Параметры электрона. Что такое электрон

Электрон. Образование и строение электрона. Магнитный монополь электрона.

(продолжение)


Часть 4. Строение электрона.

4.1. Электрон является двухкомпонентной частицей, которая состоит только из двух сверхуплотнённых (сгущенных, сконцентрированных) полей - электрического поля-минус и магнитного поля-N. При этом:

а) плотность электрона - максимально возможная в Природе;

б) размеры электрона (D = 10 -17 см и менее) - минимальные в Природе;

в) в соответствии с требованием минимизации энергии, все частицы - электроны, позитроны, частицы с дробным зарядом, протоны, нейтроны и пр. обязаны иметь (и имеют) сферическую форму;

г) по неизвестным пока причинам, независимо от величины энергии «родительского» фотона, абсолютно все электроны (и позитроны) рождаются абсолютно идентичными по своим параметрам (например - масса абсолютно всех электронов и позитронов составляет 0,511МэВ).

4.2. «Достоверно установлено, что магнитное поле электрона является таким же неотъемлемым свойством, как его масса и заряд. Магнитные поля у всех электронов одинаковы, как одинаковы их массы и заряды».(с) Это автоматически позволяет сделать однозначный вывод об эквивалентности массы и заряда электрона, то есть: масса электрона является эквивалентом заряда, и наоборот - заряд электрона является эквивалентом массы (для позитрона - аналогично).

4.3. Указанное свойство эквивалентности распространяется также и на частицы с дробными зарядами (+2/3) и (-1/3), которые являются основой кварков. То есть: масса позитрона, электрона и всех дробных частиц является эквивалентом их заряда, и наоборот - заряды этих частиц являются эквивалентом массы. Поэтому удельный заряд электрона, позитрона и всех дробных частиц одинаковый (const) и равен1,76*10 11 Кл/кг.

4.4. Поскольку элементарный квант энергии автоматически является элементарным квантом массы, то масса электрона (с учётом наличия дробных частиц 1/3 и 2/3) должна иметь значения, кратные массам трех отрицательных полуквантов. (См. также «Фотон. Строение фотона. Принцип перемещения. пункт 3.4.)

4.5. Определить внутреннее строение электрона весьма затруднительно по многим причинам, тем не менее, представляет значительный интерес хотя бы в первом приближении рассмотреть влияние двух компонент (электрической и магнитной) на внутреннее строение электрона. См. рис. 7.

Рис.7. Внутреннее строение электрона, варианты:

Вариант №1. Каждая пара лепестков отрицательного полукванта образует «микроэлектроны», которые затем формируют электрон. При этом количество «микроэлектронов» должно быть кратным трём.

Вариант №2. Электрон является двухкомпонентной частицей, которая состоит из двух состыкованных самостоятельных полусферических монополей - электрического(-) и магнитного(N).

Вариант №3. Электрон является двухкомпонентной частицей, которая состоит из двух монополей - электрического и магнитного. При этом магнитный монополь сферической формы расположен в центре электрона.

Вариант №4. Другие варианты.

По-видимому, может быть рассмотрен вариант когда электрические (-) и магнитные поля (N) могут существовать внутри электрона не только в виде компактных монополей, но и в виде однородной субстанции, то есть образуют практически бесструктурную? кристаллическую? гомогенную? частицу. Однако это весьма сомнительно.

4.6. Каждый из предложенных на рассмотрение вариантов имеет свои достоинства и недостатки, например:

а) Варианты №1. Электроны такой конструкции дают возможность спокойно образовывать дробные частицы с массой и зарядом кратным 1/3, но в то же время делают затруднительным объяснение собственного магнитного поля электрона.

б) Вариант №2. Этот электрон при движении вокруг ядра атома постоянно ориентирован на ядро своим электрическим монополем и поэтому может иметь только два варианта вращения вокруг своей оси - по часовой стрелке или против (запрет Паули?) и т.д.

