π/6);
  5. cos (2π/3) · tg (π/4);
  6. sin (5π/6) · cos (7π/4);
  7. tg (3π/4) · cos (5π/3);
  8. ctg (4π/3) · tg (π/6).

План действий такой: сначала переводим все углы из радианной меры в градусную (π → 180°), а затем смотрим в какой координатной четверти лежит полученное число.

Зная четверти, мы легко найдем знаки - по только что описанным правилам. Имеем:

  1. sin (3π/4) = sin (3 · 180°/4) = sin 135°. Поскольку 135° ∈ , это угол из II координатной четверти. Но синус во II четверти положителен, поэтому sin (3π/4) > 0;
  2. cos (7π/6) = cos (7 · 180°/6) = cos 210°. Т.к. 210° ∈ , это угол из III координатной четверти, в которой все косинусы отрицательны.

    Следовательно, cos (7π/6) < 0;

  3. tg (5π/3) = tg (5 · 180°/3) = tg 300°. Поскольку 300° ∈ , мы находимся в IV четверти, где тангенс принимает отрицательные значения. Поэтому tg (5π/3) < 0;
  4. sin (3π/4) · cos (5π/6) = sin (3 · 180°/4) · cos (5 · 180°/6) = sin 135° · cos 150°. Разберемся с синусом: т.к. 135° ∈ , это II четверть, в которой синусы положительны, т.е.

    sin (3π/4) > 0. Теперь работаем с косинусом: 150° ∈ - снова II четверть, косинусы там отрицательны. Поэтому cos (5π/6) < 0. Наконец, следуя правилу «плюс на минус дает знак минус», получаем: sin (3π/4) · cos (5π/6) < 0;

  5. cos (2π/3) · tg (π/4) = cos (2 · 180°/3) · tg (180°/4) = cos 120° · tg 45°. Смотрим на косинус: 120° ∈ - это II координатная четверть, поэтому cos (2π/3) < 0. Смотрим на тангенс: 45° ∈ - это I четверть (самый обычный угол в тригонометрии).

    Тангенс там положителен, поэтому tg (π/4) > 0. Опять получили произведение, в котором множители разных знаков. Поскольку «минус на плюс дает минус», имеем: cos (2π/3) · tg (π/4) < 0;

  6. sin (5π/6) · cos (7π/4) = sin (5 · 180°/6) · cos (7 · 180°/4) = sin 150° · cos 315°. Работаем с синусом: поскольку 150° ∈ , речь идет о II координатной четверти, где синусы положительны.

    Следовательно, sin (5π/6) > 0. Аналогично, 315° ∈ - это IV координатная четверть, косинусы там положительны.

    Поэтому cos (7π/4) > 0. Получили произведение двух положительных чисел - такое выражение всегда положительно. Заключаем: sin (5π/6) · cos (7π/4) > 0;

  7. tg (3π/4) · cos (5π/3) = tg (3 · 180°/4) · cos (5 · 180°/3) = tg 135° · cos 300°.

    Но угол 135° ∈ - это II четверть, т.е. tg (3π/4) < 0. Аналогично, угол 300° ∈ - это IV четверть, т.е. cos (5π/3) > 0.

    Поскольку «минус на плюс дает знак минус», имеем: tg (3π/4) · cos (5π/3) < 0;

  8. ctg (4π/3) · tg (π/6) = ctg (4 · 180°/3) · tg (180°/6) = ctg 240° · tg 30°. Смотрим на аргумент котангенса: 240° ∈ - это III координатная четверть, поэтому ctg (4π/3) > 0. Аналогично, для тангенса имеем: 30° ∈ - это I координатная четверть, т.е. самый простой угол. Поэтому tg (π/6) > 0. Снова получили два положительных выражения - их произведение тоже будет положительным.

    Поэтому ctg (4π/3) · tg (π/6) > 0.

В заключение рассмотрим несколько более сложных задач. Помимо выяснения знака тригонометрической функции, здесь придется немного посчитать - именно так, как это делается в настоящих задачах B11. В принципе, это почти настоящие задачи, которые действительно встречается в ЕГЭ по математике.

Найдите sin α, если sin2 α = 0,64 и α ∈ [π/2; π].

Поскольку sin2 α = 0,64, имеем: sin α = ±0,8.

Осталось решить: плюс или минус? По условию, угол α ∈ [π/2; π] - это II координатная четверть, где все синусы положительны. Следовательно, sin α = 0,8 - неопределенность со знаками устранена.

Задача. Найдите cos α, если cos2 α = 0,04 и α ∈ [π; 3π/2].

Действуем аналогично, т.е.

