Правильные многогранники симметрия правильных многогранников. Симметрия в пространстве Понятие правильного многогранника Элементы симметрии правильных многогранников. Виды симметрии кристаллов

Основной интерес к правильным многогранникам вызывает большое число симметрий, которыми они обладают. Под симметрией (или преобразованием симметрии) многогранника мы понимаем такое его движение как твердого тела в пространстве (например, поворот вокруг некоторой прямой, отражение относительно некоторой плоскости и т.д.), которое оставляет неизменными множества вершин, ребер и граней многогранника. Иначе говоря, под действием преобразования симметрии вершина, ребро или грань либо сохраняет свое исходное положение, либо переводится в исходное положение другой вершины, другого ребра или другой грани. Существует одна симметрия, которая свойственна всем многогранникам. Речь идет о тождественном преобразовании, оставляющем любую точку в исходном положении. С менее тривиальным примером симметрии мы встречаемся в случае прямой правильной р-угольной призмы.

Примеры размерности симметрии плоских фигур дают правильные многоугольники. Примеры симметрии пространственных фигур дают правильные призмы и пирамиды: они совмещаются сами с собой, например, поворотами вокруг оси, перпендикулярной плоскости основания и проходящей через его центр.

Мы будем понимать симметрию в общем смысле, как она определена в начале и как ее понимают, в частности, когда говорят о симметрии кристаллов. При этом наложения фигуры на себя называются преобразованиями симметрии.

Теорема. Рассмотрим данный правильный многогранник Р. Пусть А -- его вершина, а -- ребро с концом А, а -- грань со стороной а. Для любых других аналогичных его элементов А", а", а" существует наложение многогранника Р на себя, переводящее А" в А, а" в а, а" в а.

Доказательство

Переносом многогранника переведем вершину А" в А. Поворотом многогранника вокруг А переведем перенесенное ребро а" в а. Поворотом многогранника вокруг ребра а приведем (перенесенную и повернутую) грань а" в совпадение с гранью а. Так как грани равны, то грань а" полностью совместится с а.

Так как двугранные углы равны, то для граней р и р", смежных с а и а", есть только две возможности: 1) р" совпадает с р; 2) р" не совпадает с р, но будет симметрична р относительно плоскости грани а. В таком случае отражением в этой плоскости переведем Р" в р.

Итак, наложением всего многогранника Р мы совместили вершину А" с А, ребро а" -- с а, грани а", р", смежные по ребру а", -- с гранями а, р, смежными по ребру а.

Убедимся, что при этом многогранник оказывается совмещенным сам с собой. Две грани многогранного угла при вершине А совпали (а" с а, р" с р). Перейдем к граням у и у", соседним с р. Двугранные углы, которые они образуют с р, равны и расположены с одной стороны -- с той же, с какой лежит грань а. Поэтому грань у" совпадает с у. Так убедимся, что многогранные углы при вершине А совпали. Переходя к другой вершине, соединенной с А ребром, аналогично убедимся, что и при этой вершине многогранные углы совпадают. И так пройдя по всему многограннику, убедимся, что он совпал сам с собой, что и требовалось доказать. ?

Свойство правильных многогранников, установленное доказанной теоремой, означает, что они обладают, так сказать, максимальной мыслимой симметрией. Наложение, совмещение многогранника самого с собою, неизбежно совмещает какую-то вершину А" с А, ребро а" -- с а, грань а"-- с а, и примыкающую грань р" -- с р. Наложение этим вполне определено, оно только одно. Поэтому максимальное число возможных наложений будет тогда, когда каждую совокупность А, а, а, р можно перевести в каждую. А это так у правильных многогранников Очевидно, верно и обратное. Если многогранник обладает такой максимальной симметрией, то он правильный (так как ребро а совмещается с а", угол на грани а" при вершине А совмещается с таким же углом, и двугранный угол между а" и р 4 " совмещается с углом между а и р.-- так что все ребра и углы равны). Число наложений, совмещающих правильный многогранник сам с собою, равно 2 те, где т -- число ребер, сходящихся в одной вершине, и е -- число вершин; те наложений первого рода и те -- наложений второго рода. Они и образуют группу симметрии правильного многогранника. Группы симметрии у куба и октаэдра совпадают ввиду их двойственности. Так же совпадают группы симметрии у додекаэдра и икосаэдра. Группа тетраэдра является подгруппой группы куба, как видно из возможности вложить тетраэдр в куб (рис. 1.5, а). Наиболее интересные элементы симметрии -- это зеркальные оси: 4-го порядка у тетраэдра, 6-го порядка -- у куба, 10-го порядка -- у додекаэдра (рис. 1.5,б). Убедитесь, что это так, определив, как расположены эти оси. Оси симметрии и плоскости симметрии куба изображены на рис. 1.5 в, г.

