Поверхностное натяжение веществ. Поверхностное натяжение воды – все дело в границе. Измерение поверхностного натяжения

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

Исходная величина

Преобразованная величина

ньютон на метр миллиньютон на метр грамм-сила на сантиметр дина на сантиметр эрг на квадратный сантиметр эрг на квадратный миллиметр паундаль на дюйм фунт-сила на дюйм

Напряженность электрического поля

Подробнее о поверхностном натяжении

Общие сведения

Поверхностное натяжение - свойство жидкости противостоять силе, которая на нее действует. По сравнению с другими жидкостями, поверхностное натяжение воды одно из самых высоких. Это свойство воды вызвано ее молекулярной структурой, благодаря которой связи между молекулами намного прочнее, чем у других жидкостей.

Поверхностное натяжение зависит от самой жидкости и ее молекулярной структуры, но также и от того, с каким материалом эта жидкость соприкасается. Когда речь идет о поверхностном натяжении в животном мире и во многих других примерах, приведенных ниже, то обычно рассматривают либо систему вода-воздух, либо водные растворы различных веществ, так как это самые распространенные системы, которые встречаются в природе.

Вычисления поверхностного натяжения

Чтобы увеличить площадь поверхности воды, то есть, чтобы растянуть эту поверхность, нужно совершить механическую работу по преодолению сил поверхностного натяжения. Если к жидкости не приложены другие внешние силы, она стремится принять форму, при которой площадь поверхности этой жидкости минимальна. Как мы увидим ниже, наиболее оптимальной формой является шар. В условиях невесомости жидкость действительно принимает форму шара. Потенциальную энергию поверхностного натяжения находят по формуле:

Ε surf = σ · S

Здесь σ - это коэффициент поверхностного натяжения, а S - общая площадь жидкости. Эту формулу также можно выразить как:

σ = ε surf / S

Как видно из этой формулы, коэффициент поверхностного натяжения σ выражается в джоулях на квадратный метр (Дж/м² = Н/м). То есть, коэффициент поверхностного натяжения при постоянной температуре жидкости равен работе, которую необходимо выполнить, чтобы увеличить поверхность жидкости на единицу площади. Вспомним, что джоуль равен ньютону, умноженному на метр, и получим еще одну единицу для измерения поверхностного натяжения - ньютон на метр (Н/м).

О терминологии

Поверхностное натяжение возникает не только в системах воздух-жидкость. Чаще всего, когда говорят о силе на длину, имеют ввиду поверхностное натяжение в системах жидкость-газ. Иногда речь идет о системах жидкость-жидкость, которые тоже имеют поверхностное натяжение. Пример системы жидкость-жидкость, в котором можно говорить о поверхностном натяжении - это лавовые лампы. Когда лампа выключена, то парафин в ней находится в твердом состоянии, но когда она включена, он нагревается, тает, и поднимается вверх, так как в нагретом состоянии парафин легче жидкости, в которой он находится, а в холодном - тяжелее.

Механизм работы поверхностного натяжения

Каждая молекула в жидкости действует на окружающие молекулы с определенной силой. Соответственно, на каждую молекулу также действует ряд сил из разных направлений со сторон других молекул. Действие этих сил между молекулами показано на иллюстрации. Эти силы возникают благодаря тому, что атомы водорода и кислорода, из которых состоит вода, притягиваются друг к другу из-за разности зарядов (отрицательный заряд кислорода притягивается к положительному заряду водорода). Эти силы притягивают молекулы в разные стороны, по направлению друг к другу.

Ситуация с молекулами на поверхности вещества состоит немного иначе, так как величина силы, с которой молекулы воздуха действуют на молекулы воды намного меньше, чем силы, с которой молекулы воды действуют друг на друга. Как показано на иллюстрации, силы, действующие на молекулы на поверхности жидкости, меньше, чем силы, действующие на все остальные молекулы внутри вещества. Силы, действующие на эти молекулы, действуют на них со сторон, с которых они окружены другими молекулами воды, но не с поверхности. Благодаря этому молекулы на поверхности притягиваются внутрь жидкости с большей силой, чем они притягиваются в сторону поверхности. Из-за этого на поверхности образуется намного более «прочный» слой воды. Силы, действующие на молекулы на поверхности, заставляют поверхность сжиматься, чтобы как можно сильнее уменьшить площадь поверхности. По сравнению с другими связями, эти связи намного труднее разрушить.

Силы, которые действуют на молекулы воды, обусловливают наличие двух свойств воды -адгезии и когезии . Когезия - это свойство молекул одного и того же вещества притягиваться друг к другу. Как мы увидели из предыдущих примеров, молекулы воды обладают высокой когезией. Именно благодаря когезии возможно поверхностное натяжение.

Адгезия, наоборот, свойство молекул разных веществ или материалов притягиваться друг к другу. Например, если адгезия между жидкостью и сосудом велика, то жидкость «взбирается» по поверхности сосуда, в то время как область в центре жидкости остается на месте. Это хорошо видно на примере воды в стеклянном сосуде - вода образует вогнутый мениск , если налить ее в узкий сосуд.

Кончено, вогнутый мениск образуется в любом стеклянном сосуде, если тот не слишком полон, но этот эффект намного легче увидеть в узком сосуде, например в трубке. Стоит заметить, что на иллюстрации полного стакана мениск выпуклый . Это вызвано тем, что воде не за что «зацепиться», кроме как за другие молекулы воды. Выпуклая форма мениска вызвана когезией между молекулами воды. Процесс образования выпуклого мениска похож на процесс формирования капель воды, который описан ниже.

Если адгезия между поверхностью вещества и жидкости мала, то мениск будет выпуклым. Это вызвано тем, что молекулы жидкости притягиваются к другим молекулам жидкости сильнее, чем они притягиваются к поверхности сосуда. Наглядный пример такого мениска: ртуть. Если у вас есть измерительный прибор с ртутью внутри, например термометр, то вы легко увидите этот мениск.

Примеры поверхностного натяжения в работе

Примеры поверхностного натяжения в быту и технике окружают нас повсеместно. Легче всего увидеть эффект поверхностного натяжения в системах вода-воздух.