4.7. При рассмотрении указанных (или вновь предложенных) вариантов в обязательном порядке необходимо учитывать реально существующие свойства и характеристики электрона, а также учитывать ряд обязательных требований, например:

Наличие электрического поля (заряда);

Наличие магнитного поля;

Эквивалентность некоторых параметров, например: масса электрона эквивалентна его заряду и наоборот;

Возможность образовывать дробные частицы массой и зарядом кратным 1/3;

Наличие набора квантовых чисел, спина и др.

4.8. Электрон появился как двухкомпонентная частица, у которой одна половина (1/2) является уплотнённым электрическим полем-минус (электрическим монополем-минус), а вторая половина (1/2) является уплотнённым магнитным полем (магнитным монополем-N). Однако при этом следует иметь в виду, что:

Электрические и магнитные поля при определённых условиях могут порождать друг друга (превращаться друг в друга);

Электрон не может быть однокомпонентной частицей и состоять на 100% из поля-минус, поскольку однозарядное поле-минус будет распадаться из-за сил отталкивания. Именно поэтому внутри электрона необходимо наличие магнитной компоненты.

4.9. К сожалению, провести полный анализ всех достоинств и недостатков предложенных вариантов и выбрать единственно правильный вариант внутреннего строения электрона в данной работе не представляется возможным.

Часть 5. «Волновые свойства электрона».

5.1. «К концу 1924г. точка зрения, согласно которой электромагнитное излучение ведет себя отчасти подобно волнам, а отчасти подобно частицам, стала общепринятой...И именно в это время француза Луи де Бройля, который в то время был аспирантом, осенила гениальная мысль: почему то же самое не может быть для вещества? Луи де Бройль проделал по отношению к частицам работу, обратную той, которую Эйнштейн провел для волн света. Эйнштейн связал электромагнитные волны с частицами света; де Бройль связал движение частиц с распространением волн, которые он назвал волнами материи. Гипотеза де Бройля основывалась на сходстве уравнений, описывающих поведение лучей света и частиц вещества, и носила исключительно теоретический характер. Для ее подтверждения или опровержения требовались экспериментальные факты».(с)

5.2. «В 1927 году американские физики К.Дэвиссон и К.Джермер обнаружили, что при «отражении» электронов от поверхности кристалла никеля при определённых углах отражения возникают максимумы. Аналогичные данные (возникновение максимумов) уже имелись по наблюдению дифракции рентгеновских волн лучей на кристаллических структурах. Поэтому появление этих максимумов у отражённых пучков электронов не могло быть объяснено никаким другим путём, кроме как на основе представлений о волнах и их дифракции.Таким образом, волновые свойства частиц — электронов (и гипотеза де Бройля) были доказаны экспериментом».(с)

5.3. Однако рассмотрение изложенного в данной работе процесса появления корпускулярных свойств у фотона (см. рис.5.) позволяет сделать вполне однозначные выводы:

а) по мере уменьшения длины волны с 10 -4 до 10 -10 {C}{C}{C}{C}{C}см электрические и магнитные поля фотона уплотняются

{C}{C}{C}{C}{C}{C}{C}{C}{C}{C}б) при уплотнении электрического и магнитного полей у «линии раздела» начинается стремительное увеличение «плотности» полей и уже в рентгеновском диапазоне плотность полей соизмерима с плотностью «обычной» частицы.

в) поэтому рентгеновский фотон при взаимодействии с препятствием уже не отражается от препятствия как волна, а начинает отскакивать от него как частица.

5.4. То есть:

а) уже в диапазоне мягкого рентгена электромагнитные поля фотонов настолько уплотнились, что обнаружить у них волновые свойства весьма затруднительно. Цитата: «Чем меньше длина волны фотона, тем труднее обнаружить у него свойства волны и тем сильнее у него проявляются свойства частицы».

