Прикладные исследования виды этапы кратко схема. Большая энциклопедия нефти и газа. Курс лекций по инновационному менеджменту

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Научные исследования и разработки представляют собой творческую деятельность. Их целью является увеличение объема знаний о человеке, природе, обществе, поиск новых путей применения этих знаний.

Научные исследования и разработки охватывают: фундаментальные исследования, прикладные исследования, разработки.

Фундаментальные исследования - экспериментальные или теоретические исследования, направленные на получение новых знаний. Их результатом могут быть теории, гипотезы, методы и т.п. Они могут завершаться рекомендациями о проведении прикладных исследований, научными докладами, публикациями.

В отличие от фундаментальных исследований, прикладные исследования имеют целью решение конкретных практических задач. Они представляют собой оригинальные работы, направленные на получение новых знаний, поиск путей использования результатов фундаментальных исследований; новых методов решения тех или иных проблем.

Разработки - это работы, направленные на создание новых продуктов или устройств, новых материалов, внедрение новых процессов, систем и услуг или усовершенствование уже выпускаемых или введенных в действие. Они могут быть связаны с разработкой: определенной конструкции инженерного объекта или технической системы (конструкторские работы); идей и вариантов нового объекта, в том числе нетехнического, на уровне чертежа или другой системы знаковых средств (проектные работы).

Таким образом, научные исследования и разработки включают:

Конструкторские работы;

Проектные работы;

Технологические работы;

Создание опытных образцов;

Проведение испытаний.

Глава 1. Фундаментальные исследования и разработки

1.1 Фундаментальные исследования

В соответствии с логикой развития инновационного процесса появление нововведения начинается с генерации идеи нового продукта. Часто идеи рождаются в процессе проведения фундаментальных исследований.

Фундаментальные исследования -- это экспериментальная или теоретическая деятельность, направленная на получение новых знаний об основных закономерностях строения, функционирования и развития человека, общества, окружающей среды. Цель фундаментальных исследований -- раскрыть новые связи между явлениями, познать закономерности развития природы и общества относительно к их конкретному использованию. Фундаментальные исследования делятся на теоретические и поисковые.

Результаты теоретических исследований проявляются в научных открытиях, обосновании новых понятий и представлений, создании новых теорий. К поисковым относятся исследования, задачей которых является открытие новых принципов создания идеи и технологий. Завершаются поисковые фундаментальные исследования обоснованием и экспериментальной проверкой новых методов удовлетворения общественных потребностей. Все поисковые фундаментальные исследования проводятся как в академических учреждениях и вузах, так и в крупных научно-технических организациях промышленности только персоналом высокой научной квалификации. Приоритетное значение фундаментальной науки в развитии инновационных процессов определяется тем, что она выступает в качестве генератора идей, открывает пути в новые области знания. Финансирование фундаментальных исследований ведётся из государственного бюджета или в рамках государственных программ.

1.2 Связь фундаментальных и прикладных исследований

ФУНДАМЕНТАЛЬНЫЕ И ПРИКЛАДНЫЕ ИССЛЕДОВАНИЯ -- типы исследований, различающиеся по своим социально-культурным ориентациям, по форме организации и трансляции знания, а соответственно по характерным для каждого типа формам взаимодействия исследователей и их объединений. Все различия, однако, относятся к окружению, в котором работает исследователь, в то время как собственно исследовательский процесс -- получение нового знания как основа научной профессии -- в обоих типах исследований протекает одинаково.

Фундаментальные исследования направлены на усиление интеллектуального потенциала общества путем получения нового знания и его использования в общем образовании и подготовке специалистов практически всех современных профессии. Ни одна форма организации человеческого опыта не может заменить в этой функции науку, выступающую как существенная составляющая культуры. Прикладные исследования направлены на интеллектуальное обеспечение инновационного процесса как основы социально-экономического развития современной цивилизации. Знания, получаемые в прикладных исследованиях, ориентированы на непосредственное использование в других областях деятельности (технологии, экономике, социальном управлении и т. д.).

Фундаментальные и прикладные исследования являются двумя формами осуществления науки как профессии, характеризующейся единой системой подготовки специалистов и единым массивом базового знания. Более того, различия в организации знания в этих типах исследования не создают принципиальных препятствий для взаимного интеллектуального обогащения обеих исследовательских сфер. Организация деятельности и знания в фундаментальных исследованиях задается системой и механизмами научной дисциплины, действие которых направлено на максимальную интенсификацию исследовательского процесса. Важнейшим средством при этом выступает оперативное привлечение всего сообщества к экспертизе каждого нового результата исследований, претендующего на включение в корпус научного знания. Коммуникационные механизмы дисциплины позволяют включать в такого рода экспертизу новые результаты независимо от того, в каких исследованиях эти результаты получены. При этом значительная часть научных результатов, вошедших в корпус знания фундаментальных дисциплин, была получена в ходе прикладных исследований.

