При увеличении объема выборки доверительный интервал. Метод доверительных интервалов. Статистическое оценивание параметров распределения

Максимизация прибыли (минимизация убытков) достигается при объеме производства, соответствующем точке равновесия предельного дохода и предельных издержек. Эта закономерность называется правилом максимизации прибыли.

Правило максимизации прибыли означает, что предельные продукты всех факторов производства в стоимостном выражении равны их ценам или что каждый ресурс используется до тех пор, пока его предельный продукт в денежном выражении не станет равнозначен его стоимости.

Увеличение выпуска продукции повышает прибыль предприятия. Но только в том случае, если доход от продажи дополнительной единицы продукции превышает издержки производства данной единицы (MR больше MC). На рис. 1 этому условно соответствуют объемы выпуска А, В, С. Получаемые в результате выпуска этих единиц дополнительные прибыли выделены на рисунке жирными линиями.

MR – предельный доход;

MC – предельные издержки

Рис. 1. Правило максимизации прибыли

Когда издержки, связанные с выпуском еще одной единицы продукции, выше приносимого за счет ее реализации дохода, то предприятие лишь увеличивает свои убытки. Если MR меньше MC, то производить дополнительный товар невыгодно. На рисунке эти убытки отмечены жирными линиями над точками D, E, F.

В этих условиях максимальная прибыль достигается при том объеме производства (точка О), где кривая предельных издержек в своем возрастании пересечет кривую предельного дохода (MR = MC). Пока MR больше MC, увеличение производства дает возрастающую меньше прибыль. Когда же после пересечения кривых устанавливается соотношение MR MC, к увеличению прибыли ведет сокращение производства. Прибыль растет при приближении к точке равенства предельных издержек и дохода. Максимум прибыли достигается в точке О.

В условиях совершенной конкуренции предельный доход равен цене товара. Поэтому правило максимизации прибыли может быть представлено в другом виде:

На рис. 2 правило максимизации прибыли применено к процессу выбора оптимального объема производства для трех важнейших рыночных ситуаций.

Рис. 2. Оптимизация объема производства в условиях максимизации прибыли А), минимизации убытков Б), и прекращения производства В).

В условиях совершенной конкуренции максимизация прибыли (минимизация убытков) достигается при объеме производства, соответствующем точке равенства цены и предельных издержек.

Рис. 2 показывает, как происходит выбор в условиях максимизации прибыли. Максимизирующая прибыль предприятия устанавливает объем своего производства на уровне Qo, соответствующем точке пересечения кривых MR и MC. На рисунке она обозначена точкой О.

Условие (1) означает, что в большой серии независимых экспери­ментов, в каждом из которых получена выборка объема п, в среднем (1 - а) 100% из общего числа построенных доверительных интервалов содержат истинное значение параметра 0.

Длина доверительного интервала, характеризующая точность интер­вального оценивания, зависит от объема выборки n и доверительной ве­роятности 1 - α: при увеличении объема выборки длина доверительного интервала уменьшается, а с приближением доверительной вероятности к единице - увеличивается. Выбор доверительной вероятности опреде­ляется конкретными условиями. Обычно используются значения 1 - α, равные 0,90; 0,95; 0,99.

При решении некоторых задач применяются односторонние довери­тельные интервалы, границы которых определяются из условий

Ρ [θ < θ 2 ] = 1 - α или Ρ [θ 1 < θ] = 1 - α.

Эти интервалы называются соответственно левосторонними и право­сторонними доверительными интервалами.

Чтобы найти доверительный интервал для параметра θ, необходимо знать закон распределения статистики θ ’ = θ ’ (x 1 , ..., х п ), значение ко­торой является оценкой параметра θ. При этом для получения довери­тельного интервала наименьшей длины при данном объеме выборки n и заданной доверительной вероятности 1 - α в качестве оценки θ пара­метра θ следует брать эффективную либо асимптотически эффективную оценку.

2.1.5. ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ. КРИТЕРИЙ СОГЛАСИЯ ПИРСОНА.

Критерием согласия называется критерий проверки гипотезы о предполагаемом законе неизвестного распределения.

Пусть по выборке объема n получено эмпирическое распределение:

С помощью критерия Пирсона можно проверить гипотезу о различных законах распределения генеральной совокупности (равномерном, нормальном, показательном и др.) Для этого в предположении о конкретном виде распределения вычисляются теоретические частоты n i ’ , и в качестве критерия выбирается случайная величина.