Капли воды

Образование капель сферической формы также происходит благодаря силам, которые притягивают молекулы поверхности жидкости внутрь. Представим каплю, как ее часто рисуют дети - ее форма совсем не сферическая, а продолговатая, удлиненная сверху и округленная снизу. Самое распространенное изображение капли имеет такую форму потому, что мы чаще всего видим капли именно такими, когда на них действуют различные силы. Например, так выглядят капли, которые скатываются по поверхности листьев и веток деревьев, а потом стекают вниз.

Когда капля еще не стекла с поверхности, на которой она находится, на нее действует несколько сил, включая силу притяжения. Вода легко изменяет форму, и капля, перед тем как упасть вниз, растянута и представляет собой висячую каплю . Нам хорошо знакома эта форма, так как такие капли, в отличие от сферических, движутся довольно медленно, и их легко увидеть.

По мере того, как капля растягивается, она достигает точки максимального растяжения, после которой силы поверхностного натяжения не могут больше удерживать молекулы капли как единое целое. Капля отрывается от других молекул воды и падает вниз. Пока она летит вниз, влияние окружающих сил на нее уменьшается, и благодаря поверхностному натяжению ее форма становится сферической, как мы обсудили выше.

Как видно на фотографии кофейной капли, которая падает в чашку из кофеварки эспрессо, форма этой капли очень близка к сферической, хотя она немного деформирована силой притяжения, которая на нее действует.

Чтобы понять механизм образования сферической капли, можно также рассмотреть поверхностное натяжение с точки зрения энергии, как в определении этого явления выше. Частицы притягиваются к другим частицам с противоположным зарядом, поэтому можно сказать, что у этих частиц есть потенциальная энергия, которая зависит от того, как эти молекулы взаимодействуют с окружающими молекулами. Молекулы на поверхности жидкости не окружены другими молекулами со стороны поверхности, поэтому их потенциальная энергия выше. Такая система стремится уменьшить потенциальную энергию, согласно принципу минимальной потенциальной энергии . Это значит, что молекулы с более высокой потенциальной энергией стремятся уменьшить ее, например, изменяя свою форму. В нашем случае это достигается изменением формы, которую принимает вода.

При постоянном поверхностном натяжении потенциальную энергию можно уменьшить, уменьшив площадь. Важно помнить, что речь идет о площади между молекулами. Рассмотрев формулы вычисления площади различных геометрических фигур заметим, что шар лучше всего подходит для уменьшения площади между молекулами, то есть эта площадь для молекул по наружной поверхности шара минимальная по сравнению с другими геометрическими формами. Эту зависимость можно доказать, используя уравнение Эйлера - Лагранжа .

Изменение поверхностного натяжения при изменении температуры и химического состава вещества

Стоит заметить, что при увеличении температуры поверхностное натяжение уменьшается. Это происходит потому, что при увеличении температуры молекулы становятся более активными и интенсивность их колебаний возрастает. В результате расстояние между молекулами увеличивается и связи между молекулами ослабевают. Некоторые вещества, добавленные в воду, например, мыло, также уменьшают поверхностное натяжение, и это позволяет воде лучше приставать к другим поверхностям.

Пониженное поверхностное натяжение позволяет воде проникать в поры и труднодоступные отверстия, например между волокнами ткани. Это возможно благодаря тому, что молекулы воды легко отделяются друг от друга при пониженном поверхностном натяжении. Именно поэтому ткани, посуду, и другие предметы и поверхности чаще всего моют горячей водой. Моющие средства имеют такой же эффект по уменьшению поверхностного натяжения, что и нагревание, поэтому их также нередко используют для мытья поверхностей, часто в совокупности с горячей водой.

Поверхностное натяжение в капиллярах

Выше мы рассмотрели образование мениска благодаря адгезии, но это не единственный пример того, как жидкости ведут себя в узких трубках и капиллярах. Жидкости поднимаются вверх по капилляру или трубке благодаря адгезии, но для того, чтобы жидкость могла подняться по трубке как одно целое, не разорвавшись, кроме адгезии также нужна когезия. Чем уже капилляр, тем выше может подняться жидкость, так как в более широкой трубке поверхностного натяжения может быть недостаточно для того, чтобы поднять большое количество воды вверх.

Примерами этого явления в капиллярах являются бумажные полотенца, которые впитывают пролитую жидкость, спортивная одежду из ткани, которая впитывает пот, и корни, которые впитывают воду из земли и передвигают ее по стволу, к веткам и листьям. Стоит заметить, что такое движение жидкости может быть вызвано не только поверхностным натяжением, но и осмосом. Интересное явление в индуистских храмах, известное как молочное чудо также объясняют работой капилляров. Молочное чудо заключалось в следующем. Посетители одного из индуистских храмов в Индии заметили, что статуи богов на территории храма «пили» молоко, которое перед ними оставляли на тарелочках верующие. Это явление было замечено в некоторых других храмах Индии, а также за пределами страны. Ученые объясняют это явление работой капилляров: камень, из которого были высечены статуи был пористым, и молоко поднималось по капиллярам внутрь статуй.

Как видно из этих примеров, без поверхностного натяжения не было бы и явлений движения жидкости по капиллярам. Жидкость может пристать к стенкам сосуда, если адгезия между жидкостью и материалом сосуда высока, но без поверхностного натяжения она не может поползти вверх, так как она не может двигаться как одно целое.

Предметы, плавающие на поверхности жидкости

Предметы, которые не намокают в жидкости и имеют плотность выше плотности воды, могут держаться на поверхности воды за счет равновесия между силами, благодаря которым возникает поверхностное натяжение и силам, которые тянут тело вниз, например весом тела. Здесь мы говорим только о телах из водостойких материалов. Если вода проникает внутрь материала или пристает к оболочке, то картина значительно усложняется. Это свойство тела оставаться на поверхности легко продемонстрировать на примере скрепки или иголки, плавающей на поверхности воды. Осторожно опустим скрепку в воду, стараясь не прилагать силу, большую силы поверхностного натяжения. Чтобы уменьшить количество воды, которое пристает к поверхности скрепки и заставляет ее опуститься под воду, покроем скрепку маслом. Если мы опустили скрепку на воду достаточно аккуратно, то она останется на поверхности воды.