1.3 Научно-исследовательские работы

НИР -- «научно-исследовательская работа». Термин вошел в употребление в советское время, однако продолжает широко использоваться и сейчас.

Согласно нормативному определению: «По договору на выполнение научно-исследовательских работ исполнитель обязуется провести обусловленные техническим заданием заказчика научные исследования, а заказчик обязуется принять работу и оплатить ее».

Проведение НИР регламентируется ГОСТ 15.101-98 (порядок выполнения) и ГОСТ 7.32-2001 (оформление отчета) и регулируются ГК РФ. Основным результатом НИР является отчет о выполнении научных исследований, но также допускается создание опытных образцов, в отличие от ОКР, результатом которой могут быть образец изделия, конструкторская документация или новая технология.

Различают фундаментальные НИР, поисковые НИР, прикладные НИР

Фундаментальная наука -- область познания, подразумевающая теоретические и экспериментальные научные исследования основополагающих явлений (в том числе и умопостигаемых) и поиск закономерностей, руководящих ими и ответственных за форму, строение, состав, структуру и свойства, протекание процессов, обусловленных ими; -- затрагивает базовые принципы большинства гуманитарных и естественнонаучных дисциплин, -- служит расширению теоретических, концептуальных представлений, в частности -- детерминаци идео- и формообразующей сущности предмета их изучения, -- мироздания как такового во всех его проявлениях, в том числе и охватывающих сферы интеллектуальные, духовные и социальные.

Глава 2. Прикладные исследования и разработки

2.1 Прикладные научные исследования

Прикладные научные исследования -- это исследования, направленные преимущественно на применение новых знаний для достижения практических целей и решения конкретных задач, в том числе имеющих коммерческое значение. На данном этапе проверяется техническая осуществимость идеи, анализируются масштабы потребностей рынка, а также потенциальные возможности предприятия по разработке и производству нового продукта. Выполнение работ на данном этапе связано с высокой вероятностью получения отрицательных результатов, возникает риск потерь при вложении средств в проведение прикладных научных исследований. Финансирование прикладных научно-исследовательских работ ведётся, во-первых, из государственного бюджета, во-вторых, за счёт отдельных заказчиков в лице крупных промышленных фирм, акционерных обществ, коммерческих фондов и венчурных фирм.

Формирование прикладных исследований как организационно специфичной сферы ведения научной деятельности, целенаправленное систематическое развитие которой приходит на смену утилизации случайных единичных изобретений, относится к кон. 19 в. и обычно связывается с созданием и деятельностью лаборатории Ю. Либиха в Германии. Перед 1-й мировой войной прикладные исследования как основа для разработки новых видов техники (прежде всего военной) становятся неотъемлемой частью общего научно-технического развития. К сер. 20 в. они постепенно превращаются в ключевой элемент научно-технического обеспечения всех отраслей народного хозяйства и управления.

Хотя в конечном счете социальная функция прикладных исследований направлена на снабжение инновациями научно-технического и социально-экономического прогресса в целом, непосредственная задача любой исследовательской группы и организации состоит в обеспечении конкурентного преимущества той организационной структуры (фирмы, корпорации, отрасли, отдельного государства), в рамках которой осуществляются исследования. Эта задача определяет приоритеты в деятельности исследователей и в работе по организации знания: выбор проблематики, состав исследовательских групп (как правило, междисциплинарных), ограничение внешних коммуникаций, засекречивание промежуточных результатов и юридическая защита конечных интеллектуальных продуктов исследовательской и инженерной деятельности (патенты, лицензии и т п.).

Ориентация прикладных исследований на внешние приоритеты и ограничение коммуникаций внутри исследовательского сообщества резко снижают эффективность внутренних информационных процессов (в частности, научной критики как основного двигателя научного познания).

Поиск целей исследований опирается на систему научно-технического прогнозирования, которая дает информацию о раз витии рынка, формировании потребностей, а тем самым и о перспективности тех или иных инноваций. Система научнотехнической информации снабжает прикладные исследования сведениями как о достижениях в различных областях фундаментальной науки, так и о новейших прикладных разработках, уже достигших лицензионного уровня.

