Производная функции натурального логарифма. Производная функции. Подробная теория с примерами. Производная показательной функции

Решение неравенств с параметром.

Неравенства, которые имеют вид ax > b, ax < b, ax ≥ b, ax ≤ b, где a и b – действительные числа или выражения, зависящие от параметров, а x – неизвестная величина, называются линейными неравенствами .

Принципы решения линейных неравенств с параметром очень схожи с принципами решения линейных уравнений с параметром.

Пример 1.

Решить неравенство 5х – а > ax + 3.

Решение.

Для начала преобразуем исходное неравенство:

5х – ах > a + 3, вынесем за скобки х в левой части неравенства:

(5 – а)х > a + 3. Теперь рассмотрим возможные случаи для параметра а:

Если a > 5, то x < (а + 3) / (5 – а).

Если а = 5, то решений нет.

Если а < 5, то x > (а + 3) / (5 – а).

Данное решение и будет являться ответом неравенства.

Пример 2.

Решить неравенство х(а – 2) / (а – 1) – 2а/3 ≤ 2х – а при а ≠ 1.

Решение.

Преобразуем исходное неравенство:

х(а – 2) / (а – 1) – 2х ≤ 2а/3 – а;

Ах/(а – 1) ≤ -а/3. Домножим на (-1) обе части неравенства, получим:

ах/(а – 1) ≥ а/3. Исследуем возможные случаи для параметра а:

1 случай. Пусть a/(а – 1) > 0 или а € (-∞; 0)ᴗ(1; +∞). Тогда x ≥ (а – 1)/3.

2 случай. Пусть a/(а – 1) = 0, т.е. а = 0. Тогда x – любое действительное число.

3 случай. Пусть a/(а – 1) < 0 или а € (0; 1). Тогда x ≤ (а – 1)/3.

Ответ: х € [(а – 1)/3; +∞) при а € (-∞; 0)ᴗ(1; +∞);
х € [-∞; (а – 1)/3] при а € (0; 1);
х € R при а = 0.

Пример 3.

Решить неравенство |1 + x| ≤ аx относительно х.

Решение.

Из условия следует, что правая часть неравенства ах должна быть не отрицательна, т.е. ах ≥ 0. По правилу раскрытия модуля из неравенства |1 + x| ≤ аx имеем двойное неравенство

Ах ≤ 1 + x ≤ аx. Перепишем результат в виде системы:

{аx ≥ 1 + x;
{-ах ≤ 1 + x.

Преобразуем к виду:

{(а – 1)x ≥ 1;
{(а + 1)х ≥ -1.

Исследуем полученную систему на интервалах и в точках (рис. 1) :

При а ≤ -1 х € (-∞; 1/(а – 1)].

При -1 < а < 0 x € [-1/(а – 1); 1/(а – 1)].

При а = 0 x = -1.

При 0 < а ≤ 1 решений нет.

Графический метод решения неравенств

Построение графиков значительно упрощает решение уравнений, содержащих параметр. Использование графического метода при решении неравенств с параметром еще нагляднее и целесообразнее.

Графическое решение неравенств вида f(x) ≥ g(x) означает нахождение значений переменной х, при которых график функции f(x) лежит выше графика функции g(x). Для этого всегда необходимо найти точки пересечения графиков (если они существуют).

Пример 1.

Решить неравенство |x + 5| < bx.

Решение.

Строим графики функций у = |x + 5| и у = bx (рис. 2) . Решением неравенства будут те значения переменной х, при которых график функции у = |x + 5| будет находиться ниже графика функции у = bx.

На рисунке видно:

1) При b > 1 прямые пересекаются. Абсцисса точки пересечения графиков этих функций есть решение уравнения х + 5 = bx, откуда х = 5/(b – 1). График у = bx находится выше при х из интервала (5/(b – 1); +∞), значит это множество и есть решение неравенства.

2) Аналогично находим, что при -1 < b < 0 решением является х из интервала (-5/(b + 1); 5/(b – 1)).

3) При b ≤ -1 x € (-∞; 5/(b – 1)).

4) При 0 ≤ b ≤ 1 графики не пересекаются, а значит, и решений у неравенства нет.

Ответ: x € (-∞; 5/(b – 1)) при b ≤ -1;
x € (-5/(b + 1); 5/(b – 1)) при -1 < b < 0;
решений нет при 0 ≤ b ≤ 1; x € (5/(b – 1); +∞) при b > 1.