Форма капель, которые пристали к твердой поверхности

В описанных ранее примерах мы увидели, что капли воды стремятся достичь сферической формы, чтобы уменьшить потенциальную энергию в системе. Иногда невозможно достичь формы шара, поэтому капли принимают форму, наиболее к нему близкую. Если капля воды упала на твердую поверхность и пристала к ней, то нижняя часть капли, которая соприкасается с этой поверхностью, примет форму этой поверхности, например, становится плоской. Это происходит потому, что сила притяжения притягивает каплю к поверхности. Поверхность капли, которая соприкасается только с воздухом, будет, наоборот, приближена к форме шара. В результате, капли на плоских поверхностях, например на листе или на стекле, приобретает форму полушария.

Когда капли падают на твердую поверхность, они принимают форму, которая позволяет уменьшить площадь, и остаются в таком виде до тех пор, пока равновесие между силами не нарушается настолько, что поверхностное натяжение не может больше удерживать каплю на поверхности в этой форме. Например, капли росы остаются на ткани палатки до тех пор, пока они не соприкоснутся с другой поверхностью. Когда капли образовались снаружи, если потрогать ткань палатки изнутри и убрать руку, то поверхностное натяжение нарушится настолько, что капли проникнут через ткань палатки и вода останется на пальцах.

Интересное явление можно увидеть, если налить в бокал алкогольный напиток, например вино, особенно когда это вино с высоким содержанием алкоголя. На стенках этого бокала образуются капли воды, известные под названием «слезы вина» .

Это явление вызвано рядом факторов, включая разницу в поверхностном натяжении этилового спирта и воды. Как мы уже упоминали выше, поверхностное натяжение воды велико, по сравнению с другими жидкостями. Оно во много раз превышает поверхностное натяжение этилового спирта. В смесях воды и спирта, как, например, в вине, молекулы воды притягиваются друг к другу больше, чем к молекулам спирта. Из-за этого вода «убегает» от молекул спирта, вверх по стенкам бокала. Другими словами, вода движется от молекул этанола по направлению к молекулам воды.

В вине в бокале этанол, конечно, есть, но на поверхности стакана над уровнем вина его нет, поэтому вода движется именно вверх по стенкам бокала. При этом на стенках над уровнем вина образуются капли, похожие на слезы. Отсюда и название этого явления.

Чем больше воды собирается в капле, и чем выше она поднимается, тем сложнее ей удерживаться на стекле только благодаря поверхностному натяжению. В конце концов, капля стекает назад в стакан. Чем выше содержание спирта в вине, тем более выражен этот эффект.

Поверхностное натяжение в медицинской диагностике

Врачи используют информацию о поверхностном натяжении вещества, чтобы определить его содержание в смеси. Например, для некоторых форм желтухи характерно высокое содержание желчных солей в моче. Присутствие этих солей понижает поверхностное натяжение мочи, и поэтому их содержание можно определить, проверив, всплывает ли или тонет определенное вещество в моче, в нашем случае - порошок серы. Он не тонет в моче здорового пациента, но если в ней есть примесь желчных солей, то поверхностное натяжение недостаточно, и порошок серы тонет. Этот тест называют тестом Хэя .

В природе

Измерение поверхностного натяжения

Есть несколько способов найти поверхностное натяжение, используя различные измерительные приборы. Ниже рассмотрим несколько широко известных измерительных систем.

В устройствах первого типа измеряется сила, приложенная к измерительному прибору в результате поверхностного натяжения. При измерении по методу отрыва кольца дю Нуи и методу дю Нуи–Падэя оценивается сила, необходимая для поднятия с поверхности жидкости кольца или иглы, соответственно. Согласно третьему закону Ньютона, сила, приложенная к кольцу или игле благодаря поверхностному натяжению, когда мы поднимаем их с поверхности жидкости, равна по величине силе, которая нужна, чтобы поднять эти предметы с поверхности воды. То есть, измеряя силу, которая нужна для поднятия эти предметов, мы также получаем величину силы, которая препятствует их подъему.

Метод Вильгельми измеряет силу, которая действует на металлическую пластину, погруженную в жидкость, поверхностное натяжение которой измеряют. Жидкость пристает к пластине, к кольцу или к игле (как в предыдущих методах измерения), и поверхностное натяжение удерживает молекулы жидкости, приставшие к поверхности, а также и остальные молекулы вместе, как единое целое. То есть, жидкость «не отпускает» пластину, кольцо или иглу. Материал, из которого изготовлена пластина, известен, также как и то, насколько сильно вода пристает к этому материалу, и это учитывают при вычислении силы.

Поверхностное натяжение можно также найти, используя вес капель воды, которые падают из вертикальной трубки или капилляра. Этот метод называется сталагмометрическим , а устройство, которым измеряют поверхностное натяжение - сталогмометром. Поверхностное натяжение жидкости легко вычислить по весу капли, так как вес и поверхностное натяжение взаимосвязаны. Если известен диаметр трубки, то вес капли можно определить по количеству капель в определенном количестве жидкости.

Метод определения по форме висящей капли похож на предыдущий тем, что в нем также используют каплю для определения силы поверхностного натяжения. В этом случае измеряют насколько капля может удлиниться перед тем, как она отделится от остальной жидкости и упадет вниз.

Существуют также измерительные приборы, которые раскручивают жидкость и газ (для систем жидкость-газ) до тех пор, пока система не достигнет равновесия, и форма вещества не станет постоянной. При этом определяют поверхностное натяжение по форме вещества с меньшей плотностью. Этот метод измерения поверхностного натяжения называютметодом вращающейся капли .