Знание, полученное в прикладных исследованиях (за исключением временно засекреченных сведений о промежуточных результатах), организуется в универсальной для науки форме научных дисциплин (технические, медицинские, сельскохозяйственные и др. науки) и в этом стандартном виде используется для подготовки специалистов и поиска базовых закономерностей. Единство науки не разрушается наличием различных типов исследований, а приобретает новую форму, соответствующую современной ступени социально-экономического развития.

2.2 Опытно-конструкторские работы

фундаментальный прикладной исследование

Под опытно--конструкторскими работами понимается применение результатов прикладных исследований для создания образцов новой техники, материала, технологии. Опытно-конструкторские работы -- это завершающая стадия научных исследований, переход от лабораторных условий и экспериментального производства к промышленному производству.

К опытно-конструкторским работам относятся:

эскизно-техническое проектирование;

выпуск рабочей проектно-конструкторской документации, в том числе чертежи на детали, сборочные соединения, изделие в целом;

изготовление и испытание опытных образцов;

разработка определённой конструкции инженерного объекта или технической системы;

разработка идей и вариантов нового объекта;

разработка технологических процессов;

определение наименования продукта, товарного знака, маркировки, упаковки.

Основные научно-технические результаты опытно-конструкторских работ: прототип, промышленный образец, полезная модель, компьютерные программы, базы данных, научно-техническая документация. Опытно-конструкторские работы проводятся при финансовой поддержке из государственного бюджета или за счёт собственных средств предприятия-заказчика.

Опытно-конструкторские работы (ОКР)

После завершения прикладных НИР при условии получения положительных результатов экономического анализа, удовлетворяющих фирму с точки зрения ее целей, ресурсов и рыночных условий, приступают к выполнению опытно-конструкторских работ (ОКР). ОКР - важнейшее звено материализации результатов предыдущих НИР. На основе полученных результатов исследований создаются и отрабатываются новые товары.

Основные этапы ОКР:1) разработка ТЗ на ОКР;2) техническое предложение;3) эскизное проектирование;4) техническое проектирование;5) разработка рабочей документации для изготовления и испытаний опытного образца;6) предварительные испытания опытного образца;7) государственные (ведомственные) испытания опытного образца;8) отработка документации по результатам испытаний.

2.3 Проведение испытаний

Испытания продукции для последующей сертификации проводятся в аккредитованных испытательных лабораториях на проведение испытаний данного вида продукции (если испытательная лаборатория аккредитована на техническую компетентность и независимость).

В случае отсутствия испытательной лаборатории, аккредитованной на компетентность и независимость, допускается проводить испытания в испытательной лаборатории аккредитованной только на техническую компетентность, под контролем представителей Органа по сертификации конкретной продукции. Протоколы испытаний в таком случае подписываются специалистами испытательной лаборатории и органа по сертификации.

Отбором образцов занимается, как правило, испытательная лаборатория или компетентная организация по поручению испытательной лаборатории.

Количество образцов, порядок их отбора, правила идентификации и хранения определяются нормативными или организационно-методическими документами по сертификации данной продукции и методиками испытаний.

На основании протоколов испытаний эксперт по сертификации продукции делает заключение о соответствии/несоответствии продукции, установленным требованиям.

Заключение

Фундаментальная наука - это наука ради науки. Это часть научно-исследовательской деятельности без определенных коммерческих или других практических целей. Естествознание - пример фундаментальной науки. Оно направлено на познание природы, такой, как она есть сама по себе независимо от того, какое приложение получат его открытия: освоение космоса или загрязнение окружающей среды. И никакой другой цели естествознание не преследует. Это наука для науки, т.е. познания окружающего мира, открытия фундаментальных законов бытия и приращения фундаментальных знаний.

Прикладная наука - это наука, направленная на получение конкретного научного результата, который актуально или потенциально может использоваться для удовлетворения частных или общественных потребностей.

У фундаментальной и прикладной науки различные методы и предмет исследования, различные подходы и угол зрения на социальную действительность. У каждой из них свои критерии качества, свои приемы и методология, свое понимание функций ученого, своя собственная история и даже своя идеология. Иными словами, свой мир и своя субкультура.

Сколько дает практике фундаментальная наука?

Фундаментальная и прикладная науки - два совершенно разных типа деятельности. Вначале, а это происходило в античные времена, расстояние между ними было незначительным и почти все, что открывалось в сфере фундаментальной науки сразу же или в короткие сроки находило применение на практике.

Архимед открыл закон рычага, который немедленно был использован в военном и инженерном деле. А древние египтяне открывали геометрические аксиомы, в буквальном смысле не отрываясь от земли, поскольку геометрическая наука возникла из нужд земледелия.

Постепенно расстояние увеличивалось и сегодня достигло максимума. На практике воплощает менее 1% открытий, сделанных в чистой науке.