имеющая закон распределения χ2 с числом степеней свободы k = s – 1 – r, где s – число частичных интервалов выборки, r – число параметров предполагаемого распределения. Критическая область выбирается правосторонней, и граница ее при заданном уровне значимости α находится по таблице критических точек распределения χ2.

Теоретические частоты n i ’ вычисляются для заданного закона распределения

как количества элементов выборки, которые должны были попасть в каждый интервал, если бы случайная величина имела выбранный закон распределения, параметры которого совпадают с их точечными оценками по выборке, а именно:



а) для проверки гипотезы о нормальном законе распределения n i ’ = n · Р i , где

n – объем выборки, , x i и x i +1 левая и правая

границы i-го интервала, - выборочное среднее, s – исправленное среднее квадратическое отклонение. Поскольку нормальное распределение характеризуется двумя параметрами, число степеней свободы k = n – 3.

2.1.6. КВАНТИЛЬ

Квантиль - значение, которое заданная случайная величина не превышает с фиксированной вероятностью.

Квантилью уровня P, называется решение уравнения , где P и F заданы.

Квантиль P – значение случайной величины, при котором функция распределения равна P.

В Данной работе будут использованы квантили распределения Стьюдента и хи-квадрат Пирсона.


2.2 РАСЧЁТЫ

Данная выборка

объем выборки

2.3. ВЫВОДЫ

В ходе работы над первой частью курсовой работы был написан подробный

теоретический обзор. Также были решены данные задачи. Получен опыт нахождения статистического ряда, построения гистограммы и полигона частот. После проверки гипотезы было выяснено, что теоретическое меньше, чем практическое. Это означает, что нормальный закон распределения для данной совокупности не подходит.


3 ЧАСТЬ II. РЕГРЕССИОННЫЙ АНАЛИЗ

3.1. ТЕОРИТИЧЕСКИЕ СВЕДЕНЬЯ

Часто у инженера возникает задача выделения сигнала из смеси «сигнал + шум».

Например, на промежутке от t 1 до t 2 функция f(t) имеет вид, но в силу патологического влияния шумов и помех эта кривая превратилась в смесь f(t) + f(n).

Реально мы владеем какой-то информацией и о сигнале и о шуме, но этого недостаточно.

Алгоритм восстановления сигнала из смеси «сигнал + шум»:

1. Задается функция f(t)

2. Генерируется шум с помощью датчика случайных чисел f(n)

3. Построим сумму f(t) + f(n)

4. Принимая модель f(t) в виде полинома третьей степени – кубической параболы. Находим методом МНК коэффициенты этой кубической параболы. Они будут являться функциями y(t)

3.1.1 МЕТОД НАИМЕНЬШИХ КВАДРАТОВ (МНК)

Метод наименьших квадратов (МНК) – это метод оценки неизвестных случайных величин по результатам измерений, содержащим случайные ошибки. В нашем случае дана смесь – сигнал+шум. Наша задача состоит в извлечении истинного тренда.

При помощи метода наименьших квадратов вычисляются коэффициенты аппроксимирующего многочлена. Эта задача решается следующим образом.

Пусть на некотором отрезке в точках … нам известны значения … некоторой функции f(x).

Требуется определить параметры многочлена вида

Где k

такого, что сумма квадратов отклонений значений y от значений функции f(y) в заданных точках x была минимальной, то есть .

Геометрический смысл заключается в том, что график найденного многочлена y = f(x) будет проходить как можно ближе к каждой из заданных точек.

…………………………………………………………………………….

Запишем систему уравнений в матричном виде:

Решением является следующее выражение:

Несмещенная оценка для дисперсии ошибок наблюдений равна:

Чем величина S меньше, тем точнее описывается Y.

N – Объем выборки

k-Число параметров тренда –

Считается по формуле:

Доверительный интервал для коэффициентов тренда считается так:

– квантиль распределения Стьюдента

J-ый диагональный элемент матрицы


3.2 РАСЧЕТЫ

шаг



4. ЗАКЛЮЧЕНИЕ

В ходе выполнения данной курсовой работы был получен опыт нахождения

точечной оценки и доверительного интервала для таких величин, как математическое

ожидание и дисперсия, закреплены навыки построения гистограммы и полигона частот

для некоторой выборки значений.

Так же был освоен метод наименьших квадратов (МНК), как один из способов

в регрессионном анализе для извлечения истинного тренда из смеси сигнал + шум.

Полученные в ходе работы навыки можно использовать не только в учебной

деятельности, но и в повседневной жизни.