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

В окружающем нас мире наряду с тяготением, упругостью и трением действует еще одна сила, на которую мы обычно не обращаем внимание. Эта сила действует вдоль касательной к поверхностям всех жидкостей. Силу, которая действует вдоль поверхности жидкости перпендикулярно линии, ограничивающей эту поверхность, стремится сократить её до минимума, называют силой поверхностного натяжения . Она сравнительно мала, ее действие никогда не вызывает мощных эффектов. Тем не менее, мы не можем налить воду в стакан, вообще ничего не можем проделать с какой-либо жидкостью без того, чтобы не привести в действие силы поверхностного натяжения. К эффектам, называемым поверхностным натяжением, мы настолько привыкли, что не замечаем их. Удивительно разнообразны проявления поверхностного натяжения жидкости в природе и технике. В природе и в нашей жизни они играют немаловажную роль. Без них мы не могли бы писать гелиевыми ручками, картриджив принтерах сразу же ставили бы большую кляксу, опорожнив весь свой резервуар. Нельзя было бы намылить руки - пена не образовалась бы. Слабый дождик промочил бы нас насквозь, а радугу нельзя было бы видеть ни при какой погоде. Поверхностное натяжение собирает воду в капли и благодаря поверхностному натяжению можно выдуть мыльный пузырь. Используя правило «Вовремя удивляться» бельгийского профессора Плато для исследователей, рассмотрим в работе необычные опыты.

Цель работы: экспериментально проверить проявления поверхностного натяжения жидкости, определить коэффициент поверхностного натяжения жидкостей методом отрыва капель

    Изучить учебную, научно-популярную литературу, использовать материалы в сети «Интернет» по теме «Поверхностное натяжение»;

    проделать опыты, доказывающие, что собственная форма жидкости - шар;

    провести эксперименты с уменьшением и увеличением поверхностного натяжения;

    сконструировать и собрать экспериментальную установку, с помощью которой определить коэффициент поверхностного натяжения некоторых жидкостей методом отрыва капель.

    обработать полученные данные и сделать вывод.

Объект исследования: жидкости.

Основная часть. Поверхностное натяжение

Рис 1. Г. Галилей

Ногочисленные наблюдения и опыты показывают, что жидкость может принимать такую форму, при которой ее свободная поверхность имеет наименьшую площадь. В своем стремлении сократиться поверхностная пленка придавала бы жидкости сферическую форму, если бы не притяжение к Земле. Чем меньше капля, тем большую роль играют силы поверхностного натяжения. Поэтому маленькие капельки росы на листьях деревьев, на траве близки по форме к шару, при свободном падении дождевые капли почти строго шарообразны. Стремление жидкости сокращаться до возможного минимума, можно наблюдать на многих явлениях, которые кажутся удивительными. Еще Галилей задумывался над вопросом: почему капли росы, которые он видел по утрам на листьях капусты, принимают шарообразную форму? Утверждение, что жидкость не имеет своей формы, оказывается не совсем точным. Собственная форма жидкости - шар, как наиболее ёмкая форма. Молекулы вещества в жидком состоянии расположены почти вплотную друг к другу. В отличие от твердых кристаллических тел, в которых молекулы образуют упорядоченные структуры во всем объеме кристалла и могут совершать тепловые колебания около фиксированных центров, молекулы жидкости обладают большей свободой. Каждая молекула жидкости, также как и в твердом теле, «зажата» со всех сторон соседними молекулами и совершает тепловые колебания около некоторого положения равновесия. Однако время от времени любая молекула может переместиться в соседнее вакантное место. Такие перескоки в жидкостях происходят довольно часто; поэтому молекулы не привязаны к определенным центрам, как в кристаллах, и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей. Из-за сильного взаимодействия между близко расположенными молекулами они могут образовывать локальные (неустойчивые) упорядоченные группы, содержащие несколько молекул. 1

Рис 2. Пример ближнего порядка молекул жидкости и дальнего порядка молекул кристаллического вещества: 1 - вода; 2 - лед

А как можно объяснить самопроизвольное сокращение поверхности жидкости? Молекулы на поверхности и в глубине жидкости находятся в разных условиях. На каждую молекулу внутри жидкости действуют силы притяжения со стороны соседних молекул, окружающих ее со всех сторон. Результирующая этих сил равна нулю. Над поверхностью жидкости находится пар, плотность которого во много раз меньше плотности жидкости, и взаимодействием молекул пара с молекулами жидкости можно пренебречь. Молекулы, которые находятся на поверхности жидкости, притягиваются только молекулами, находящимися внутри жидкости. Под действием этих сил молекулы поверхностного слоя втягиваются внутрь, число молекул на поверхности уменьшается, площадь поверхности сокращается. Но не все молекулы могут с поверхности уйти внутрь жидкости, этому препятствуют силы отталкивания, возникающие при уменьшении расстояний между молекулами. При определенных расстояниях между молекулами, втягиваемыми внутрь, и молекулами, находящимися под поверхностью, силы взаимодействия становятся равными нулю, процесс сокращения поверхности прекращается. На поверхности остается такое число молекул, при котором ее площадь оказывается минимальной для данного объема жидкости. Так как жидкость текуча, она принимает такую форму, при которой число молекул на поверхности минимально, а минимальную поверхность при данном объеме имеет шар, то есть капля жидкости принимает форму, близкую шаровой.Проще всего уловить характер сил поверхностного натяжения, наблюдая образование капли. Всмотритесь внимательно, как постепенно растет капля, образуется сужение - шейка, - и капля отрывается. Не нужно много фантазии, чтобы представить себе, что вода как бы заключена в эластичный мешочек, и этот мешочек разрывается, когда вес превышает его прочность. В действительности, конечно, ничего кроме воды, в капле нет, но сам поверхностный слой воды ведёт себя, как растянутая эластичная пленка. Такое же впечатление производит пленка мыльного пузыря.

Опыт №1

Тремление жидкости к минимуму потенциальной энергии можно наблюдать с помощью мыльных пузырей. Мыльная пленка представляет собой двойной поверхностный слой. Если выдуть мыльный пузырь, а потом прекратить надувание, то он станет уменьшаться в объёме, выжимая из себя струю воздуха.

Поверхностное натяжение - явление молекулярного давления на жидкость, вызываемое притяжением молекул поверхностного слоя к молекулам внутри жидкости 5

Опыт Плато (1849г.)