В 1980-е годы американцы провели оценочное исследование (цель таких исследование - оценка практической значимости научных разработок, их эффективности). Более 8 лет дюжина исследовательских групп анализировали 700 технологических инноваций в системе вооружений. Результаты ошеломили публику: у 91% изобретений в качестве источника значится предшествующая прикладная технология, и только у 9% - достижения в сфере науки. Причем из них лишь у 0,3% источник лежит в области чистых (фундаментальных) исследований.

Список литературы :

1. Ю.И. Ребрин Основы экономики и управления производством. Конспект лекций. Таганрог: Изд-во ТРТУ, 2000. 145 с.

2. Гражданский кодекс РФ. Глава 38 ГК РФ

3. Гольдштейн Г.Я. Инновационный менеджмент: Организация и порядок выполнения НИР

4. Mauksch H.O. Обучение прикладной социологии: возможности и препятствия//Прикладная социология: роли и действия социологов в разнообразных параметрах настройки / Эд. H.E.Freeman, Дины R.R., Росси П.Х и Уайт В.Ф. - Сан-Франциско и т.д.: Jossey-басовый Publischers, 1983. р.312-313.

Размещено на Allbest.ru

Подобные документы

    Главные направления деятельности ООО "Прикладные системы" консультирование в области информационных технологий, разработке специализированного программного обеспечения, аналитических инструментов, WEB-разработки. Создание благоприятной внутренней среды.

    реферат , добавлен 14.02.2009

    Экономическая сущность и классификация инноваций. Фундаментальные исследования и опытно-конструкторские работы - основные стадии внедрения новшеств в производство. Разработка инновационного проекта, расчет совокупных затрат и рисков на его реализацию.

    курсовая работа , добавлен 12.11.2010

    Роль сетевых структур в управлении инновационной организацией. Достоинства и недостатки последовательной формы организации инновационной деятельности. Развитие внутри корпорации прикладных научных исследований. Использование венчурных подразделений.

    презентация , добавлен 23.08.2016

    Методология и организация исследования систем управления, разработка концепции исследования. Источники получения сведений о деятельности организации, характеристика этапов проведения исследований. Стратегические направления в развитии организации.

    реферат , добавлен 20.02.2013

    Школа человеческих отношений и Э. Мэйо. Цели и задачи хоторнских экспериментов. Процедура исследований: основные этапы. Результаты хоторнских исследований. Изменение трудового поведения работников по мере изменения условий их деятельности.

    курсовая работа , добавлен 13.03.2004

    Фундаментальные научные исследования систем управления и их краткая характеристика. Моделирование как метод исследования систем управления, адекватность модели. Исследование информационного обеспечения системы управления на предприятии "Юпитер".

    контрольная работа , добавлен 25.07.2009

    Понятия и направления системных исследований. Основные характеристики, типология, стадии и этапы исследования систем управления. Сущность основных направлений системных исследований: общей теории систем, системного подхода и системного анализа.

    курсовая работа , добавлен 31.10.2008

    Зависимость объема и своевременности выполнения работ от обеспеченности трудовыми ресурсами и эффективности их использования. Показатели текучести кадров и резервов трудовых ресурсов ООО "Прикладные системы". Причины неудовлетворенности работой.

    реферат , добавлен 15.02.2009

    Основные теории мотивации. Проблемы формирования мотивационного механизма на предприятии. Управление трудовой мотивацией персонала на примере ООО "Некст" ("Мюнхенский дворик"). Формирование системы мотивационного менеджмента на основе прикладных методов.

    дипломная работа , добавлен 26.12.2010

    Сертификация как один из видов контроля качества продукции. Направления организации работы по сертификации продукции. Сертификация товаров, подлежащих ввозу в Россию. Главные условия аккредитации лаборатории. Этапы процесса сертификации продукции.

В самом общем виде по своей структуре научные исследования делятся на фундаментальные и прикладные.

Фундаментальные исследования направлены на открытие новых, ранее не изученных явлений и законов природы и социальной реальности, а также на создание новых исследовательских методологий. Их целью является расширение научного знания в целом. Они ведутся на границе известного и неизвестного и обладают значительной степенью неопределенности.

Прикладные исследования направлены на нахождение способов использования явлений и законов природы для создания новых и совершенствования существующих средств и способов человеческой деятельности. Их целью выступает установление как можно большего числа вариантов практической эксплуатации имеющихся научных знаний.