б) в жестком рентгеновском и гамма-диапазоне фотоны ведут себя как стопроцентные частицы, и обнаружить у них волновые свойства уже практически невозможно. То есть: рентгеновский и гамма-фотон полностью теряет свойства волны и превращается в стопроцентную частицу. Цитата: «Энергия квантов в рентгеновском и гамма-диапазоне настолько велика, что излучение ведёт себя почти стопроцентно как поток частиц» (с).

в) поэтому в опытах по рассеиванию рентгеновского фотона от поверхности кристалла наблюдалась уже не волна, а обыкновенная частица, которая отскакивала от поверхности кристалла и повторяла строение кристаллической решётки.

5.5. До опытов К.Дэвиссона и К.Джермера уже имелись экспериментальные данные по наблюдению дифракции рентгеновских волн лучей на кристаллических структурах. Поэтому получив схожие результаты в опытах при рассеивании электронов на кристалле никеля, они автоматически приписали электрону волновые свойства. Однако электрон это «твердая» частица, которая имеет реальную массу покоя, габариты и пр. Не электрон-частица ведет себя как фотон-волна, а рентгеновский фотон имеет (и проявляет) все свойства частицы. Не электрон отражается от препятствия как фотон, а рентгеновский фотон отражается от препятствия как частица.

5.6. Поэтому: никаких «волновых свойств» у электрона (и других частиц) не было, нет и быть не может. И не существует никаких предпосылок и тем более возможностей для изменения данной ситуации.

Часть 6. Выводы.

6.1.Электрон и позитрон являются первыми и основообразующими частицами, наличие которых определило появление кварков, протонов, водорода и всех остальных элементов таблицы Менделеева.

6.2. Исторически, одну частицу назвали электроном и присвоили ей знак минус (материя), а другую назвали позитроном и присвоили ей знак плюс (антиматерия). «Электрический заряд электрона условились считать отрицательным в соответствии с более ранним соглашением называть отрицательным заряд наэлектризованного янтаря» (с).

6.3. Электрон может появиться (появиться = родится) только в паре с позитроном (электрон позитронная пара). Появление в Природе хотя бы одного «непарного» (одиночного) электрона или позитрона является нарушением закона сохранения заряда, общей электронейтральности материи и технически невозможно.

6.4. Образование электрон-позитронной пары в кулоновском поле заряженной частицы происходит после разделения элементарных квантов фотона в продольном направлении на две составляющие части: отрицательную - из которой формируется частица-минус (электрон) и положительную - из которой формируется частица-плюс (позитрон). Разделение электронейтрального фотона в продольном направлении на две абсолютно равные по массе, но разные по зарядам (и магнитным полям) части - это естественное свойство фотона, вытекающее из законов сохранения заряда и др. Наличие «внутри» электрона даже ничтожных количеств «частичек-плюс», а «внутри» позитрона - «частичек-минус» - исключается. Также исключается наличие внутри электрона и протона электронейтральных «частичек» (обрезков, кусочков, обрывков и т.д.) материнского фотона.

6.5. По неизвестным причинам абсолютно все электроны и позитроны рождаются эталонными «максимально-минимальными» частицами (т.е. они не могут быть больше и не может быть меньше по массе, заряду, габаритам и другим характеристикам). Образование из электромагнитных фотонов каких-либо более мелких или более крупных частиц-плюс (позитронов) и частиц-минус (электронов) - исключается.

6.6. Внутреннее строение электрона однозначно предопределено последовательностью его появления: электрон формируется как двухкомпонентная частица, которая на 50% является уплотнённым электрическим полем-минус (электрическим монополем-минус), и на 50% - уплотнённым магнитным полем (магнитным монополем- N). Эти два монополя могут рассматриваться как разнозарядные частицы, между которыми возникают силы взаимного притяжения (сцепления).

6.7. Магнитные монополи существуют, но не в свободном виде, а только как составные части электрона и позитрона. При этом магнитный монополь-(N) является неотъемлемой частью электрона, а магнитный монополь-(S) является неотъемлемой частью позитрона. Наличие магнитной составляющей «внутри» электрона обязательно, поскольку только магнитный монополь-(N) может образовать с однозарядным электрическим монополем-минус прочнейшую (и невиданную по силе) связь.

