Сила ампера магнитная индукция. Магнитное поле. Сила Лоренца. Магнитная индукция. Сила Ампера

Давно известно, что кусочки магнитного железняка способны притягивать к себе металлические предметы: гвозди, гайки, металлические опилки, иголки и др. Такой способностью их наделила природа. Это естественные магниты .

Подвергнем воздействию естественного магнита брусок из железа. Через некоторое время он сам намагнитится и начнёт притягивать другие металлические предметы. Брусок стал искусственным магнитом . Уберём магнит. Если намагничивание при этом исчезнет, то говорят о временном намагничивании . Если же оно останется, то перед нами постоянный магнит.

Концы магнита, притягивающие металлические предметы наиболее сильно, называют полюсами магнита. Слабее всего притяжение в его средней зоне. Её называют нейтральной зоной .

Если к средней части магнита прикрепить нить и позволить ему свободно вращаться, подвесив его к штативу, то он развернётся таким образом, что один из его полюсов будет ориентирован строго на север, а другой строго на юг. Конец магнита, обращённый на север, называют северным полюсом (N ), а противоположный – южным (S ).

Взаимодействие магнитов

Магнит притягивает другие магниты, не соприкасаясь с ними. Одноимённые полюсы разных магнитов отталкиваются, а разноимённые притягиваются. Не правда ли, это напоминает взаимодействие электрических зарядов?

Электрические заряды оказывают действие друг на друга с помощью электрического поля , образующегося вокруг них. Постоянные магниты взаимодействуют на расстоянии, потому что вокруг них существует магнитное поле .

Физики XIX века пытались представить магнитное поле как аналог электростатического. Они рассматривали полюсы магнита как положительный и отрицательный магнитные заряды (северный и южный полюсы соответственно). Но вскоре поняли, что изолированных магнитных зарядов не существует.

Два одинаковых по величине, но разных по знаку электрических заряда называют электрическим диполем . Магнит имеет два полюса и является магнитным диполем .

Заряды в электрическом диполе можно легко отделить друг от друга, разрезав на две части проводник, в разных частях которого они находятся. Но с магнитом так не получится. Разделив таким же способом постоянный магнит, мы получим два новых магнита, каждый из которых тоже будет иметь два магнитных полюса.

Тела, имеющие собственное магнитное поле, называются магнитами . Различные материалы по-разному притягиваются к ним. Это зависит от структуры материала. Свойство материалов создавать магнитное поле под воздействием внешнего магнитного поля, называется магнетизмом .

Наиболее сильно притягиваются к магнитам ферромагнетики . Причём их собственное магнитное поле, создаваемое молекулами, атомами или ионами, в сотни раз превосходит вызвавшее его внешнее магнитное поле. Ферромагнетиками являются такие химические элементы, как железо, кобальт, никель, а также некоторые сплавы.

Парамагнетики – вещества, намагничивающиеся во внешнем поле в его направлении. Притягиваются к магнитам слабо. Химические элементы алюминий, натрий, магний, соли железа, кобальта, никеля и др. – примеры парамагнетиков.

Но есть материалы, которые не притягиваются, а отталкиваются от магнитов. Их называют диамагнетиками . Они намагничиваются против направления внешнего магнитного поля, но отталкиваются от магнитов довольно слабо. Это медь, серебро, цинк, золото, ртуть и др.

Опыт Эрстеда

Однако магнитное поле создают не только постоянные магниты.

В 1820 г. датский физик Ханс Кристиан Э́рстед на одной из своих лекций в университете демонстрировал студентам опыт по нагреванию проволоки от «вольтова столба». Один из проводов электрической цепи оказался на стеклянной крышке морского компаса, лежащего на столе. Когда учёный замкнул электрическую цепь и по проводу пошёл ток, магнитная стрелка компаса вдруг отклонилась в сторону. Конечно, Эрстед поначалу подумал, что это просто случайность. Но, повторив опыт в тех же условиях, он получил тот же результат. Тогда он начал менять расстояние от провода до стрелки. Чем бόльшим оно было, тем слабее отклонялась стрелка. Но и это ещё не всё. Пропуская ток через провода, сделанные из разных металлов, он обнаружил, что даже те из них, которые не обладали магнитными свойствами, вдруг становились магнитами, когда через них проходил электрический ток. Стрелка отклонялась, даже когда её отделяли от провода с током экранами из материалов, не проводящих ток: дерева, стекла, камней. Даже когда её поместили в резервуар с водой, она всё равно продолжала отклоняться. При разрыве электрической цепи магнитная стрелка компаса возвращалась в исходное состояние. Это означало, что проводник, по которому идёт электрический ток, создаёт магнитное поле , заставляющее стрелку устанавливаться в определённом направлении.