Различие между фундаментальной наукой и прикладной было очень точно охарактеризовано Д. Томсоном - открывателем электрона - в речи, произнесенной им в 1916 году: «Под исследованием в фундаментальной науке я понимаю исследование не с целью применения его результатов в промышленности, а только для умножения знаний о Законах Природы». Томсон утверждал также, что прикладная наука совершенствует старые методы, в то время как фундаментальная наука создает новые методы, и что «если прикладная наука ведет к реформам, то фундаментальная наука приводит к революциям, которые, будь они политические или научные, являются мощными инструментами, если вы находитесь на стороне победителя ».

Прикладные исследования дифференцируются на поисковые, научно-исследовательские и опытно-конструкторские работы. Поисковые исследования направлены на установление факторов, влияющих на изучаемый объект либо процесс. Научно-исследовательские работы связаны с созданием новых технологий, опытных установок, приборов. Опытно-конструкторские исследования направлены на подбор конструктивных характеристик создаваемого технического устройства.

Завершающей стадией прикладного исследования, как правило, является разработка, то есть целенаправленный процесс преобразования научно-технической информации в форму, пригодную для освоения в промышленности, подготовка к внедрению.

Одно из принципиальных различий между фундаментальными и прикладными исследованиями как раз и состоит в том, что любое прикладное исследование - это всегда такой научный проект, результаты которого изначально адресованы производителям и заказчикам и которое руководствуется нуждами или желаниями этих клиентов. Фундаментальные же исследования адресованы прежде всего другим членам научного сообщества и направлены, в первую очередь, на расширение знания о мире как такового.


При этом нужно понимать, что на современном этапе развития науки и техники в некоторых моментах фундаментальные и прикладные исследования сходятся. Так, например, для современной инженерной деятельности требуется осуществление не только краткосрочных проектов, направленных на решение специальных задач, но и широкая долговременная программа фундаментальных исследований, специально предназначенных для развития технических наук в целом. В то же время современные фундаментальные исследования (особенно в технических науках) очень тесно связаны с практическими приложениями.

Помимо прочего, для современного этапа развития науки и техники характерно использование методов фундаментальных исследований для решения прикладных проблем. В то же время, тот факт, что исследование является фундаментальным, еще не означает, что его результаты прагматически бесполезны, а работа, направленная на прикладные цели, может носить фундаментальный характер. Критериями их разделения являются в основном временной фактор и степень общности. Вполне правомерно сегодня говорить и о фундаментальных промышленных исследованиях.

Надо помнить также и о том, что в некоторых случаях, не будучи источником, фундаментальная наука выступает основой тех или иных технологических достижений. Такая роль фундаментальной науки обычно может быть выявлена только ретроспективно. Ярким примером подобного положения дел является создание атомных реакторов и атомных бомб. В определенном отношении атомный проект может быть рассмотрен в качестве приложения специальной теории относительности, которая собственно и выступила источником упомянутых выше технологических изобретений.

Таким образом, ясно видно, что характер связей между фундаментальной и прикладной науками - это одна из наиболее глубоких и трудных проблем в истории и методологии научного познания.

Прикладные исследования - научные исследования , направленные на практическое решение технических и социальных проблем.

Наука - это сфера человеческой деятельности, функцией которой является выработка и теоретическая систематизация объективных знаний о действительности. Непосредственные цели науки - описание, объяснение и предсказание процессов и явлений действительности, составляющих предмет её изучения на основе открываемых ею законов , то есть в широком смысле - теоретическое отражение действительности.

По своей направленности, по отношению к практике отдельные науки принято подразделять на фундаментальные науки (fundamental science ) и прикладные науки (applied science ). Задачей фундаментальных наук является познание законов, управляющих поведением и взаимодействием базисных структур природы, общества и мышления. Эти законы и структуры изучаются в «чистом виде», как таковые, безотносительно к их возможному использованию. Непосредственная цель прикладных наук - применение фундаментальных наук для решения не только познавательных, но и социально-практических проблем .

Деление исследований на фундаментальные и прикладные достаточно условно, так как отдельные результаты фундаментальных исследований могут иметь непосредственную практическую ценность, а в результате прикладных исследований могут быть получены научные открытия .

Энциклопедичный YouTube

    1 / 2

    ✪ Объект и предмет в социологическом исследовании - Виктор Вахштайн

    ✪ Выжить в кризис. Фурсов А.И. (22.12.2018)

Субтитры

Научное обеспечение хозяйственной деятельности

Научные исследования становятся обязательным процессом принятия управленческого решения. Объём и сложность такой работы определяются конкретной проблемой, но она всегда имеет когнитивную структуру, а результат основывается на применении научных методов .