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Симонов А.А. Выск Н.Д. Проверка статистических гипотез:

Методические указания и варианты курсовых заданий. Москва, 2005, 46 с.

2. Ю. И. Галанов. Математическая статистика: учебное пособие.

Издательство ТПУ. Москва, 2010, 66 с.

3. Вентцель Е.С. Теория вероятностей: Учебник для студ. вузов, 2005. – 576 с.

4. Э. А. Вуколов, А. В. Ефимов, В.Н. Земсков, А. С. Поспелов. Сборник задач по математике для ВТУЗОВ: Учебник для студентов вузов.

Москва, 2003, 433 с.

5. Чернова Н. И. Математическая статистика: Учеб. пособие / Новосиб. гос. ун-т. Новосибирск, 2007. 148 с.

Доверительные интервалы.

Вычисление доверительного интервала базируется на средней ошибке соответствующего параметра. Доверительный интервал показывает, в каких пределах с вероятностью (1-a) находится истинное значение оцениваемого параметра. Здесь a – уровень значимости, (1-a) называют также доверительной вероятностью.

В первой главе мы показали, что, например, для среднего арифметического, истинное среднее по сово­купности примерно в 95% случаев лежит в пределах 2 средних ошибок среднего. Таким образом, границы 95% доверительного интервала для среднего будет отстоять от выборочного среднего на удвоенную среднюю ошибку среднего, т.е. мы умножаем среднюю ошибку среднего на некий коэффициент, зависящий от доверительной вероятности. Для среднего и разности средних берётся коэффициент Стьюдента (критическое значение критерия Стьюдента), для доли и разности долей критическое значение критерия z. Произведение коэффициента на среднюю ошибку можно назвать предельной ошибкой данного параметра, т.е. максимальную, которую мы можем получить при его оценке.

Доверительный интервал для среднего арифметического : .

Здесь - выборочное среднее;

Средняя ошибка среднего арифметического;

s – выборочное среднее квадратическое отклонение;

n

f = n -1 (коэффициент Стьюдента).

Доверительный интервал для разности средних арифметических :

Здесь - разность выборочных средних;

- средняя ошибка разности средних арифметических;

s 1 ,s 2 – выборочные средние квадратические отклонения;

n 1 ,n 2

Критическое значение критерия Стьюдента при заданных уровне значимости a и числе степеней свободы f=n 1 +n 2 -2 (коэффициент Стьюдента).

Доверительный интервал для доли :

.

Здесь d – выборочная доля;

– средняя ошибка доли;

n – объём выборки (численность группы);

Доверительный интервал для разности долей :

Здесь - разность выборочных долей;

– средняя ошибка разности средних арифметических;

n 1 ,n 2 – объёмы выборок (численности групп);

Критическое значение критерия z при заданном уровне значимости a ( , , ).

Вычисляя доверительные интервалы для разности показателей, мы, во-первых, непосредственно видим возможные значения эффекта, а не только его точечную оценку. Во-вторых, можем сделать вывод о принятии или опровержении нулевой гипотезы и, в-третьих, можем сделать вывод о мощности критерия.

При проверке гипотез с помощью доверительных интервалов надо придерживаться следующего правила:

Если 100(1-a)-процентный доверительный интервал разности средних не содержит нуля, то различия статистически значимы на уровне значимости a; напротив, если этот интервал содержит ноль, то различия статистически не значимы.

Действительно, если этот интервал содержит ноль, то, значит, сравниваемый показатель может оказаться как больше, так и меньше в одной из групп, по сравнению с другой, т.е. наблюдаемые различия случайны.

По месту, где находится ноль внутри доверительного интервала, можно судить о мощности критерия. Если ноль близок к нижней или верхней границе интервала, то возможно при большей численности сравниваемых групп, различия достигли бы статистической значимости. Если ноль близок к середине интервала, то, значит, равновероятно и увеличение и уменьшение показателя в экспериментальной группе, и, вероятно, различий действительно нет.

Примеры:

Сравнить операционную летальность при применении двух разных видов анестезии: с применением первого вида анестезии оперировалось 61 человек, умерло 8, с применением второго – 67 человек, умерло 10.

d 1 = 8/61 = 0,131; d 2 = 10/67 = 0,149; d1-d2 = - 0,018.

Разность летальностей сравниваемых методов будет находиться в интервале (-0,018 - 0,122; -0,018 + 0,122) или (-0,14 ; 0,104) с вероятностью 100(1-a) = 95%. Интервал содержит ноль, т.е. гипотезу об одинаковой летальности при двух разных видах анестезии отвергнуть нельзя.