Ханс Кристиан Эрстед

Магнитная индукция

Силовой характеристикой магнитного поля является магнитная индукция . Это векторная величина, определяющая его действие на движущиеся заряды в данной точке поля.

Направление вектора магнитной индукции совпадает с направлением северного полюса магнитной стрелки, находящейся в магнитном поле. Единица измерения магнитной индукции в системе СИ – тесла (Тл) . Измеряют магнитную индукции приборами, которые называются тесламетрами .

Если векторы магнитной индукции поля одинаковы по величине и направлению во всех точках поля, то такое поле называется однородным.

Нельзя путать понятие индукции магнитного поля и явление электромагнитной индукции .

Графически магнитное поле изображают с помощью силовых линий.

Силовыми линиями , или линиями магнитной индукции , называют линии, касательные к которым в данной точке совпадают с направлением вектора магнитной индукции. Густота этих линий отображает величину вектора магнитной индукции.

Картину расположения этих линий можно получить с помощью простого опыта. Рассыпав на куске гладкого картона или стекла железные опилки и положив его на магнит, можно увидеть, как опилки располагаются по определённым линиям. Эти линии имеют форму силовых линий магнитного поля.

Линии магнитной индукции всегда замкнуты . Они не имеют ни начала, ни конца. Выходя из северного полюса, они входят в южный и замыкаются внутри магнита.

Поля с замкнутыми векторными линиями называются вихревыми . Следовательно, магнитное поле является вихревым. В каждой его точке вектор магнитной индукции имеет своё направление. Его определяют по направлению магнитной стрелки в этой точке или по правилу буравчика (для магнитного поля вокруг проводника с током).

Правило буравчика (винта) и правило правой руки

Эти правила дают возможность просто и довольно точно определить направление линий магнитной индукции, не используя никаких физических приборов.

Чтобы понять, как работает правило буравчика , представим себе, что правой рукой мы вкручиваем бур или штопор.

Если направление поступательного движения буравчика совпадает с направлением движения тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитной индукции.

Разновидностью данного правила является правило правой руки .

Если мысленно обхватить правой рукой проводник с током таким образом, чтобы отогнутый на 90° большой палец показывал направление тока, то остальные пальцы покажут направление линий магнитной индукции поля, создаваемого этим током, и направление вектора магнитной индукции, направленного по касательной к этим линиям.

Магнитный поток

Поместим в однородное магнитное поле плоский замкнутый контур. Величина, равная количеству силовых линий, проходящих через поверхность контура, называется магнитным потоком .

Ф = В· cosα ,

где Ф – величина магнитного потока;

В – модуль вектора индукции;

S – площадь контура;

α – угол между направлением вектора магнитной индукции и нормалью (перпендикуляром) к плоскости контура.

С изменением угла наклона меняется величина магнитного потока.

Если плоскость контура перпендикулярна магнитному полю (α = 0), то магнитный поток, проходящий через неё будет максимальным.

Ф max = В·S

Если же контур расположен параллельно магнитному полю (α =90 0), то поток в этом случае будет равен нулю.

Сила Лоренца

Мы знаем, что электрическое поле действует на любые заряды, независимо от того находятся ли они в состоянии покоя или движутся. Магнитное поле способно оказывать воздействие только на движущиеся заряды.

Выражение для силы, действующей со стороны магнитного поля на движущийся в нём единичный электрический заряд, установил нидерландский физик-теоретик Хендрик Антон Ло́ренц .Силу эту назвали силой Лоренца .

Хендрик Антон Лоренц

Модуль силы Лоренца определяют по формуле:

F = sinα ,

где q – величина заряда;

v – скорость движения заряда в магнитном поле;

B - модуль вектора индукции магнитного поля;

α - угол между вектором индукции и вектором скорости.

Куда же направлена сила Лоренца? Это легко определить с помощью правила левой руки : «Если расположить ладонь левой руки таким образом, чтобы четыре вытянутых пальца показывали направление движения положительного электрического заряда, а силовые линии магнитного поля входили в ладонь, то отогнутый на 90 0 большой палец покажет направление силы Лоренца ».

Закон Ампера

В 1820 г. после того как Эрстед установил, что электрический ток создаёт магнитное поле, известный французский физик Андре Мари Ампер продолжил исследования по взаимодействию между электрическим током и магнитом.