Ещё более сложным оказывается вопрос объективного описания второй составляющей проблемы - желательной ситуации и, соответственно, следующих из неё определений цели и гипотезы исследований. Все это зависит от объективности описания существующей ситуации и лица, принимающего решение выявить цели систем, в которые входит исследуемый объект. Здесь методические ошибки могут привести к тому, что попытка решения одной проблемы приведет к появлению новых. Многие новые проблемы - уплотнение почвы тяжёлой техникой, инерционность управленческого аппарата, вследствие увеличения численности сотрудников и связей, утилизация стоков животноводческих комплексов и др. - возникали в результате деятельности человека, направленной на решение других проблем.

Анализ первого этапа научной постановки управленческого решения показывает, что если в естественных и технических науках основным источником субъективных искажений и, соответственно, снижения эффективности этого этапа является полнота описания реального факта, достигаемая в основном только за счёт используемых приборов, то в случае исследования производственных проблем добавляются вопросы адекватного восприятия объекта учеными или/и менеджерами, зависящие от применяемой ими методологии. На первом этапе исследования проблем высока вероятность формулировки ложных проблем - «проблемоидов» и псевдозадач, решение которых не будет представлять какой-либо практической ценности, а внедрение может привести к нежелательным последствиям. В этом случае эффективность управленческого решения будет нулевой или даже отрицательной.

Второй этап исследования производственной проблемы - разработка математической модели.

Объективность при этом должна обеспечиваться использованием научных принципов оценки ситуаций, а также методов и моделей принятия решений. Моделирование, особенно с использованием компьютеров, является основным теоретическим инструментом системных исследований прикладной ориентации в управлении сложными системами. Содержательная часть процесса моделирования (выбор показателей, факторов, зависимостей) включается в экономическую теорию, а техническая (под которой в 9 случаях из 10 понимается построение тех или иных статистических моделей) - в эконометрику . Таким образом, экономико-математическое моделирование оказывается, с одной стороны, разорванным, с другой - усечённым. И вопросы взаимосвязи всех этапов моделирования, корректности интерпретации результатов моделирования и, следовательно, ценности рекомендаций на основе моделей оказываются как бы висящими в воздухе.

Однозначность математического языка является одновременно и «плюсом», и «минусом». Достоинство в том, что она не допускает ошибок, но это же свойство ограничивает возможность достаточно полного описания объекта. С повышением информации в модели эвристическая функция моделирования растет не прямо пропорционально количеству учтенной информации, а по экстремальному закону, то есть эффективность моделирования растет лишь до определённого предела, после которого она падает. Иными словами, использование математики гарантирует точность, но не правильность получаемого решения. В исследованиях физических объектов, информационная сложность которых вследствие определяющих их причинно-следственных связей относительно невысока, уровень потерь и искажения информации будут значительно ниже, чем при исследовании социально-экономических объектов. Ограниченность математического языка лежит в основе теории о неполноте формальных систем К. Гёделя и принципа внешнего дополнения Ст. Бира (Beer Stafford ). Её уровень, естественно, во многом носит исторический, а не абсолютный характер. По мере развития математики возможности её будут расти. Однако в настоящее время многие российские и зарубежные математики, философы, экономисты, представители других научных направлений отмечают ограниченные возможности адекватного математического описания социально-экономических явлений.

Практически неограниченный диапазон применения математических методов создаёт впечатление их «всеядности», универсальности. И основным подтверждением этого чаще всего выступает взаимная аргументация этих двух характеристик, а не эффективность использования результатов моделирования на практике. Немаловажное влияние на это оказывает и то, что при описании методологических особенностей математических методов и моделей многие свойства, которыми они должны обладать, чтобы обеспечить адекватное решение, выдаются и, соответственно воспринимаются как свойства, имманентные описанным методам и моделям. Как любое специальное средство, конкретный метод накладывает свои ограничения на обрабатываемую информацию: выделяет одни аспекты, устраняет и искривляет другие, тем самым приводит к искажению описываемой с его помощью реальной ситуации в целом. Авторы ряда работ, количество которых не идет ни в какие сравнения с объёмом публикаций по разработкам теорий и методов математического моделирования, приводят различные аргументы, подтверждающие принципиальную ограниченность их использования для описания реальных процессов, происходящих в общественном производстве. В узких рамках методологии, разработанной оптимизационным подходом, невозможно совместить поиск наилучшего решения (или оптимального управления) с признанием принципиальной ограниченности отражения реальной моделью. Любая, даже самая тонкая и изощренная постановка, где указанное противоречие будет как бы разрешаться, на деле приводит к ещё более серьёзным и очевидным новым противоречиям. На это ещё «накладываются» ошибки разделения и объединения систем и подсистем при использовании методов программирования . Применение предметных концепций при выборе математического метода и модели в решении конкретной задачи приводит к тому, что, допустим, в технических науках с помощью одних и тех же формул проводится обоснование мощности осветительных устройств для квартиры и железнодорожной станции. Так же и формализация задачи оптимизации деятельности предприятия, а то и целой отрасли отличается от задачи об оптимальном раскрое заготовки в основном только количеством переменных и уравнений. Однако в этом случае следствием такого «раскроя» будет «механический» разрыв огромного количества связей, сложность и неопределённость которых ещё не всегда доступны достаточно точному описанию языком современной математики. Некорректность традиционного подхода к обоснованию структуры модели исследуемой ситуации можно показать, сравнивая задачи обоснования состава кормов и поголовья животных в хозяйстве. Если следовать традиционной методике, их можно отнести к одному классу и решать одним и тем же методом. В то же время если результат первой оказывает существенное влияние только на себестоимость продукции, то второй требует учёта социальных интересов, вопросов, связанных с охраной окружающей среды и т. д. Таким образом, во втором случае необходимо использовать метод, обладающий большим разнообразием возможностей описания, чем для первой, иначе нельзя будет построить адекватную математическую модель и получить управленческое решение, имеющее практическую ценность.