Рис. 4. Ж.Плато

Оводом, побудившим бельгийского профессора к опытам, был случай. Нечаянно он налил в смесь спирта и воды небольшое количество масла, и оно приняло форму шара. Размышляя над этим фактом, Плато наметил ряд опытов, которые впоследствии блестяще были выполненными его друзьями и учениками. В своем дневнике он написал для исследователей правило: «Вовремя удивляться». Я решила исследовать опыт Плато, но в другом варианте: использовать в опыте подсолнечное масло и подкрашенную марганцовую воду.

Опыт, доказывающий, что однородная жидкость принимает форму с минимальной свободной поверхностью

Вариант опыта Плато №2

1) В мензурку налили подсолнечное масло.

2) Глазной пипеткой капнули в подсолнечное масло каплю подкрашенной марганцовой воды диаметром приблизительно 5мм.

) Наблюдали шарики воды разного размера, медленно падающие на дно и принимающие овальную приплюснутую форму (Фото 2).

5) Наблюдали, как капля принимает правильную форму шара (Фото 2).

Вывод : Жидкость, притягивая молекулы поверхностного слоя, сжимает саму себя. Овальная приплюснутая форма объясняется тем, что вес капли, которая не смешивается с маслом, больше выталкивающей силы. Правильная форма шара объясняется тем, что капля плавает внутри масла: вес капли уравновешивается выталкивающей силой.

При свободном падении, в состоянии невесомости капли дождя практически имеют форму шара. В космическом корабле шарообразную форму принимает и достаточно большая масса жидкости.

Коэффициент поверхностного натяжения

В отсутствии внешней силы вдоль поверхности жидкости действует сила поверхностного натяжения, которая сокращает до минимума площадь поверхности пленки. Сила поверхностного натяжения - сила, направленная по касательной к поверхности жидкости, перпендикулярно участку контура, ограничивающего поверхность, в сторону ее сокращения.

Ơ - коэффициент поверхностного натяжения - это отношение модуля F силы поверхностного натяжения, действующей на границу поверхностного слоя ℓ, к этой длине есть величина постоянная, не зависящая от длины ℓ. Коэффициент поверхностного натяжения зависит от природы граничащих сред и от температуры. Его выражают в ньютонах на метр (Н / м).

Опыты с уменьшением и увеличением

Фото 3

оверхностного натяжения

Опыт №3

    Прикоснулись к центру поверхности воды кусочком мыла.

    Кусочки пенопласта начинают двигаться от центра к краям сосуда (Фото 3).

    Капали в центр сосуда бензином, спиртом, моющим средством «Fairy».

Вывод: Поверхностное натяжение данных веществ меньше, чем у воды.

Эти вещества используются для удаления грязи, жирных пятен, сажи, т.е. не растворимых в воде веществ.Из-за достаточно высокого поверхностного натяжения вода сама по себе не обладает очень хорошим чистящим действием. Например, вступая в контакт с пятном, молекулы воды притягиваются друг к другу больше, чем к частицам нерастворимой грязи.Мыло и синтетические моющие средства (СМС) содержат вещества, уменьшающие поверхностное натяжение воды. Первое мыло, самое простое моющее средство, было получено на Ближнем Востоке более 5000 лет назад. Поначалу оно использовалось, главным образом, для стирки и обработки язв и ран. И только в 1 веке н.э. человек стал мыться с мылом.

В начале 1-го века мыло появилось на свет.

От грязи спасло человека и стал он чистым с юных лет.

Я говорю вам про мыло, что вскоре породило: шампунь, гель, порошок.

Стал чистым мир, как хорошо!

Рис 5. Ф. Гюнтер

Моющими средствами называются натуральные и синтетические вещества с очищающим действием, в особенности мыло и стиральные порошки, применяемые в быту, промышленности и сфере обслуживания. Мыло получают в результате химического взаимодействия жира и щелочи. Скорее всего, оно было открыто по чистой случайности, когда над костром жарили мясо, и жир стекал на золу, обладающую щелочными свойствами. Производство мыла имеет давнюю историю, а вот первое синтетическое моющее средство (СМС) появилось в 1916г., его изобрел немецкий химик Фриц Гюнтер для промышленных целей. Бытовые СМС, более или менее безвредные для рук, стали выпускаться 1933г. С тех пор разработан целый ряд синтетических моющих средств (СМС) узкого назначения, а их производство стало важной отраслью химической промышленности.

Именно из-за поверхностного натяжения вода сама по себе не обладает достаточным чистящим действием. Вступая в контакт с пятном, молекулы воды притягиваются друг к другу, вместо того чтобы захватывать частицы грязи, другими словами они не смачивают грязь.

Мыло и синтетические моющие средства содержат вещества, повышающие смачивающие свойства воды за счет уменьшения силы поверхностного натяжения. Эти вещества называются поверхностно-активными (ПАВ), поскольку действуют на поверхности жидкости.

Сейчас производство СМС стало важной отраслью химической промышленности. Эти вещества называют поверхностно-активным веществом (ПАВ), поскольку действуют на поверхности жидкости. Молекулы ПАВ можно представить в виде головастиков. Головами они «цепляются» за воду, а «хвостами» за жир. Когда ПАВ смешивают с водой, их молекулы на поверхности обращены «головами» вниз, а «хвостами» наружу. Раздробив таким образом поверхность воды, эти молекулы значительно уменьшают эффект поверхностного натяжения, тем самым помогая воде проникнуть в ткань. Этими же «хвостиками» молекулы ПАВ (Рис 6) захватывают попадающиеся им молекулы жира. 2

Опыт №4

1.Налили в блюдце молоко так, чтобы оно закрыло дно (Фото 4)

2. Капнули на поверхность молока 2 капля зеленки

3. Наблюдали, как зеленка «увлекается» от центра к краям. Две капли зеленки покрывают большую часть поверхности молока! (Фото 5)

Вывод: поверхностное натяжение зеленки, намного меньше, чем молока.

4. На поверхность зеленки капнули жидкость для мытья посуды «Fairy», мы увидели, как эта жидкость растеклась по всей поверхности.(Фото 6)

Вывод: поверхностное натяжение моющего средства меньше, чем зеленки.