6.8. Электроны и позитроны обладают наибольшей стабильностью и являются частицами, распад которыхтеоретически и практически невозможен. Они являются неделимыми (по заряду и массе), то есть: самопроизвольное (или принудительное) разделение электрона или позитрона на несколько калиброванных или «разнокалиберных» частей - исключается.

6.9. Электрон вечен и он не может «исчезнуть» до тех пор, пока не встретится с другой частицей, имеющей равные по величине, но противоположные по знаку электрический и магнитный заряды (позитрон).

6.10. Поскольку из электромагнитных волн могут появиться только две эталонные (калиброванные) частицы: электрон и позитрон, то на их основе могут появиться только эталонные кварки, протоны и нейтроны. Поэтому вся видимая (барионная) материя нашей и всех других вселенных состоит из одинаковых химических элементов (таблица Менделеева) и везде действуют единые физические константы и фундаментальные законы, аналогичные «нашим» законам. Появление в любой точке бесконечного пространства «других» элементарных частиц и «других» химических элементов - исключается.

6.11. Вся видимая материя нашей Вселенной образовалась из фотонов (предположительно СВЧ-диапазона) по единственно возможной схеме: фотон → электрон-позитронная пара → дробные частицы → кварки, глюон → протон (водород). Поэтому вся «твёрдая» материя нашей Вселенной (включая Homo sapiens’ов) является уплотнёнными электрическими и магнитными полями фотонов. Других «материй» для её образования в Космосе не было, нет и быть не может.

P.S. Электрон неисчерпаем?

Электрон - отрицательно заряженная элементарная частица, принадлежащая к классу лептонов (см. Элементарные частицы), носитель наименьшей известной сейчас массы и наименьшего электрического заряда в природе. Открыт в 1897 г. английским ученым Дж. Дж. Томсоном.

Электрон - составная часть атома, число электронов в нейтральном атоме равно атомному номеру, т. е. числу протонов в ядре.

Первые точные измерения электрического заряда электрона провел в 1909-1913 гг. американский фиаик Р. Милликен. Современное значение абсолютной величины элементарного заряда составляет единиц СГСЭ или примерно Кл. Считается, что этот заряд действительно «элементарен», т. е. он не может быть разделен на части, а заряды любых объектов являются его целыми кратными.

Вы, возможно, слышали о кварках с электрическими зарядами и но, по-видимому, они прочно заперты внутри адронов и в свободном состоянии не существуют. Вместе с постоянной Планка h и скоростью света с элементарный заряд образует безразмерную постоянную = 1/137. Постоянная тонкой структуры - один из важнейших параметров квантовой электродинамики, она определяет интенсивность электромагнитных взаимодействий (наиболее точное современное значение = 0,000015).

Масса электрона г (в энергетических единицах ). Если справедливы законы сохранения энергии и электрического заряда, то запрещены любые распады электрона, такие, как и т. п. Поэтому электрон стабилен; экспериментально получено, что время его жизни не менее лет.

В 1925 г. американские физики С. Гаудсмит и Дж. Уленбек для объяснения особенностей атомных спектров ввели внутренний момент количества движения электрона - спин (s). Спин электрона равен половине постоянной Планка , но физики обычно говорят просто, что спин электрона равен = 1/2. Со спином электрона связан его собственный магнитный момент . Величина эрг/Гс называется магнетоном Бора МБ (это принятая в атомной и ядерной физике единица измерения магнитного момента; здесь h - постоянная Планка, и m - абсолютная величина заряда и масса электрона, с - скорость света); числовой коэффициент - это -фактор электрона. Из квантовомеханического релятивистского уравнения Дирака (1928) следовало значение т. е. магнитный момент электрона должен был равняться в точности одному магнетону Бора.