Андре Мари Ампер

В результате проведенных опытов учёный выяснил, что на прямой проводник с током, находящийся в магнитном поле с индукцией В , со стороны поля действует сила F , пропорциональная силе тока и индукции магнитного поля . Этот закон получил название закона Ампера , а силу назвали силой Ампера .

F = sinα ,

где I – сила тока в проводнике;

L - длина проводника в магнитном поле;

B - модуль вектора индукции магнитного поля;

α - угол между вектором магнитного поля и направлением тока в проводнике.

Сила Ампера имеет максимальное значение, если угол α равен 90 0 .

Направление силы Ампера, как и силы Лоренца, также удобно определять по правилу левой руки.

Располагаем левую руку таким образом, чтобы четыре пальца указывали направление тока, а линии поля входили в ладонь. Тогда отогнутый на 90 0 большой палец укажет направление силы Ампера.

Наблюдая взаимодействие двух тонких проводников с током, учёный выяснил, что параллельные проводники с током, притягиваются, если токи в них текут в одном направлении, и отталкиваются, если направления токов противоположны .

Магнитное поле Земли

Наша планета представляет собой гигантский постоянный магнит, вокруг которого существует магнитное поле. Этот магнит имеет северный и южный полюсы. Вблизи них магнитное поле Земли проявляется наиболее сильно. Стрелка компаса устанавливается вдоль магнитных линий. Один конец её направлен к северному полюсу, другой к южному.

Магнитные полюсы Земли время от времени меняются местами. Правда, случается это не часто. За последний миллион лет это происходило 7 раз.

Магнитное поле защищает Землю от космического излучения, которое разрушительно действует на всё живое.

На магнитное поле Земли влияет солнечный ветер , представляющий собой поток ионизированных частиц, вырывающихся из солнечной короны с огромной скоростью. Особенно он усиливается во время вспышек на Солнце. Пролетающие мимо нашей планеты частицы создают дополнительные магнитные поля, в результате чего изменяются характеристики магнитного поля Земли. Возникают магнитные бури . Правда, длятся они недолго. И спустя некоторое время магнитное поле восстанавливается. Но проблем они могут создать немало, так как влияют на работу линий электропередач, радиосвязи, вызывают сбои в работе различных приборов, ухудшают работу сердечно-сосудистой, дыхательной и нервной систем человека. Особенно чувствительны к ним метеозависимые люди.

Магнитное поле. Сила Лоренца. Магнитная индукция. Сила Ампера

Согласно классической теории электромагнетизма заряженная частица так возмущает окружающее пространство, что любая другая заряженная частица, помещенная в эту область испытывает действие силы . Говорят, что на частицу действует электромагнитное поле . Электрическая составляющая такого поля связана с самим фактом присутствия заряженной частицы (источника поля) в рассматриваемой области пространства, магнитная ¾ с ее движением.

Источником макроскопического магнитного поля являются проводники с током, намагниченные тела и движущиеся электрически заряженные тела. Однако, природа магнитного поля едина, оно возникает в результате движения заряженных микрочастиц.

Переменное магнитное поле появляется также при изменении во времени электрического поля , и наоборот, при изменении во времени магнитного поля возникает электрическое поле (см. теорию Дж. Максвелла).

Количественной характеристикой силового действия электрического поля на заряженные объекты служит векторная величина ¾напряженность электрического поля . Магнитное поле характеризуется вектором индукции который определяет силу, действующую в данной точке поля на движущийся электрический заряд . Эту силу называют силой Лоренца (X. Лоренц ¾нидерландский физик-теоретик). Экспериментально для модуля этой силы установлена следующая зависимость (в СИ):

F л = В |q |v sina, (8.1)

где |q | ¾ модуль заряда, который двигается в магнитном поле со скоростью v под углом a к направлению магнитного поля.

Таким образом, магнитная индукция численно равна силе F л действующей на единичный заряд, движущийся с единичной скоростью в направлении, перпендикулярном полю .

Сила Лоренца перпендикулярна векторам (направление поля) и при этом направление этой силы совпадает с направлением, которое определяется по правилу левой руки . Согласно этому правилу, если левую руку расположить так, что четыре вытянутых пальца совпадают по направлению с вектором скорости положительного заряда (если q <0, то пальцы левой руки направляют в противоположную сторону или пользуются правой рукой), а составляющая вектора магнитной индукции перпендикулярная скорости заряда, входит в ладонь перпендикулярно к ней, то отогнутый на 90° большой палец покажет направление силы Лоренца, рис. 8.1.