Опыт№5

    В широкий стеклянный сосуд налили воду.

    На поверхность бросили кусочки пенопласта.

    Прикоснулись к центру поверхности воды кусочком сахара.

    Усочки пенопласта начинают двигаться от краев сосуда к центру (Фото 7).

Вывод: поверхностное натяжение водного раствора сахара больше, чем чистой воды.

Опыт№6

Удаление с поверхности ткани жирового пятна

Смочили бензином ватку и этой ваткой смочили края пятна (а не само пятно). Бензин уменьшает поверхностное натяжение, поэтому жир собирается к центру пятна и оттуда его можно удалить, этой же ваткой если же смачивать, само пятно, то оно может увеличиться в размерах вследствие уменьшения поверхностного натяжения.

Для экспериментального определения значения поверхностного натяжения жидкости можно использовать процесс образования и отрыва капель, вытекающих из капельницы.

Краткая теория методаотрыва капель

Малый объем жидкости сам по себе принимает форму, близкую к шару, так как благодаря малой массе жидкости мала и сила тяжести, действующая на нее. Этим объясняется шарообразная форма небольших капель жидкости. На рис.1 приведены фотографии, на которых показаны различные стадии процесса образования и отрыва капли. Фотография получена с помощью скоростной киносъемки, капля растет медленно, можно считать, что в каждый момент времени она находится в равновесии. Поверхностное натяжение вызывает сокращение поверхности капли, оно стремится придать капле сферическую форму. Сила тяжести располагает центр тяжести капли как можно ниже. В результате капля оказывается вытянутой (рис.7а).

Рис. 7. а б в г

Процесс образования и отрыва капель

Чем больше капля, тем большую роль играет потенциальная энергия силы тяжести. Основная масса по мере роста капли собирается внизу и у капли образуется шейка (рис.7б). Сила поверхностного натяжения направлена вертикально по касательной к шейке и она уравновешивает силу тяжести, действующую на каплю. Теперь достаточно капле совсем немного увеличиться и силы поверхностного натяжения уже не уравновешивают силу тяжести. Шейка капли быстро сужается (рис.7в) и в результате капля отрывается (рис.7г).

Метод измерения коэффициента поверхностного натяжения некоторых жидкостей основывается на взвешивании капель. В случае медленного вытекания жидкости из малого отверстия размер образующихся капель зависит от плотности жидкости, коэффициента поверхностного натяжения, размера и формы отверстия, а также от скорости истечения. При медленном вытекании смачивающей жидкости из вертикальной цилиндрической трубки образующаяся капля имеет форму, показанную на рисунке 8. Радиус r шейки капли связан с наружным радиусом трубки R соотношением r = kR (1)

где k - коэффициент, зависящий от размеров трубки и скорости вытекания.

Момент отрыва вес капли должен быть равен равнодействующей сил поверхностного натяжения, действующих по длине, равной протяженности контура шейки в самой ее узкой части. Таким образом, можно записать

Mg = 2πrơ (2)

Подставляя величину радиуса шейки r из равенства (1) и решая его, получим

Ơ =mg/2πkR (3)

Для определения массы капли, некоторое число n капель взвешивают в стакане известного веса. Если масса стаканчика без капель и с каплями будет соответственно М 0 и М, то масса одной капли

Подставляя последнее выражение в формулу (3) и вводя вместо радиуса трубки ее диаметр d, получим расчетную формулу

ơ = ((M-M0)g)/πkdn 3 (4)

Исследовательская работа «Определение коэффициента поверхностного натяжения некоторых жидкостей методом отрыва капель»

Цель исследования : определить коэффициент поверхностного натяжения жидкости методом отрыва капель некоторых жидкостей. Приборы : установка для измерения коэффициента поверхностного натяжения, весы, разновес, стаканчик, штангенциркуль, секундомер. Материалы : моющие средства: «Fairy», «Aos», молоко, спирт, бензин, растворы порошков: «Миф», «Persil», шампуни «Fruttis» , «Pantene », «Schauma» и «Fruttis» , гели для душа «Sensen », «Монпансье» и «Discover ».

Описание прибора .

Для определения коэффициента поверхностного натяжения собрали установку, состоящую из штатива, на котором установили бюретку с исследуемой жидкостью. На конце бюретки укрепили наконечник-трубку, на конце которой образуется капля. Взвешивание капель производили в специальном стаканчике.

Ход исследования

    С помощью штангенциркуля измерили диаметр наконечника-трубки три раза и вычислили среднее значение d.

    Взвесили на весах чистый сухой стаканчик (М 0).

    С помощью краника бюретки добились скорости вытекания капель

15 капель в минуту.

    Отлили из бюретки в стаканчик 60 капель жидкости, считая точно количество отлитых капель.

    Взвесили стаканчик с жидкостью. (М)

    Подставили полученные значения в формулу ơ = ((M-M0)g)/πkdn

    Вычислили коэффициент поверхностного натяжения.

    Провели опыт три раза

    Вычислили среднее значение коэффициента поверхностного натяжения.

Коэффициент поверхностного натяжения в системе СИ измеряется в Н/м.

Таблица №1

Результаты определения коэффициента поверхностного натяжения (Н/м)

Жидкость

Коэффициент поверхностного натяжения

Измеренное

Табличное

Спирт этиловый

Молоко (2,5)

Молоко (коровье домашнее)

Раствор порошка «Миф»

Раствор порошка «Persil»

Моющее средство «Fairy»

Моющее средство «Aos»

Вывод: Из исследованных кухонных моющих средств, при всех остальных одинаковых параметрах, влияющих на качество «отмывания», лучше использовать средство «Fairy ». Из исследованных стиральных порошков «Миф », т.к. именно их растворы обладают наименьшим поверхностным натяжением. Следовательно, первое средство («Fairy ») лучше помогает смывать нерастворимые в воде жиры с посуды, являясь эмульгатором - средством, облегчающим получение эмульсий (взвесей мельчайших частиц жидкого вещества в воде). Второе («Миф ») лучше отстирывает бельё, проникая в поры между волокнами тканей. Заметим, что при использовании кухонных моющих средств, мы заставляем вещество (в частности жир) хотя бы на некоторое время растворится в воде, т.к. происходит «дробление» его на мельчайшие частицы. За это время рекомендуется смыть нанесенное моющее средство струей чистой воды, а не ополаскивать посуду через какое-то время в ёмкости. Кроме того исследовали поверхностное натяжение шампуней и гелей для душа. Из-за достаточно высокой вязкости этих жидкостей сложно точно определить коэффициент поверхностного натяжения их, но зато можно сравнить. Были исследованы (методом отрыва капель) шампуни «Pantene », «Schauma» и «Fruttis» , а также гели для душа «Sensen », «Монпансье» и «Discover ».