Задача, решение которой в конечном итоге обеспечивают методы оптимизации , будь то математическое программирование или регрессионный анализ , сводится к поиску, хотя и не тривиального (вследствие многообразия возможных вариантов), но в то же время и не принципиально нового результата, так как поиск происходит в диапазоне, границы которого определяются знаниями об исследуемом процессе. В случае постановки инженерных, оперативных или тактических задач для технических или простых социально-экономических объектов, позволяющих исследователю или менеджеру дать их полное формальное описание и обосновать диапазоны реальных альтернатив, достаточность и эффективность использования оптимизационных методов не вызывает сомнения. По мере роста сложности объектов исследований при решении стратегических проблем выбора направлений совершенствования технических и социально-экономических систем оптимизационные методы могут выполнять только вспомогательные функции.

Структура того или иного «типичного» вида моделей накладывает ещё более жёсткие ограничения на возможности представления необходимого уровня разнообразия в описании исследуемого объекта. Поэтому некоторые работы по математическому моделированию и рекомендуют начинать исследование с выбора вида модели, а потом уже проводить постановку задачи исследований таким образом, чтобы её легче было «вписать» в выбранную модель. Такой подход облегчает построение модели и эффективен, если целью исследований является именно построение математической модели, а не получение решения проблемы. Последующие аналогичные по своей природе искажения и потери информации вызываются ограничениями алгоритмов и программных языков, возможностями ЭВМ.

Структурно-функциональный анализ свидетельствует о том, что хотя все процедуры, связанные с построением математической модели и получением итоговых данных на ЭВМ, логически обоснованы, они не содержат никаких методологических свойств, гарантирующих адекватность этого результата и соответствующего управленческого решения реальной проблеме. Формирование критериев эффективности (оптимизации) при этом может проводиться независимо от объективных законов общественного развития, а основным критерием разработки математической модели становятся условия скорейшего построения алгоритма на основе применения «типового» алгоритма. Менеджер/исследователь может «подгонять» реальную проблему под структуру освоенного им математического метода или программного обеспечения ПЭВМ. Ориентация на обязательное построение математической модели в рамках одного метода приводит к исключению из исследования проблемы факторов, не поддающихся количественной оценке. Описание причинно-следственных связей, приводит к необоснованному применению принципов аддитивности . Результат при этом будет оптимальным только для того весьма упрощенного и искажённого образа реального объекта, который представляет собой математическая модель после нескольких «трансформаций», проведённых с помощью средств, уровень разнообразия и точность которых ещё значительно отстает от сложности социально-экономических проблем.

На третьем этапе исследования проблем после обоснования вида и структуры адекватность и, соответственно, эффективность управленческого решения, полученного с помощью математической модели, связаны с качеством исходной информации, на основании которой вычисляются, например, элементы матрицы условий задачи математического программирования или коэффициентов уравнения регрессии. Характер искажений здесь во многом зависит от метода моделирования. Для линейного программирования ошибки данного этапа уже мало связаны с исследуемым объектом и в основном возникают из-за невнимательности разработчика: неправильно взяты производительность или нормы расхода материала и т. д. Такого рода ошибки обычно обнаруживаются в работе с моделью и легко исправляются. Более сложная ситуация складывается при использовании регрессионного анализа, одинаково широко распространённого в естественных, технических и общественных науках.