Рис. 8.1

В целом, выражение для вектора силы Лоренца записывается через векторное произведение векторов и :

При движении заряженной частицы перпендикулярно к направлению магнитного поля сила Лоренца играет роль центростремительной силы, при этом траекторией движения частицы является окружность.

Если векторы и направлены одинаково, то В общем случае, когда 0

При наличии электромагнитного поля формула Лоренца имеет вид

(8.3)

Если магнитное поле создают несколько источников (n ), то его магнитная индукция согласно принципу суперпозиции рассчитывается как

Если в магнитное поле поместить проводник с током, то на каждый носитель тока, движущийся по проводнику со скоростью будет действовать сила Лоренца. Действие этой силы от отдельных носителей передается всему проводнику. В результате, на каждый прямолинейный участок проводника длиной Dl (малый элемент длиной Dl ), по которому течет ток I , в магнитном поле будет действовать так называемая сила Ампера (закон Ампера , в честь известного французского ученого, открывшего этот закон, Андре Ампера):

(8.5)

где ¾вектор, направление которого совпадает с направлением тока в проводнике, а модуль этого вектора равен длине участка Dl .

Направление этой силы определяется по правилу левой руки : если левую руку расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции входила в ладонь перпендикулярно к ней, а направление средних пальцев совпадало с направлением тока, то отогнутый на 90° большой палец покажет направление действующей на проводник силы Ампера рис. 8.2.

Рис. 8.2

Таким образом, величина магнитной индукции магнитного поля определяется как

где a ¾ угол между направлением тока и вектора магнитной индукции (магнитного поля).

Однородным постоянным магнитным полем называется магнитное поле, вектор у которого одинаков во всех точках пространства и не меняется со временем.

В соответствии с законом Ампера (8.6) магнитная индукция ¾это величина, численно равная силе, действующей на прямолинейный проводник единичной длины, по которому течет ток единичной силы и который расположен перпендикулярно направлению магнитного поля . Единица магнитной индукции получила название тесла (Тл): (в честь сербского ученого Никола Тесла). Индукция магнитного поля Земли около ее поверхности составляет примерно 5 ×10 - 5 Тл.

Следствием существования силы Ампера является появление момента сил , действующего на рамку с током, помещенную в однородное магнитное поле, и приводящего к ее возможному вращению.

В данном случае модуль вектора магнитной индукции равен отношению максимального момента сил М m ах, действующего со стороны магнитного поля на контур с током, к произведению силы тока I в контуре на его площадь S :

При этом, величина, модуль которой P m = I × S , называется магнитным моментом контура .

Ампер экспериментально обнаружил, что два параллельных проводника взаимодействуют друг с другом. При этом, если токи в проводниках направлены в одну сторону, то взаимодействие имеет характер притяжения, если в противоположные ¾ отталкивания (рис. 8.3).

Магнитная индукция. Сила Лоренца. Магнитное поле - одна из двух составляющих электромагнитного поля (см. разд. 3.2). Магнитное поле действует на движущиеся частицы, токи и магнитные моменты. Источниками магнитного поля являются движущиеся частицы, токи, магнитные моменты и переменные электрические поля. Характеристикой магнитного поля является вектор магнитной индукции В Для определения В можно использовать выражение для силы, действующей на заряженную частицу в электромагнитном поле:

где с см/с - электродинамическая постоянная, равная скорости света в вакууме. Силу действующую на частицу со стороны магнитного поля, называют силой Лоренца.

Для определения магнитной индукции В с помощью формулы (51) надо:

1) измерить силу, действующую на неподвижную частицу, чтобы отделить действие электрического поля;

2) найти направление скорости для которого при постоянной величина магнитной силы максимальна;

3) по величине силы найти модуль магнитной индукции:

4) по направлению Ртлх и найти направление Й с помощью правила буравчика.

Магнитную индукцию удобно также определять по вращательному моменту, с которым магнитное поле действует на маленький виток с током. На виток с током действует только магнитное поле.