извлекаем квадратный корень: cos2 α = 0,04 ⇒ cos α = ±0,2. По условию, угол α ∈ [π; 3π/2], т.е. речь идет о III координатной четверти. Там все косинусы отрицательны, поэтому cos α = −0,2.

Задача. Найдите sin α, если sin2 α = 0,25 и α ∈ .

Имеем: sin2 α = 0,25 ⇒ sin α = ±0,5.

Тригонометрические функции любого угла

Снова смотрим на угол: α ∈ - это IV координатная четверть, в которой, как известно, синус будет отрицательным. Таким образом, заключаем: sin α = −0,5.

Задача. Найдите tg α, если tg2 α = 9 и α ∈ .

Все то же самое, только для тангенса.

Извлекаем квадратный корень: tg2 α = 9 ⇒ tg α = ±3. Но по условию угол α ∈ - это I координатная четверть. Все тригонометрические функции, в т.ч. тангенс, там положительны, поэтому tg α = 3. Все!

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.


В этой статье собраны таблицы синусов, косинусов, тангенсов и котангенсов . Сначала мы приведем таблицу основных значений тригонометрических функций, то есть, таблицу синусов, косинусов, тангенсов и котангенсов углов 0, 30, 45, 60, 90, …, 360 градусов (0, π/6, π/4, π/3, π/2, …, 2π радиан). После этого мы дадим таблицу синусов и косинусов, а также таблицу тангенсов и котангенсов В. М. Брадиса, и покажем, как использовать эти таблицы при нахождении значений тригонометрических функций.

Навигация по странице.

Таблица синусов, косинусов, тангенсов и котангенсов для углов 0, 30, 45, 60, 90, … градусов

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
  • Брадис В. М. Четырехзначные математические таблицы: Для общеобразоват. учеб. заведений. - 2-е изд. - М.: Дрофа, 1999.- 96 с.: ил. ISBN 5-7107-2667-2

Справочные данные по тангенсу (tg x) и котангенсу (ctg x). Геометрическое определение, свойства, графики, формулы. Таблица тангенсов и котангенсов, производные, интегралы, разложения в ряды. Выражения через комплексные переменные. Связь с гиперболическими функциями.

Геометрическое определение




|BD| - длина дуги окружности с центром в точке A .
α - угол, выраженный в радианах.

Тангенс (tg α ) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине прилежащего катета |AB| .

Котангенс (ctg α ) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине противолежащего катета |BC| .

Тангенс

Где n - целое.

В западной литературе тангенс обозначается так:
.
;
;
.

График функции тангенс, y = tg x


Котангенс

Где n - целое.

В западной литературе котангенс обозначается так:
.
Также приняты следующие обозначения:
;
;
.

График функции котангенс, y = ctg x


Свойства тангенса и котангенса

Периодичность

Функции y = tg x и y = ctg x периодичны с периодом π .

Четность

Функции тангенс и котангенс - нечетные.

Области определения и значений, возрастание, убывание

Функции тангенс и котангенс непрерывны на своей области определения (см. доказательство непрерывности). Основные свойства тангенса и котангенса представлены в таблице (n - целое).

y = tg x y = ctg x
Область определения и непрерывность
Область значений -∞ < y < +∞ -∞ < y < +∞
Возрастание -
Убывание -
Экстремумы - -
Нули, y = 0
Точки пересечения с осью ординат, x = 0 y = 0 -

Формулы

Выражения через синус и косинус

; ;
; ;
;

Формулы тангенса и котангенс от суммы и разности



Остальные формулы легко получить, например

Произведение тангенсов

Формула суммы и разности тангенсов

В данной таблице представлены значения тангенсов и котангенсов при некоторых значениях аргумента.

Выражения через комплексные числа

Выражения через гиперболические функции

;
;

Производные

; .


.
Производная n-го порядка по переменной x от функции :
.
Вывод формул для тангенса > > > ; для котангенса > > >

Интегралы

Разложения в ряды

Чтобы получить разложение тангенса по степеням x , нужно взять несколько членов разложения в степенной ряд для функций sin x и cos x и разделить эти многочлены друг на друга , . При этом получаются следующие формулы.

При .

при .
где B n - числа Бернулли. Они определяются либо из рекуррентного соотношения:
;
;
где .
Либо по формуле Лапласа:


Обратные функции

Обратными функциями к тангенсу и котангенсу являются арктангенс и арккотангенс , соответственно.

Арктангенс, arctg


, где n - целое.

Арккотангенс, arcctg


, где n - целое.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
Г. Корн, Справочник по математике для научных работников и инженеров, 2012.