Таким образом, летальность может и уменьшится до 14% и увеличиться до 10,4% с вероятностью 95%, т.е. ноль находится примерно по середине интервала, поэтому можно утверждать, что, скорее всего, действительно не отличаются по летальности эти два метода.

В рассмотренном ранее примере сравнивалось среднее время нажатия при теппинг-тесте в четырёх группах студентов, отличающихся по экзаменационной оценке. Вычислим доверительные интервалы среднего времени нажатия для студентов, сдавших экзамен на 2 и на 5 и доверительный интервал для разности этих средних.

Коэффициенты Стьюдента находим по таблицам распределения Стьюдента (см. приложение): для первой группы: = t(0,05;48) = 2,011; для второй группы: = t(0,05;61) = 2,000. Таким образом, доверительные интервалы для первой группы: = (162,19-2,011*2,18 ; 162,19+2,011*2,18) = (157,8 ; 166,6) , для второй группы (156,55-2,000*1,88 ; 156,55+2,000*1,88) = (152,8 ; 160,3). Итак, для сдавших экзамен на 2, среднее время нажатия лежит в пределах от 157,8 мс до 166,6 мс с вероятностью 95%, для сдавших экзамен на 5 – от 152,8 мс до 160,3 мс с вероятностью 95%.

Проверять нулевую гипотезу можно и по доверительным интервалам для средних, а не только для разности средних. Например, как в нашем случае, если доверительные интервалы для средних перекрываются, то нулевую гипотезу отвергнуть нельзя. Для того чтобы отвергнуть гипотезу на выбранном уровне значимости, соответствующие доверительные интервалы не должны перекрываться.

Найдём доверительный интервал для разности среднего времени нажатия в группах сдавших экзамен на 2 и на 5. Разность средних: 162,19 – 156,55 = 5,64. Коэффициент Стьюдента: = t(0,05;49+62-2) = t(0,05;109) = 1,982. Групповые средние квадратические отклонения будут равны: ; . Вычисляем среднюю ошибку разности средних: . Доверительный интервал: =(5,64-1,982*2,87 ; 5,64+1,982*2,87) = (-0,044 ; 11,33).

Итак, разница среднего времени нажатия в группах, сдавших экзамен на 2 и на 5, будет находиться в интервале от -0,044 мс до 11,33 мс. В этот интервал входит ноль, т.е. среднее время нажатия у отлично сдавших экзамен, может и увеличиться и уменьшится по сравнению с неудовлетворительно сдавшими, т.е. нулевую гипотезу отвергнуть нельзя. Но ноль находится очень близко к нижней границе, время нажатия гораздо вероятнее всё-таки уменьшается у отлично сдавших. Таким образом, можно сделать вывод, что различия в среднем времени нажатия между сдавшими на 2 и на 5 всё-таки есть, просто мы не смогли их обнаружить при данном изменении среднего времени, разбросе среднего времени и объёмах выборок.



Мощность критерия – это вероятность отвергнуть неверную нулевую гипотезу, т.е. найти различия там, где они действительно есть.

Мощность критерия определяется исходя из уровня значимости, величины различий между группами, разброса значений в группах и объёма выборок.

Для критерия Стьюдента и дисперсионного анализа можно воспользоваться диаграммами чувствительности.

Мощность критерия можно использовать при предварительном определении необходимой численности групп.

Доверительный интервал показывает, в каких пределах с заданной вероятностью находится истинное значение оцениваемого параметра.

С помощью доверительных интервалов можно проверять статистические гипотезы и делать выводы о чувствительности критериев.

ЛИТЕРАТУРА.

Гланц С. – Глава 6,7.

Реброва О.Ю. – с.112-114, с.171-173, с.234-238.

Сидоренко Е. В. – с.32-33.

Вопросы для самопроверки студентов.

1. Что такое мощность критерия?

2. В каких случаях необходимо оценить мощность критериев?

3. Способы расчёта мощности.

6. Как проверить статистическую гипотезу с помощью доверительного интервала?

7. Что можно сказать о мощности критерия при расчёте доверительного интервала?

Задачи.

Точность оценки, доверительная вероятность (надежность)

Доверительный интервал

При выборке малого объема следует пользоваться интервальными оценками т.к. это позволяет избежать грубых ошибок, в отличие от точечных оценок.