Пример 2.

Решить неравенство а(а + 1)х > (a + 1)(a + 4).

Решение.

1) Найдем «контрольные » значения для параметра а: а 1 = 0, а 2 = -1.

2) Решим данное неравенство на каждом подмножестве действительных чисел: (-∞; -1); {-1}; (-1; 0); {0}; (0; +∞).

a) a < -1, из данного неравенства следует, что х > (a + 4)/a;

b) a = -1, тогда данное неравенство примет вид 0·х > 0 – решений нет;

c) -1 < a < 0, из данного неравенства следует, что х < (a + 4)/a;

d) a = 0, тогда данное неравенство имеет вид 0 · х > 4 – решений нет;

e) a > 0, из данного неравенства следует, что х > (a + 4)/a.

Пример 3.

Решить неравенство |2 – |x|| < a – x.

Решение.

Строим график функции у = |2 – |x|| (рис. 3) и рассматриваем все возможные случаи расположения прямой у = -x + а.

Ответ: решений у неравенства нет при а ≤ -2;
x € (-∞; (а – 2)/2) при а € (-2; 2];
x € (-∞; (a + 2)/2) при a > 2.

При решении различных задач, уравнений и неравенств с параметрами открывается значительное число эвристических приемов, которые потом с успехом могут быть применены в любых других разделах математики.

Задачи с параметрами играют важную роль в формировании логического мышления и математической культуры. Именно поэтому, овладев методами решения задач с параметрами, вы успешно справитесь и с другими задачами.

Остались вопросы? Не знаете, как решать неравенства?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

На этом уроке мы изучим алгоритм решения неравенств с параметрами и научимся применять его при решении такого типа заданий.

Определение первое .

Решить неравенство с параметром — значит для каждого значения параметра найти множество всех решений данного неравенства или доказать, что решений нет.

Рассмотрим линейные неравенства.

Определение второе .

Неравенства вида а икс плюс бэ больше нуля, больше либо равно нулю, меньше нуля, меньше либо равно нулю, где a и бэ — действительные числа, икс — переменная, называются неравенствами первой степени (линейными неравенствами).

Алгоритм решения линейного неравенства с параметром, например, неравенстваа икс плюс бэ больше нуля, где a и бэ — действительные числа, икс — переменная. Рассмотрим следующие случаи:

Первый случай: a больше нуля, тогда икс больше минус бэ деленное на а.

Следовательно, множество решений неравенства есть открытый числовой луч от минус бэ деленное на а до плюс бесконечности.

Второй случай: a меньше нуля, тогда икс меньше минус бэ деленное на а

и, следовательно, множество решений неравенства есть открытый числовой луч от минус бесконечности до минус бэ деленное на а.

Третий случай: a равно нулю, тогда неравенство примет вид: ноль умноженное на икс плюс бэ больше нуля и для бэ большенуля любое действительное число есть решение неравенства, а при бэ меньшем либо равным нулю неравенство не имеет решений.

Остальные неравенства решаются аналогично.

Рассмотрим примеры.

Задание 1

Решить неравенство а иксменьше либо равно единице.

Решение

В зависимости от знака a рассмотрим три случая.

Первый случай: если a больше нуля, то икс меньше либо равно один деленное на а;

Второй случай: если a меньше нуля, то икс больше либо равно один деленное на а;

Третий случай: если a равно нулю, то неравенство примет вид: ноль умноженное на икс меньше, либо равно единице и, следовательно, любое действительное число является решением исходного неравенства.

Таким образом, если а больше нуля, то икс принадлежит лучу от минус бесконечности до единицы, деленной на а.

Если a a равно нулю,

то x

Ответ: если а больше нуля, то икс принадлежит лучу от минус бесконечности до единицы, деленной на а;

если a меньше нуля, то икс принадлежит лучу от единицы, деленной на а, до плюс бесконечности, и если a равно нулю,

то x икс принадлежит множеству действительных чисел.

Задание 2

Решить неравенство модуль икс минус два больше минус квадрата разности а и единицы.

Решение

Заметим, что модуль икс минус два больше либо равно нулю для любого действительного икс и минус квадрат разности а и единицы меньше либо равно нулю для любого значения параметра a . Следовательно, если a равно единице, то любое икс — действительное число, отличное от двух, является решением неравенства, а если a не равно одному, то любое действительное число является решением неравенства.