Вывод:

    Поверхностное натяжение уменьшается в шампунях на ряду «Fruttis» - «Schauma» - «Pantene», в гелях - в ряду «Монпансье» - «Discover» - «Senses».

    Поверхностное натяжение шампуней меньше поверхностного натяжения гелей (Например «Pantene » < «Senses » на 65 мН/м), что оправдывает их назначение: шампуни - для мытья волос, гели - для мытья тела.

    При всех остальных одинаковых характеристиках, влияющих на качество мытья, из исследованных шампуней лучше использовать «Pantene» (Рис. 9), из исследованных гелей для душа - «Senses»(Рис.10).

Метод отрыва капель, не будучи очень точным, однако, используется в медицинской практике. Этим методом определяют в диагностических целях поверхностное натяжение спинномозговой жидкости, желчи и т.д.

Заключение

1. Получены экспериментальные подтверждения теоретических выводов, доказывающие, что однородная жидкость принимает форму с минимальной свободной поверхностью

2. Проведены эксперименты с уменьшением и увеличением поверхностного натяжения, результаты которых доказали, чтомыло и синтетические моющие средства содержат вещества, повышающие смачивающие свойства воды за счет уменьшения силы поверхностного натяжения.

3. Для определения коэффициента поверхностного натяжения жидкостей

а) изучена краткая теория метода отрыва капель;

б) сконструирована и собрана экспериментальная установка;

в) вычислены средние значения коэффициента поверхностного натяжения различных жидкостей, сделаны выводы.

4. Результаты экспериментов и исследования представлены в виде таблицы и фотографий.

Работа над проектом позволила мне приобрести более широкие знания по разделу физики «Поверхностное натяжение».

Мне хочется закончить свой проект словами великого ученого физика

А. Эйнштейна :

«Мне достаточно испытать ощущение вечной тайны жизни, осознавать и интуитивно постигать чудесную структуру всего сущего и активно бороться, чтобы схватить пусть даже самую малую крупинку разума, который проявляется в Природе»

Список использованных источников и литературы

    http://www.physics.ru/

    http://greenfuture.ru/

    http://www.agym.spbu.ru/

    Буховцев Б.Б., Климонтович Ю. Л., Мякишев Г.Я., Физика, учебник для 9 класса средней школы - 4-е издание - М.: Просвещение, 1988 г. - 271 с.

    Касьянов В.А., Физика, 10 класс, учебник для общеобразовательных учебных заведений, М.: Дрофа, 2001г. - 410 с.

    Пинский А.А. Физика: учебник. Пособие для 10 классов с углубленным изучением физики. М.: Просвещение, 1993г. - 416 с.

    Юфанова И.Л. Занимательные вечера по физике в средней школе: книга для учителя. - М.: Просвещение, 1990г. -215с

    Чуянов В.Я., Энциклопедический словарь юного физика, М.: Педагогика, 1984г. - 350 с.

1 1 http://www.physics.ru/

2 http://greenfuture.ru

Понятие поверхностного натяжения

Поверхностным натяжением называется термодинамическая характеристика поверхности раздела фаз, определенная как работа обратимого изотермического образования единицы плошали этой поверхности. Для жидкости поверхностное натяжение рассматривается как сила, действующая на единицу длины контура поверхности и стремящаяся сократить поверхность до минимума при заданных объемах фаз.

Нефть - это нефтяная дисперсная система, состоящая из дисперсной фазы и дисперсионной среды.

Поверхность частицы дисперсной фазы (например, ассоциат асфальтенов, глобула воды и т. п.) обладает некоторым избытком свободной поверхностной энергии F s , пропорциональной площади поверхности раздела фаз S :

Величина σ может рассматриваться не только как удельная поверхностная энергия, но и как сила, приложенная к единице длины контура, ограничивающего поверхность, направленная вдоль этой поверхности перпендикулярно контуру и стремящаяся эту поверхность стянуть или уменьшить. Эта сила носит название поверхностного натяжения .

Действие поверхностного натяжения можно наглядно представить в виде совокупности сил, стягивающих края поверхности к центру.

Длина каждой стрелочки вектора отражает величину поверхностного натяжения, а расстояние между ними соответствует принятой единице длины контура поверхности. В качестве размерности величины σ в равной мере используются как [Дж/м 2 ] = 10 3 [эрг/см 2 ], так и [Н/м] = 10 3 [дин/см].

В результате действия сил поверхностного натяжения жидкость стремится сократить свою поверхность, и если влияние силы земного притяжения незначительно, жидкость принимает форму шара, имеющего минимальную поверхность на единицу объема.

Поверхностное натяжение различно для разных групп углеводородов - максимально для ароматических и минимально для парафиновых. С увеличением молекулярной массы углеводородов оно повышается.

Большинство гетероатомных соединений, обладая полярными свойствами, имеют поверхностное натяжение ниже, чем углеводороды. Это очень важно, поскольку их наличие играет значительную роль в образовании водонефтяных и газонефтяных эмульсий и в последующих процессах разрушения этих эмульсий.

Параметры влияющие на поверхностное натяжение

Поверхностное натяжение существенно зависит от температуры и давления, а также от химического состава жидкости и соприкасающейся с ней фазы (газ или вода).

С повышением температуры поверхностное натяжение убывает и при критической температуре равно нулю. С увеличением давления поверхностное натяжение в системе газ - жидкость также снижается.