Интервальной называют оценку, которая определяется двумя числами - концами интервала, покрывающего оцениваемый параметр. Интервальные оценки позволяют установить точность и надежность оценок.

Пусть найденная по данным выборки статистическая характеристика * служит оценкой неизвестного параметра. Будем считать постоянным числом (может быть и случайной величиной). Ясно, что * тем точнее определяет параметр в, чем меньше абсолютная величина разности | - * |. Другими словами, если >0 и | - * | < , то чем меньше, тем оценка точнее. Таким образом, положительное число характеризует точность оценки.

Однако статистические методы не позволяют категорически утверждать, что оценка * удовлетворяет неравенству | - *|<, можно лишь говорить о вероятности, с которой это неравенство осуществляется.

Надежностью (доверительной вероятностью) оценки по * называют вероятность, с которой осуществляется неравенство | - *|<. Обычно надежность оценки задается наперед, причем в качестве берут число, близкое к единице. Наиболее часто задают надежность, равную 0,95; 0,99 и 0,999.

Пусть вероятность того, что | - *|<, равна т.е.

Заменив неравенство | - *|< равносильным ему двойным неравенством -<| - *|<, или *- <<*+, имеем

Р(*- < <*+)=.

Доверительным называют интервал (*- , *+), который покрывает неизвестный параметр с заданной надежностью.

Доверительные интервалы для оценки математического ожидания нормального распределения при известном.

Интервальной оценкой с надежностью математического ожидания а нормально распределенного количественного признака Х по выборочной средней х при известном среднем квадратическом отклонении генеральной совокупности служит доверительный интервал

х - t(/n^?) < a < х + t(/n^?),

где t(/n^?)= - точность оценки, n - объем выборки, t - значение аргумента функции Лапласа Ф(t), при котором Ф(t)=/2.

Из равенства t(/n^?)=, можно сделать следующие выводы:

1. при возрастании объема выборки n число убывает и, следовательно, точность оценки увеличивается;

2. увеличение надежности оценки = 2Ф(t) приводит к увеличению t (Ф(t) -- возрастающая функция), следовательно, и к возрастанию; другими словами, увеличение надежности классической оценки влечет за собой уменьшение ее точности.

Пример. Случайная величина X имеет нормальное распределение с известным средним квадратическим отклонением =3. Найти доверительные интервалы для оценки неизвестного математического ожидания a по выборочным средним х, если объем выборки n = 36 и задана надежность оценки = 0,95.

Решение. Найдем t. Из соотношения 2Ф(t) = 0,95 получим Ф (t) = 0,475. По таблице находим t=1,96.

Найдем точность оценки:

точность доверительный интервал измерение

T(/n^?)= (1 ,96 . 3)/ /36 = 0,98.

Доверительный интервал таков: (х - 0,98; х + 0,98). Например, если х = 4,1, то доверительный интервал имеет следующие доверительные границы:

х - 0,98 = 4,1 - 0,98 = 3,12; х + 0,98 = 4,1+ 0,98 = 5,08.

Таким образом, значения неизвестного параметра а, согласующиеся с данными выборки, удовлетворяют неравенству 3,12 < а < 5,08. Подчеркнем, что было бы ошибочным написать Р (3,12 < а < 5,08) = 0,95. Действительно, так как а - постоянная величина, то либо она заключена в найденном интервале (тогда событие 3,12 < а < 5,08 достоверно и его вероятность равна единице), либо в нем не заключена (в этом случае событие 3,12 < а < 5,08 невозможно и его вероятность равна нулю). Другими словами, доверительную вероятность не следует связывать с оцениваемым параметром; она связана лишь с границами доверительного интервала, которые, как уже было указано, изменяются от выборки к выборке.

Поясним смысл, который имеет заданная надежность. Надежность = 0,95 указывает, что если произведено достаточно большое число выборок, то 95% из них определяет такие доверительные интервалы, в которых параметр действительно заключен; лишь в 5% случаев он может выйти за границы доверительного интервала.

Если требуется оценить математическое ожидание с наперед заданной точностью и надежностью, то минимальный объем выборки, который обеспечит эту точность, находят по формуле

Доверительные интервалы для оценки математического ожидания нормального распределения при неизвестном

Интервальной оценкой с надежностью математического ожидания а нормально распределенного количественного признака Х по выборочной средней х при неизвестном среднем квадратическом отклонении генеральной совокупности служит доверительный интервал

х - t()(s/n^?) < a < х + t()(s/n^?),

где s -«исправленное» выборочное среднее квадратическое отклонение, t() находят по таблице по заданным и n.