1 .5 Подобие многогранников

Два многогранника называются подобными, если существует преобразование подобия, переводящее один многогранник в другой.

Подобные многогранники имеют соответственно равные многогранные углы и соответственно подобные грани. Соответственные элементы подобных многогранников называются сходственными. У подобных многогранников двугранные углы равны и одинаково расположены, а сходственные ребра пропорциональны.

Кроме того, справедливы следующие теоремы:

Теорема 1. Если в пирамиде провести секущую плоскость параллельно основанию, то она отсечет от нее пирамиду, подобную данной.

Теорема 2. Площади поверхностей подобных многогранников относятся как квадраты, а их объемы - как кубы сходственных линейных элементов многогранников.

ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

Наше знакомство с многогранниками продолжается.

Вспомним, что многогранник называется правильным, если выполнены следующие условия:

1.многогранник выпуклый;

2. все его грани являются равными правильными многоугольниками;

3. в каждой его вершине сходится одинаковое число граней;

4. все его двугранные углы равны.

На прошлых занятиях вы узнали об единственности существования пяти видов правильных многогранников:

тетраэдра, октаэдра, икосаэдра, гексаэдра(куба) и додекаэдра.

Сегодня мы рассмотрим элементы симметрии изученных правильных многогранников.

Правильный тетраэдр не имеет центра симметрии.

Его осью симметрии является прямая, проходящая через середины противоположных рёбер.

Плоскостью симметрии является плоскость, проходящая через любое ребро перпендикулярно противоположному ребру.

Правильный тетраэдр имеет три оси симметрии и шесть плоскостей симметрии.

Куб обладает одним центром симметрии- это точка пересечения его диагоналей.

Осями симметрии являются прямые проходящие через центры противоположных граней и середины двух противоположных рёбер, не принадлежащих одной грани.

Куб имеет девять осей симметрии, которые проходят через центр симметрии.

Плоскость, проходящая через любые две оси симметрии, является плоскостью симметрии.

Куб имеет девять плоскостей симметрии.

Правильный октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии: три оси симметрии проходят через противоположные вершины, шесть - через середины ребер.

Центр симметрии октаэдра - точка пересечения его осей симметрии.

Три из 9 плоскостей симметрии тетраэдра проходят через каждые 4 вершины октаэдра, лежащие в одной плоскости.

Шесть плоскостей симметрии проходят через две вершины, не принадлежащие одной грани, и середины противоположных ребер.

Правильный икосаэдр имеет 12 вершин. Икосаэдр имеет центр симметрии - центр икосаэдра, 15 осей симметрии и 15 плоскостей симметрии: Через первую пару противоположных вершин проходят пять плоскостей симметрии (каждая их них проходит через ребро, содержащее вершину, перпендикулярно противоположному углу).

Для третьей пары получим — 3 новых плоскости, а для четвертой — две плоскости и для пятой пары только одна новая плоскость.

Через шестую пару вершин не пройдет ни одной новой плоскости симметрии.

Правильный додекаэдр состоит из двенадцати правильных пятиугольников. Додекаэдр имеет центр симметрии - центр додекаэдра, 15 осей симметрии и 15 плоскостей симметрии: плоскости симметрии проходят через ребро, содержащее вершину, перпендикулярно противоположному ребру. Поэтому через первую пару противоположных пятиугольников проходит 5 плоскостей, через вторую пару — 4, через третью — 3, четвертую — 2, пятую — 1.

Решим несколько заданий, применяя полученные знания.

Доказать, что в правильном тетраэдре отрезки, соединяющие центры его граней, равны.

Так как все грани правильного тетраэдра равны и любая из них может считаться основанием, а три другие- боковыми гранями, то достаточно будет доказать равенство отрезков ОМ и ON.