В СИ магнитная индукция измеряется в тесла в СГС - в гауссах

Пример 1. Рассмотрим движение нерелятивистской частицы массой с зарядом в однородном магнитном поле с индукцией Пусть в некоторый момент времени скорость частицы направлена под углом а к Сила Лоренца перпендикулярна как к (т.е. так и к В (т.е. сохраняются проекции скорости и на направление вектора индукции и на перпендикулярную к нему плоскость). В проекции на перпендикулярную плоскость частица движется по окружности, радиус которой можно найти из второго закона Ньютона: Период вращения не зависит от скорости. Результирующее движение происходит по спирали радиусом Я с шагом

Закон Ампера. Сила, действующая на элемент тока в магнитном поле, равна сумме сил Лоренца, действующих на движущиеся свободные заряды:

При выводе силы Ампера, действующей на элемент объема с плотностью тока и на линейный элемент с током использовалась

связь тока со средней скоростью свободных зарядов (40). Для вычисления полной силы, действующей на объем с распределенным током или на протяженный участок провода с током, надо произвести интегрирование. Например, на прямой участок провдда длиной с током I в однородном магнитном поле с индукцией В действует сила Сила, действующая в однородном поле на любой замкнутый контур с током, равна нулю:

Магнитный момент контура с током. Магнитным моментом контура с током называется векторная величина равная

где интегрирование ведется по любой поверхности, натянутой на контур, а направление нормали определяется направлением движения буравчика при вращении его по току. В случае плоского контура

Магнитный момент контура, так же как и дипольный момент электрического диполя (см. разд. 3.1 и 3.3), определяет магнитное поле контура на больших расстояниях вдали от него и описывает поведение маленького витка с током в магнитном поле.

Пример 2. Рассмотрим прямоугольный контур, длины сторон которого равны а и подвешенный за сторону а в однородном вертикальном магнитном поле с индукцией В (рис. 36). При включении тока силой I контур отклонится на угол (3, при котором момент силы тяжести уравновешивается моментом сил Ампера или Обратите внимание, что вращательный момент, действующий на контур со стороны магнитного поля, равен Аналогичное выражение было получено для вращательного момента, действующего на электрический диполь в электрическом поле (см. разд. 3.3).

Оп путем было устан, что движущиеся эл-кие заряды, т. е. токи создают магнитные поля. Магнитное поле проявляется под действием сил магнитного взаимодействия. Магнитное поле в отличие от эл-кого действует только на движ заряды, на покоящиеся заряды не действует. (монополь – магнитный заряд) Сп-сть магнитного поля вызывать мех силу в каждой точке поля, действ на элемент тока Id(в-р)l хар-тся магнитной индукцией (вектор) B. Эл-т тока Id(в-р)l есть произв силы тока I на беск малый отрезок проводника d(в-р)l, направл по току. dI(в-р)l играет роль пробного заряда в электростатике. Ампер эксп-но установил, что сила d(в-р)F действ на элемент тока Id(в-р)l с индукцией (в-р) B равна: – закон Ампера (сила Ампера). Если проводник прямолинейный и магнитное поле однородное (одинаковое в каждой точке), интегрируя последнее выражение, получаем:. Направление силы Ампера (в-р)F опр по правилу в-рного произведения. Сила (в-р)F ┴-а пл-сти, в кот лежат в-ры l и B и напр силы (в-р)F опред правилом правого винта: «если рукоятка правого винта вращается от первого вектора l ко второму ве-ру B на кратчайший угол, то поступательное движ винта указ направление силы (в-р)F». Модуль силы Ампера: . Сила Ампера нецентральная, т. е. зависит от ориентации проводника с током в магнитном поле. Из з-на Ампера обычно определяют магнитную индукцию (в-р)B. Пусть проводник прямолинейный и ┴-ый однородному магнитному полю (в-р) B: F=IlB, B=F/Il. Магнитная индукция (вектор) B – силовая, в-ная хар-ка магнитного поля, числ равная силе, действ- со стороны однородного магнитного поля на единицу длины проводника, по которому течет ток =1А и расположение проводника ┴-о напр магнитного поля. Ед изм В в системе СИ явл Тесла (Тл). 1 Тесла – магнитная индукция такого однородного магнитного поля, кот действует с силой 1Н на каждый метр длины проводника с током 1А и расположенное ┴-о магнитному полю: 1Тл=1Н/(1А*1м). Из опытов вытекает, что для магнитных полей справедлив принцип суперпозиции: . Поле (в-р)B, порожденное несколькими движущими зарядами или токами, равно в-рной сумме полей (в-р)B i , порожденных каждым зарядом или током в отдельности. Магнитное поле, как и эл-кое, изображается магнитными силовыми линиями – линиями (в-р) B. Линии магнитной индукции (в-р) B – это линии, касат к кот в каждой точке совпадают с напр в-ра B. Линии (в-р) B всегда замкнуты, что указывает на вихревой характер магнитного поля, на отсутствие магнитных зарядов, на кот могли бы начинаться и заканчиваться силовые линии. По густоте силовых линий судят о величине магнитного поля; там где силовые линии редкие – магнитное поле слабое.