Пример. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n=16 найдены выборочная средняя x = 20,2 и «исправленное» среднее квадратическое отклонение s = 0,8. Оценить неизвестное математическое ожидание при помощи доверительного интервала с надежностью 0,95.

Решение. Найдем t(). Пользуясь таблицей, по = 0,95 и n=16 находим t()=2,13.

Найдем доверительные границы:

х - t()(s/n^?) = 20,2 - 2,13 *. 0 ,8/16^? = 19,774

х + t()(s/n^?) = 20,2 + 2,13 * 0 ,8/16^? = 20,626

Итак, с надежностью 0,95 неизвестный параметр а заключен в доверительном интервале 19,774 < а < 20,626

Оценка истинного значения измеряемой величины

Пусть производится n независимых равноточных измерений некоторой физической величины, истинное значение а которой неизвестно.

Будем рассматривать результаты отдельных измерений как случайные величины Хl, Х2,…Хn. Эти величины независимы (измерения независимы). Имеют одно и то же математическое ожидание а (истинное значение измеряемой величины), одинаковые дисперсии ^2 (измерения равноточные) и распределены нормально (такое допущение подтверждается опытом).

Таким образом, все предположения, которые были сделаны при выводе доверительных интервалов, выполняются, и, следовательно, мы вправе использовать формулы. Другими словами, истинное значение измеряемой величины можно оценивать по среднему арифметическому результатов отдельных измерений при помощи доверительных интервалов.

Пример. По данным девяти независимых равноточных измерений физической величины найдены среднее арифметической результатов отдельных измерений х = 42,319 и «исправленное» среднее квадратическое отклонение s = 5,0. Требуется оценить истинное значение измеряемой величины с надежностью = 0,95.

Решение. Истинное значение измеряемой величины равно ее математическому ожиданию. Поэтому задача сводится к. оценке математического ожидания (при неизвестном) при помощи доверительного интервала покрывающего а с заданной надежностью = 0,95.

х - t()(s/n^?) < a < х + t()(s/n^?)

Пользуясь таблицей, по у = 0,95 и л = 9 находим

Найдем точность оценки:

t()(s/n^?) = 2 ,31 * 5/9^?=3.85

Найдем доверительные границы:

х - t()(s/n^?) = 42,319 - 3,85 = 38,469;

х + t()(s/n^?) = 42,319 +3,85 = 46,169.

Итак, с надежностью 0,95 истинное значение измеряемой величины заключено в доверительном интервале 38,469 < а < 46,169.

Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения.

Пусть количественный признак X генеральной совокупности распределен нормально. Требуется оценить неизвестное генеральное среднее квадратическое отклонение по «исправленному» выборочному среднему квадратическому отклонению s. Для этого воспользуемся интервальной оценкой.

Интервальной оценкой (с надежностью) среднего квадратического отклонения о нормально распределенного количественного признака X по «исправленному» выборочному среднему квадратическому отклонению s служит доверительный интервал

s (1 -- q) < < s (1 + q) (при q < 1),

0 < < s (1 + q) (при q > 1),

где q находят по таблице по заданным n н.

Пример 1. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n = 25 найдено «исправленное» среднее квадратическое отклонение s = 0,8. Найти доверительный интервал, покрывающий генеральное среднее квадратическое отклонение с надежностью 0,95.

Решение. По таблице по данным = 0,95 и n = 25 найдем q = 0,32.

Искомый доверительный интервал s (1 -- q) < < s (1 + q) таков:

0,8(1-- 0,32) < < 0,8(1+0,32), или 0,544 < < 1,056.

Пример 2. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n=10 найдено «исправленное» среднее квадратическое отклонение s = 0,16. Найти доверительный интервал, покрывающий генеральное среднее квадратическое отклонение с надежностью 0,999.

Решение. По таблице приложения по данным = 0,999 и n=10 найдем 17= 1,80 (q > 1). Искомый доверительный интервал таков:

0 < < 0,16(1 + 1,80), или 0 < < 0,448.

Оценка точности измерений

В теории ошибок принято точность измерений (точность прибора) характеризовать с помощью среднего квадратического отклонения случайных ошибок измерений. Для оценки используют «исправленной» среднее квадратическое отклонение s. Поскольку обычно результаты измерений взаимно независимы, имеют одно и то же математическое ожидание (истинное значение измеряемой величины) и одинаковую дисперсию (в случае равноточных измерений), то теория, изложенная в предыдущем параграфе, применима для оценки точности измерений.