Доказательство:

1.Дополнительное построение: проведём прямую DN до пересечения со стороной АС, получим точку F;

проведём прямую DM до пересечения со стороной АВ, получим точку Е.

Затем соединим вершину А с точкой F;

вершину С с точкой Е.

2.Рассмотрим треугольники ДЕО и ДОФ они

прямоугольные, т.к. ДО высота тетраэдра, тогда они равны по гипотенузе и катету: ДО-общая, ДЕ=ДФ(высоты равных граней тетраэдра)).

Из равенства данных треугольников следует, что OE=OF, ME=NF(середины равных сторон),

угол DEO равен углу DFO.

3. из выше доказанного следует что треугольники ОЕМ и ОФН равны по двум сторонам и углу между ними (см пн. 2).

А из равенства этих треугольников следует, что ОМ = ON.

Что и требовалось доказать.

Существует ли четырёхугольная пирамида, у которой противоположные грани перпендикулярны к основанию?

Докажем, что такой пирамиды не существует методом от противного.

Доказательство:

1. Пусть ребро РА1 перпендикулярно основанию пирамиды и ребро РА2 так же перпендикулярно основанию.

2.Тогда по теореме(две прямые, перпендикулярные к третьей, параллельны), мы получим что ребро РА1 параллельно ребру РА2.

3.Но пирамида имеет общую точку для всех боковых рёбер(а значит и граней)- вершину пирамиды.

Мы получили противоречие, таким образом не существует четырёхугольной пирамиды, противоположные грани которой перпендикулярны к основанию.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Элементы симметрии правильных многогранников Геометрия. 10 класс.

Тетраэдр - (от греческого tetra – четыре и hedra – грань) - правильный многогранник, составленный из 4 равносторонних треугольников. Из определения правильного многогранника следует, что все ребра тетраэдра имеют равную длину, а грани - равную площадь. Элементы симметрии тетраэдра Тетраэдр имеет три оси симметрии, которые проходят через середины скрещивающихся рёбер. Тетраэдр имеет 6 плоскостей симметрии, каждая из которых проходит через ребро тетраэдра перпендикулярно скрещивающемуся с ним ребру.

Октаэдр - (от греческого okto – восемь и hedra – грань) - правильный многогранник, составленный из 8 равносторонних треугольников. Октаэдр имеет 6 вершин и 12 ребер. Каждая вершина октаэдра является вершиной 4 треугольников, таким образом, сумма плоских углов при вершине октаэдра составляет 240 ° . Элементы симметрии октаэдра Три из 9 осей симметрии октаэдра проходят через противоположные вершины, шесть - через середины ребер. Центр симметрии октаэдра - точка пересечения его осей симметрии. Три из 9 плоскостей симметрии тетраэдра проходят через каждые 4 вершины октаэдра, лежащие в одной плоскости. Шесть плоскостей симметрии проходят через две вершины, не принадлежащие одной грани, и середины противоположных ребер.

Икосаэдр – (от греческого ico - шесть и hedra - грань) правильный выпуклый многогранник, составленный из 20 правильных треугольников. Каждая из 12 вершин икосаэдра является вершиной 5 равносторонних треугольников, поэтому сумма углов при вершине равна 300 °. Элементы симметрии и косаэдра Правильный икосаэдр имеет 15 осей симметрии, каждая из которых проходит через середины противоположных параллельных ребер. Точка пересечения всех осей симметрии икосаэдра является его центром симметрии. Плоскостей симметрии также 15.Плоскости симметрии проходят через четыре вершины, лежащие в одной плоскости, и середины противолежащих параллельных ребер.

Куб или гексаэдр (от греческого hex - шесть и hedra - грань) составлен из 6 квадратов. Каждая из 8 вершин куба является вершиной 3 квадратов, поэтому сумма плоских углов при каждой вершине равна 270 0 . У куба 12 ребер, имеющих равную длину. Элементы симметрии куба Ось симметрии куба может проходить либо через середины параллельных ребер, не принадлежащих одной грани, либо через точку пересечения диагоналей противоположных граней. Центром симметрии куба является точка пересечения его диагоналей. Через центр симметрии проходят 9 осей симметрии. Плоскостей симметрии у куба также 9 и проходят они либо через противоположные ребра (таких плоскостей-6), либо через середины противоположных ребер (таких - 3).