Линии индукции прямолинейного проводника с током представляют собой концентрические окружности, центры которых лежат на оси тока.

При поступательном движении правого винта направление вращения рукоятки винта указывает направление силовых линий.

22. Закон Био-Савара-Лапласа

З-н БСВ даёт выражение для магнитной индукции d , создаваемой элементом I d в точке, характеризуемой радиус-вектором , проведённым из элемента проводникаd в искомую точку.

  • Основные законы Динамики. Законы Ньютона - первый, второй, третий. Принцип относительности Галилея. Закон всемирного тяготения. Сила тяжести. Силы упругости. Вес. Силы трения - покоя, скольжения, качения + трение в жидкостях и газах.
  • Кинематика. Основные понятия. Равномерное прямолинейное движение. Равноускоренное движение. Равномерное движение по окружности. Система отсчёта. Траектория, перемещение, путь, уравнение движения, скорость, ускорение, связь линейной и угловой скорости.
  • Простые механизмы. Рычаг (рычаг первого рода и рычаг второго рода). Блок (неподвижный блок и подвижный блок). Наклонная плоскость. Гидравлический пресс. Золотое правило механики
  • Законы сохранения в механике. Механическая работа, мощность, энергия, закон сохранения импульса, закон сохранения энергии, равновесие твердых тел
  • Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости
  • Механические колебания. Свободные и вынужденные колебания. Гармонические колебания. Упругие колебания. Математический маятник. Превращения энергии при гармонических колебаниях
  • Механические волны. Скорость и длина волны. Уравнение бегущей волны. Волновые явления (дифракция. интерференция...)
  • Гидромеханика и аэромеханика. Давление, гидростатическое давление. Закон Паскаля. Основное уравнение гидростатики. Сообщающиеся сосуды. Закон Архимеда. Условия плавания тел. Течение жидкости. Закон Бернулли. Формула Торричели
  • Молекулярная физика. Основные положения МКТ. Основные понятия и формулы. Свойства идеального газа. Основное уравнение МКТ. Температура. Уравнение состояния идеального газа. Уравнение Менделеева-Клайперона. Газовые законы - изотерма, изобара, изохора
  • Волновая оптика. Корпускулярно-волновая теория света. Волновые свойства света. Дисперсия света. Интерференция света. Принцип Гюйгенса-Френеля. Дифракция света. Поляризация света
  • Термодинамика. Внутренняя энергия. Работа. Количество теплоты. Тепловые явления. Первый закон термодинамики. Применение первого закона термодинамики к различным процессам. Уравнение теплового балланса. Второй закон термодинамики. Тепловые двигатели
  • Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор.
  • Постоянный электрический ток. Закон Ома для участка цепи. Работа и мощность постоянного тока. Закон Джоуля-Ленца. Закон Ома для полной цепи. Закон электролиза Фарадея. Электрические цепи - последовательное и параллельное соединение. Правила Кирхгофа.
  • Электромагнитные колебания. Свободные и вынужденные электромагнитные колебания. Колебательный контур. Переменный электрический ток. Конденсатор в цепи переменного тока. Катушка индуктивности ("соленоид") в цепи переменного тока.
  • Электромагнитные волны. Понятие электромагнитной волны. Свойства электромагнитных волн. Волновые явления
  • Вы сейчас здесь: Магнитное поле. Вектор магнитной индукции. Правило буравчика. Закон Ампера и сила Ампера. Сила Лоренца. Правило левой руки. Электромагнитная индукция, магнитный поток, правило Ленца, закон электромагнитной индукции, самоиндукция, энергия магнитного поля
  • Квантовая физика. Гипотеза Планка. Явление фотоэффекта. Уравнение Эйнштейна. Фотоны. Квантовые постулаты Бора.
  • Элементы теории относительности. Постулаты теории относительности. Относительность одновременности, расстояний, промежутков времени. Релятивистский закон сложения скоростей. Зависимость массы от скорости. Основной закон релятивистский динамики...
  • Погрешности прямых и косвенных измерений. Абсолютная, относительная погрешность. Систематические и случайные погрешности. Среднее квадратическое отклонение (ошибка). Таблица определения погрешностей косвенных измерений различных функций.