Ответ: если a равно одному, то икс принадлежит объединению двух открытых числовых лучей от минус бесконечности до двух и от двух до плюс бесконечности,

а если a принадлежит объединению двух открытых числовых лучей от минус бесконечности до единицы и от одного до плюс бесконечности, то икс принадлежит множеству действительных чисел.

Задание 3

Решить неравенство три умноженное на разность четырех а и икса меньше двух а икс плюс три.

Решение

После элементарных преобразований данного неравенства, получим неравенство: икс умноженное на сумму двух а и трех больше три умноженное на разность четырех а и одного.

Первый случай: если два а плюс три больше нуля, то есть a больше минус трех вторых, то икс больше дроби, числитель которой — три умноженное на разность четырех а и единицы, а знаменатель — два а плюс три.

Второй случай: если два а плюс три меньше нуля, то есть a меньше минус трех вторых, то икс меньше дроби, числитель которой — три умноженное на разность четырех а и одного, а знаменатель два а плюс три.

Третий случай: если два а плюс три равно нулю, то есть a равно минус три вторых,

любое действительное число является решением исходного неравенства.

Следовательно, если а принадлежит окрытому числовому лучу от минус трех вторых до плюс бесконечности, то икс

принадлежит открытому числовому лучу от дроби, числитель которой — три умноженное на разность четырех а и одного, а знаменатель — два а плюс три, до плюс бесконечности.

Если а принадлежит открытому числовому лучу от минус бесконечности до минус трех вторых, то икс принадлежит открытому числовому лучу от минус бесконечности до дроби, числитель которой — три умноженное на разность четырех а и единицы, а знаменатель — два а плюс три;

если a равно минус трем вторых, то икс принадлежит множеству действительных чисел.

Ответ: если а принадлежит окрытому числовому лучу от минус трех вторых до плюс бесконечности, то икс

принадлежит открытому числовому лучу от дроби, числитель которой — три умноженное на разность четырех а и единицы, а знаменатель — два а плюс три до плюс бесконечности;

если а принадлежит открытому числовому лучу от минус бесконечности до минус трех вторых, то икс принадлежит открытому числовому лучу от минус бесконечности до дроби, числитель которой — три умноженное на разность четырех а и единицы, а знаменатель два а плюс три;

если a равно минус трем вторых, то икс принадлежит множеству действительных чисел.

Задание 4

Для всех допустимых значений параметра а решить неравенство квадратный корень из икс минус а плюс квадратный корень из двух а минус икс плюс квадратный корень из а минус один плюс квадратный корень из трех минус а больше нуля.

Решение

Найдем область определения параметра а . Она определяется системой неравенств, решив которую находим, что а принадлежит отрезку от одного до трех.

Данное неравенство равносильно системе неравенств, решая которую находим, что икс принадлежит отрезку от а до двух а.

Если а принадлежит отрезку от единицы до трех, то решением исходного неравенства является отрезок от а до двух а.

Ответ: если а принадлежит отрезку от одного до трех, тоикс принадлежит отрезку от а до двух а.

Задание 5

Найти все а , при которых неравенство

квадратный корень из икс в квадрате минус икс минус два плюс квадратный корень из дроби, числитель которой — два минус икс, а знаменатель — икс плюс четыре больше либо равно а икс плюс два минус квадратный корень из дроби, числитель которой — икс плюс один, а знаменатель — пять минус икс не имеет решения.

Решение

Первое. Вычислим область определения данного неравенства. Она определяется системой неравенств, решением которой являются два числа: икс равен минус единице и икс равен двум.

Второе. Найдем все значения а, при которых данное неравенство имеет решения. Для этого найдем все а , при которых икс равен минус единице и икс равен двум — это решение данного неравенства. Рассмотрим и решим совокупность двух систем. Решением является объединение двух числовых лучей от минус бесконечности до минус одной второй, и от единицы до плюс бесконечности.

Значит, данное неравенство имеет решение, если а принадлежит объединению двух числовых лучей от минус

бесконечности до минус одной второй, и от единицы до плюс бесконечности.

Третье. Следовательно, данное неравенство не имеет решения, если а принадлежит интервалу от минус одной второй до единицы.

Ответ: неравенство не имеет решения, если а принадлежит интервалу от минус одной второй до единицы.