Пример. По 15 равноточным измерениям найдено «исправленное» среднее квадратическое отклонение s = 0,12. Найти точность измерений с надежностью 0,99.

Решение. Точность измерений характеризуется средним квадратическим отклонением случайных ошибок, поэтому задача сводится к отысканию доверительного интервала s (1 -- q) < < s (1 + q) , покрывающего с заданной надежностью 0,99

По таблице приложения по = 0,99 и n=15 найдем q = 0,73.

Искомый доверительный интервал

0,12(1-- 0,73) < < 0,12(1+0,73), или 0.03 < < 0,21.

Оценка вероятности (биномиального распределения) по относительной частоте

Интервальной оценкой (с надежностью) неизвестной вероятности p биномиального распределения по относительной частоте w служит доверительный интервал (с приближенными концами p1 и р2)

p1 < p < p2,

где n - общее число испытаний; m - число появлений события; w - относительная частота, равная отношению m/n; t - значение аргумента функции Лапласа, при котором Ф(t) = /2.

Замечание. При больших значениях n (порядка сотен) можно принять в качестве приближенных границ доверительного интервала

11.1. Доверительные интервалы и доверительная вероятность.

Доверительные интервалы для параметров нормально распреде­ленной

генеральной совокупности.

При статистической обработке результатов наблюдений следует не только найти оценку неизвестного параметра θ , но и охарактеризовать точность этой оценки. С этой целью вводится понятие доверительного интервала.

Доверительным интервалом для параметра θ называется интервал (θ 1 , θ 2 ), содержащий (накрывающий) истинное значение θ с заданной вероятностью р = 1 - α , т.е. Р [θ 1 < θ < θ 2 ] = 1-α .

Число 1 - α называется доверительной вероятностью, а зна­чение α - уровнем значимости. Статистики θ 1 = θ 1 (x 1 ,...,x n ) и θ 2 = θ 2 (x 1 ,...,x n ), определяемые по выборке x 1 ,...,x n из генераль­ной совокупности с неизвестным параметром θ , называются со­ответственно нижней и верхней границами доверительного ин­тервала.

Условие Р [θ 1 < θ < θ 2 ] = 1-α означает, что в большой серии независимых экспериментов, в каждом из которых получена вы­борка объема n , в среднем (1 - α )·100% из общего числа построенных доверительных интервалов содержат истинное значение параметра θ .

Длина доверительного интервала, характеризующая точ­ность интервального оценивания, зависит от объема выборки n и доверительной вероятности 1 - α : при увеличении объема выборки длина доверительного интервала уменьшается, а с приближе­нием доверительной вероятности к единице - увеличивается. Вы­бор доверительной вероятности определяется конкретными усло­виями. Обычно используются значения 1 - α , равные 0,90; 0,95; 0,99.

При решении некоторых задач применяются односторонние доверительные интервалы, границы которых определяют из усло­вий: Р [θ < θ 2 ] = 1-α или Р [θ 1 < θ ] = 1-α .

В этом случае интервалы называются соответственно левосторонними и правосторонними доверительными интервалами.

Чтобы найти доверительный интервал для параметра θ , на­до знать закон распределения статистики = (х 1 ,...,х п) , значе­ние которой является оценкой параметра θ.

Для получения доверительного интервала наименьшей дли­ны при данном объеме выборки п и заданной доверительной веро­ятности 1в качестве оценки параметра θ следует брать эффективную либо асимптотически эффективную оценку.

Рассмотрим один из методов построения доверительных интервалов. Предположим, что существует статистика Y = Y( , θ) такая, что:

а) закон распределения Y известен и не зависит от θ ;

б) функция Y( , θ) непрерывна и строго монотонна по θ.
Пусть (1) - заданная доверительная вероятность, а у а/2 и у 1- a /2 - квантили распределения статистики Y порядков α/2 и 1-α/ 2соответственно. Тогда с вероятностью 1выполняется неравенство у а/2 < Y( , θ) < у 1- a /2 .

Решая это неравенство относительно θ , найдем границы θ i и θ 2 доверительного интервала для θ. Если плотность распреде­ления статистики Y симметрична относительно оси Оу , то доверительный интервал имеет наименьшую длину, а если это распре­деление несимметрично, то длину, близкую к наименьшей.