Отличие этого метода по сравнению, допустим, с линейным программированием в том, что формирование коэффициентов регрессии определяется исходными данными, являющимися результатами процессов, происходящих в исследуемом объекте, рассматриваемом как «чёрный ящик», в котором механизм превращения «вход» в «выход» часто неизвестен. С увеличением количества исходной информации уровень её разнообразия приближается к тому, который имманентен реальному объекту. Таким образом можно повышать адекватность регрессионной модели, что нельзя достичь в линейном программировании. Это достоинство регрессионного анализа достаточно эффективно может быть использовано в естественных науках вследствие сравнительно малого количества факторов и возможности управления последними. В исследованиях социально-экономических явлений эффективность использования регрессионных моделей снижается, так как резко возрастает количество факторов, многие из которых неизвестны и/или неуправляемы. Все это требует не ограничиваться отдельной выборкой, а стремиться использовать данные в объёме, приближающемся к генеральной совокупности. В отличие от большинства процессов, изучаемых естественными и техническими науками, сложность тиражирования которых во многом определяется только затратами на эксперимент, проверить регрессионную модель социально-экономического объекта достаточно сложно вследствие уникальности протекающих в нём процессов, имеющих историческую природу.

В этой связи основным источником исходной информации в исследованиях социально-экономических объектов является наблюдение, «пассивный» эксперимент , исключающий повторность опытов и, соответственно, проверку адекватности регрессионной модели по статистическим критериям. Поэтому основные показатели адекватности, используемые при регрессионном анализе социально-экономических объектов, - коэффициент множественной корреляции и ошибка аппроксимации. Однако высокое значение первого и низкое второго показателя не позволяет однозначно судить о качестве регрессионной модели. Объясняется это тем, что с увеличением числа членов полинома модели, а внешне это число ограничивается только числом опытов (наблюдений), вследствие количественного роста её разнообразия, точность аппроксимации исходных данных уравнением регрессии растёт.

В. Леонтьев (Leotief Wassily ), комментируя низкую результативность использования статистических методов в экономике, объясняет это тем, «что для изучения сложных количественных взаимосвязей, присущих современной экономике, косвенный, даже методологически уточнённый, статистический анализ не подходит» . Фактором, также относящимся к интерпретации результатов и снижающим эффективность применения математических методов и соответственно управленческих решений, является и излишняя идеализация полученных таким образом количественных результатов. Точные вычисления не означают правильного решения, которое определяется исходными данными и методологией их обработки. Управляющие, которым предлагают решать задачи линейного программирования, должны знать о том, что наличие даже малейшего нелинейного элемента в задаче может поставить под сомнение и даже сделать опасным её решение методом линейного программирования. К сожалению, в большинство вводных курсов, знакомящих управляющих высшего уровня с основами технических наук и экономико-математическими методами, ничего не говорится о том, как эти науки соотносятся с практическими проблемами. Это объясняется тем, что преподаватель свято верит в универсальную применимость своей методики и плохо представляет границы её применения.

Таким образом, на всех трёх рассмотренных этапах «трансформации» производственной проблемы в математическую модель отсутствуют достаточно строгие, научно обоснованные критерии оценки качества, соответствия идеальных моделей реальному объекту. В то же время традиционная ориентация направлена только на преодоление вычислительных трудностей и большой размерности моделей и не учитывает ограничения математического аппарата.

Моделирование является наиболее практичной стороной прикладных исследований, однако этот прагматизм должен быть основан на гносеологическом и онтологическом подходе в методологии процедурных знаний при решении проблем индивидуального производства. Вместе с тем, применение моделей при принятии управленческих решений должно учитывать их конгруэнтность и, соответственно, адекватность их решений реальным процессам. Эти условия определяются природой описываемых моделями процессов. В экономической науке большинство дескриптивных моделей типа «цена-спрос» описывают институциональные процессы, связанные с поведением человека, и эти модели носят исключительно концептуальный характер и не могут служить для получения количественных прогнозных оценок. Уровень возможностей статистических моделей для интерполяционных оценок внутри описываемого диапазона определяется статистическими показателями надёжности , но для прогнозных оценок уровень экстраполяции при этом не должен превышать 20-30 % от первоначального диапазона данных. Надёжность регрессионных моделей, полученных по управляемым экспериментам с несколькими повторностями [неизвестный термин ] , значительно возрастает. Нормативные модели, связанные с оптимизацией расхода ресурсов, условиями безубыточности, законом убывающей доходности (Law of Diminishing Returns) можно считать абсолютными, и надёжность полученных по ним оценок зависит только от ошибок в исходных данных.