Додекаэдр (от греческого dodeka – двенадцать и hedra – грань) это правильный многогранник, составленный из 12 равносторонних пятиугольников. Додекаэдр имеет 20 вершин и 30 ребер. Вершина додекаэдра является вершиной трех пятиугольников, таким образом, сумма плоских углов при каждой вершине равна 324 0. Элементы симметрии додекаэдра Додекаэдр имеет центр симметрии и 15 осей симметрии. Каждая из осей проходит через середины противолежащих параллельных ребер. Додекаэдр имеет 15 плоскостей симметрии. Любая из плоскостей симметрии проходит в каждой грани через вершину и середину противоположного ребра.

Развертки правильных многогранников Развертка - это способ развернуть многогранник на плоскость после проведения разрезов по нескольким ребрам. Развертка представляет собой плоский многоугольник, составленный из меньших многоугольников - граней исходного многогранника. Один и тот же многогранник может иметь несколько разных разверток.

1 Минерало́гия -наукаоминералах- природныххимических соединениях.

Минералогия изучает состав, свойства, структуры и условия образования минералов

Минералы- кристаллические элементы или химические соединения,возникающие в ходе геологических процессов.

2 Минеральный вид - это совокупность минералов данного химического состава с данной кристаллической структурой.

К 1-му мин.виду относятся все минеральные индивиды,характеризующиеся:

Одинаковой структурной группой

Химическим составом,непрерывно изменяющимся в определенных пределах

Равновесным существованием в определенных термодинамических условиях земной коры

3 Симметрические преобразование и элементы симметрии кристаллических многогранников.

Симметрия– правильная повторяемость элементов ограничения кристаллов при

выполнении симметрических операций.

Элементами ограничения кристаллов считаются их грани, ребра и вершины.

Симметрические операции– это повороты и отражения кристалла

относительно элементов симметрии.

Элементы симметрии 1 рода.

Ось симметрии Ln - это воображаемая прямая линия, проходящая при вращении кристалла вокруг которой через один и тот же угол наблюдается повторения элементов ограничения. L6-L4L3L2

Элементы симметрии 2 рода:

-плоскость симметрии(Р)- такая плоскость,которая делит фигуры на две равные части,каждая из которой является зеркальным отображением другой

-центр симметрии(инверсии)(С)- представляет собой точку внутри кристалла от которой по обе стороны на равных расстояниях нах-ся тождественные точкиграней и вершин.центр инверсии бывает только один либо его нет.

Инверсионная ось симметрии Ln– это воображаемая линия, при повороте вокруг которой на угол, задаваемый порядком оси, с последующимотражением в точке, лежащей на этой оси, как в центре инверсии, кристаллсовмещается сам с собой.

Таким образом, действие инверсионной оси вклю-чает в себя два момента: во-первых, поворот на угол, задаваемый порядком

оси, во-вторых, отражение в точке, как в центре инверсии.

4. Полярные и неполярные оси симметрии

а) полярные –на концах оси разные эл-ты фигуры;

б)неполярные(биполярные)на концах оси одинаковые эл-ты фигуры.

5.Единичные направления в криталлах.

Единственное, не повторяющееся в кристалле направление называет-ся единичным.

В кубе нет единичных направлений, здесь для любогонаправления можно найти симметрично-равное.

По симметрии и по числу единичных направлений кристаллы делятся на три категории: низшую, среднюю, высшую.

6В учебной символике символике Браве - оси симметрии обозначаются как Ln

Где подстрочный цифровой индекс п указывает на порядок

оси1 Графически оси симметрии обозначаются многоугольниками:

    в плоскости –

    плоскость симметрии Р

    Отражение в точке (инверсия) –

    центр симметрии, инверсии С

    Поворот с отражением в точке - инверсионная ось L n i - с черточкой наверху. Порядок оси - 1, 2, 3, 4, 6.

Инверсионные оси Зеркальные оси

L 6 = L 3 + перп.P. Л 6 = L 3

L 4 Л 3 = L 6

L 3 = L 3 + C. Л 4 = L 4

L 2 = P. Л 2

L 1 = C .


Формула симметрии состоит из записанных элементов симметрии данного кристалла в определенной последовательности: оси высшего порядка®осиL2 ®плоскости симметрии®центр симметрии. В кубической сингонии на втором месте всегда стоит4L3 . Если какой-либо элемент отсутствует, он опускается.