Пример 46. Пусть х 1 ,х 2 ,...,х n - выборка из нормально рас­пределенной генеральной совокупности. Найти доверительный интервал для математического ожидания т при условии, что дис­персия генеральной совокупности известна и равна σ 2 , а довери­тельная вероятность равна 1-α.

Решение. В качестве оценки математического ожидания т возьмем выборочное среднее . Для нормально распределенной генеральной совокупности выборочное среднее является эффективной оценкой т. Выборочное среднее в данном случае имеет нормальное распределение .

Рассмотрим статистику , имеющую нормальное распределение N (0,1) независимо от значения параметра т. Кро­ме того, U как функция т непрерывна и строго монотонна. Тогда , где и а/2 и и 1- a /2 - квантили нормального распределения N (0,1).

Решая неравенство относительно т, по­лучим, что с вероятностью 1 выполняется условие:

.

Так как квантили нормального распределения связаны со­отношением и а/2 =-u 1- a /2 , полученный доверительный интервал для т можно записать следующим образом:

11.2. Доверительные интервалы для вероятности успеха в схеме Бернулли

и параметра λ распределения Пуассона.

Если распределение генеральной совокупности не является нор­мальным, то в некоторых случаях по выборкам большого объема можно построить доверительные интервалы для неизвестных па­раметров приближенно, используя при этом предельные теоремы теории вероятности и вытекающие из них асимптотические рас­пределения и оценки.

Пример 47. Пусть в n независимых испытаниях успех на­ступил х раз. Найти доверительный интервал для вероятности р успеха в одном испытании.

Решение . Эффективной оценкой вероятности успеха р в од­ном испытании является относительная частота = h = x/h . По теореме Муавра-Лапласа относительная частота h имеет асимпто­тически нормальное распределение , где q = 1 - р.

Рассмотрим статистику , которая имеет асимптотически нормальное распределение N (0,1) независимо от значения р. При больших п тогда имеем

.

Отсюда получим, что с вероятностью ≈1 выполняется неравенство

.

Заменяя значения р и q влевой и правой частях записанно­го выше неравенства их оценками = h и = 1-h, получим до­верительный интервал для вероятности успеха в схеме

Пример 48. При проверке 100 деталей из большой партии обнаружено 10 бракованных деталей.

а) Найти 95 % приближенный доверительный интервал для доли бракованных деталей во всей партии.

б) Какой минимальный объем выборки следует взять для того, чтобы с вероятностью 0,95 можно было утверждать, что до­ля бракованных деталей по всей партии отличается от частоты
появления бракованных деталей в выборке не более чем на 1 %?

Решение .а) Оценка доли бракованных деталей в партии по выборке равна = h = 10/100 = 0,1. По таблице приложений (П1) находим квантиль и 1- a /2 = и 0,975 = 1,96 . Тогда 95% доверительный

интервал для доли бракованных деталей в партии приближенно имеет вид 0,041 < р < 0,159.

б) Представим полученный доверительный интервал в виде неравенства

,

которое выполняется с вероятностью ≈1 - α = 0,95. Так как со­гласно условию задачи , то для определения n полу­чим неравенство

.

Отсюда следует, что и n ≥(0,3·196) 2 =3457,44 . Итак, минимальный объем выборки n = 3458.

11.3. Доверительные интервалы для коэффициента корреляции ρ.

Пусть выборка (х i ,у i), i = 1,2,...,п, получена из генеральной совокупности, имеющей двумерное нормальное распределение, и r - выборочный коэффициент корреляции. При достаточно больших n статистика имеет приближенно нормальное распределение .

Доверительный интервал для Arth ρ имеет вид

Доверительный интервал для ρ вычисляется с помощью таблиц гиперболического тангенса ρ= thz .(смотри таблицу при­ложение П8).

Пример 49. Выборочный коэффициент корреляции, вычис­ленный по выборке объема 10, r = -0,64. Найти 90 % доверительный интервал для коэффициента корреляции р.

Решение. По таблице приложений (П8) находим Arth(-0,64)= -Arth0,64 = -0,76.

Так как и 0, 95 = 1,645, то доверительный интервал для Arthρ имеет вид , т.е. -1,38

Обращаясь к таблице П8, получим 90 % доверительный ин­тервал для коэффициента корреляции: - 0,881 < ρ < -0,139.

11.4. Примеры доверительных интервалов.

1. Доверительный интервал для математического ожидания а нормальной случайной величины при известной дисперсии σ 2 имеет вид .

Здесь величина определяется по заданной доверительной вероятности γ по таблице значений , в которой .