Поверхностное натяжение нефтепродуктов может быть найдено расчетным путем по уравнению:

Пересчет σ от одной температуры T 0 к другой T можно проводить по соотношению:

Значения поверхностного натяжения для некоторых веществ.

Вещества, добавка которых к жидкости уменьшает ее поверхностное натяжение, называют поверхностно-активными веществами (ПАВ).

Поверхностное натяжение нефти и нефтепродуктов зависит от количества присутствующих в них поверхностно-активных компонентов (смолистых веществ, нафтеновых и других органических кислот и т. п.).

Нефтепродукты с малым содержанием поверхностно-активных компонентов имеют наибольшее значение поверхностного натяжения на границе с водой, с большим содержанием - наименьшее.

Хорошо очищенные нефтепродукты имеют высокое поверхностное натяжение на границе с водой.

Понижение поверхностного натяжения объясняется адсорбцией ПАВ на границе раздела фаз. С увеличением концентрации добавляемого ПАВ поверхностное натяжение жидкости сначала интенсивно снижается, а затем стабилизируется, что свидетельствует о полном насыщении поверхностного слоя молекулами ПАВ. Природными поверхностно-активными веществами, резко изменяющими поверхностное натяжение нефтей и нефтепродуктов, являются спирты, фенолы, смолы, асфальтены, различные органические кислоты.

С поверхностными силами на границе раздела твердой и жидкой фаз связаны явления смачивания и капиллярные явления, на которых основаны процессы миграции нефти в пластах, подъем керосина и масла по фитилям ламп и масленок и т. д.

Экспериментальное определение поверхностного натяжения

Для экспериментального определения поверхностного натяжения нефтей и нефтепродуктов применяются различные методы.

Первый метод (а) основан на измерении силы, необходимой для отрыва кольца от поверхности раздела двух фаз. Эта сила пропорциональна удвоенной силе окружности кольца. При капиллярном методе (б) измеряют высоту подъема жидкости в капиллярной трубке. Недостатком его является зависимость высоты подъема жидкости не только от величины поверхностного натяжения, но и от характера смачивания стенок капилляра исследуемой жидкостью. Более точной разновидностью капиллярного метода является метод висячей капли (в), основанный на измерении массы капли жидкости, отрывающейся от капилляра. На результаты измерения влияют плотность жидкости и размеры капли и не влияет угол смачивания жидкостью твердой поверхности. Этот метод позволяет определять поверхностное натяжение в сосудах высокого давления.

Наиболее распространенным и удобным способом измерения поверхностного натяжения является способ наибольшего давления пузырьков или капель (г), что объясняется простотой конструкции, высокой точностью и независимостью определения от смачивания.

Этот способ основан на том, что при выдавливании пузырька воздуха или капли жидкости из узкого капилляра в другую жидкость поверхностное натяжение σ на границе с той жидкостью, в которую выпускается капля, пропорционально наибольшему давлению, необходимому для выдавливания капли.

Силы притяжения между молекулами на поверхности жидкости удерживают их от движения за ее пределы.

Молекулы жидкости испытывают силы взаимного притяжения — на самом деле, именно благодаря этому жидкость моментально не улетучивается. На молекулы внутри жидкости силы притяжения других молекул действуют со всех сторон и поэтому взаимно уравновешивают друг друга. Молекулы же на поверхности жидкости не имеют соседей снаружи, и результирующая сила притяжения направлена внутрь жидкости. В итоге вся поверхность воды стремится стянуться под воздействием этих сил. По совокупности этот эффект приводит к формированию так называемой силы поверхностного натяжения, которая действует вдоль поверхности жидкости и приводит к образованию на ней подобия невидимой, тонкой и упругой пленки.

Одним из следствий эффекта поверхностного натяжения является то, что для увеличения площади поверхности жидкости — ее растяжения — нужно проделать механическую работу по преодолению сил поверхностного натяжения. Следовательно, если жидкость оставить в покое, она стремится принять форму, при которой площадь ее поверхности окажется минимальной. Такой формой, естественно, является сфера — вот почему дождевые капли в полете принимают почти сферическую форму (я говорю «почти», потому что в полете капли слегка вытягиваются из-за сопротивления воздуха). По этой же причине капли воды на кузове покрытого свежим воском автомобиля собираются в бусинки.

Силы поверхностного натяжения используются в промышленности — в частности, при отливке сферических форм, например ружейной дроби. Каплям расплавленного металла просто дают застывать на лету при падении с достаточной для этого высоты, и они сами застывают в форме шариков, прежде чем упадут в приемный контейнер.

Можно привести много примеров сил поверхностного натяжения в действии из нашей будничной жизни. Под воздействием ветра на поверхности океанов, морей и озер образуется рябь, и эта рябь представляет собой волны, в которых действующая вверх сила внутреннего давления воды уравновешивается действующей вниз силой поверхностного натяжения. Две эти силы чередуются, и на воде образуется рябь, подобно тому как за счет попеременного растяжения и сжатия образуется волна в струне музыкального инструмента.

Будет жидкость собираться в «бусинки» или ровным слоем растекаться по твердой поверхности, зависит от соотношения сил межмолекулярного взаимодействия в жидкости, вызывающих поверхностное натяжение, и сил притяжения между молекулами жидкости и твердой поверхностью. В жидкой воде, например, силы поверхностного натяжения обусловлены водородными связями между молекулами (см. Химические связи). Поверхность стекла водой смачивается, поскольку в стекле содержится достаточно много атомов кислорода, и вода легко образует гидрогенные связи не только с другими молекулами воды, но и с атомами кислорода. Если же смазать поверхность стекла жиром, водородные связи с поверхностью образовываться не будут, и вода соберется в капельки под воздействием внутренних водородных связей, обусловливающих поверхностное натяжение.

В химической промышленности в воду часто добавляют специальные реагенты-смачиватели — сурфактанты , — не дающие воде собираться в капли на какой-либо поверхности. Их добавляют, например, в жидкие моющие средства для посудомоечных машин. Попадая в поверхностный слой воды, молекулы таких реагентов заметно ослабляют силы поверхностного натяжения, вода не собирается в капли и не оставляет на поверхности грязных крапин после высыхания (см.