Однако в 1947 г. в опытах было обнаружено, что магнитный момент примерно на 0,1% больше магнетона Бора. Объяснение этого факта было дано с учетом поляризации вакуума в квантовой электродинамике. Весьма трудоемкие вычисления дали теоретическое значение (0,000000000148), которое можно сравнить с современными (1981) экспериментальными данными: для электрона и позитрона (0,000000000050).

Величины вычислены и измерены с точностью до двенадцати знаков после запятой, причем точность экспериментальных работ выше точности теоретических расчетов. Это самые точные измерения в физике элементарных частиц.

Особенностями движения электронов в атомах, подчиняющегося уравнениям квантовой механики, определяются оптические, электрические, магнитные, химические и механические свойства веществ.

Электроны участвуют в электромагнитных, слабых и гравитационных взаимодействиях (см. Единство сил природы). Так, вследствие электромагнитного процесса происходит аннигиляция электрона и позитрона с образованием двух -квантов: . Электроны и позитроны высоких энергий могут участвовать и в других процессах электромагнитной аннигиляции с образованием адронов: адроны. Сейчас такие реакции усиленно изучаются на многочисленных ускорителях на встречных -пучках (см. Ускорители заряженных частиц).

Слабые взаимодействия электронов проявляются, например, в процессах с несохранением четности (см. Четность) в атомных спектрах или в реакциях между электронами и нейтрино .

Не имеется никаких данных о внутренней структуре электрона. Современные теории исходят из представлений о лептонах как о точечных частицах. В настоящее время это проверено экспериментально до расстояний см. Новые данные могут появиться лишь с повышением энергии столкновения частиц в будущих ускорителях.

Удельный заряд электрона (т. е. отношение ) был впервые измерен Томсоном в 1897 г. с помощью разрядной трубки, изображенной на рис. 74.1. Выходящий из отверстия в аноде А электронный пучок (катодные лучи; см. § 85) проходил между пластинами плоского конденсатора и попадал на флуоресцирующий экран, создавая на нем светящееся пятно.

Подавая напряжение на пластины конденсатора, можно было воздействовать на пучок практически однородным электрическим полем. Трубка помещалась между полюсами электромагнита, с помощью которого можно было создавать на том же участке пути электронов перпендикулярное к электрическому однородное магнитное поле (область этого поля обведена на рис. 74.1 пунктирной окружностью). При выключенных полях пучок попадал на экран в точке О. Каждое из полей в отдельности вызывало смещение пучка в вертикальном направлении. Величины смещений определяются полученными в предыдущем параграфе формулами (73.3) и (73.4).

Включив магнитное поле и измерив вызванное им смещение следа пучка

Томсон включал также электрическое поле и подбирал его значение так, чтобы пучок снова попадал в точку О. В этом случае электрическое и магнитное поля действовали на электроны пучка одновременно с одинаковыми по величине, но противоположно направленными силами. При этом выполнялось условие

Решая совместно уравнения (74.1) и (74.2), Томсон вычислял .

Буш применил для определения удельного заряда электронов метод магнитной фокусировки. Суть этого метода заключается в следующем. Допустим, что в однородном магнитном поле вылетает из некоторой точки слегка расходящийся симметричный относительно направления поля пучок электронов, имеющих одинаковую по величине скорость v. Направления, по которым вылетают электроны, образуют с направлением В небольшие углы а. В § 72 было выяснено, что электроны движутся в этом случае по спиральным траекториям, совершая за одинаковое время

полный оборот и смещаясь вдоль направления поля на расстояние , равное

Вследствие малости угла а расстояния (74.3) для разных электронов оказываются практически одинаковыми и равными (для малых углов ). Следовательно, слегка расходящийся пучок сфокусируется в точке, отстоящей от точки вылета электронов на расстояние

В опыте Буша электроны, испущенные раскаленным катодом К (рис. 74.2), ускоряются, проходя разность потенциалов U, приложенную между катодом К и анодом А. В результате они приобретают скорость и, значение которой может быть найдено из соотношения

Вылетев затем из отверстия в аноде, электроны образуют узкий пучок, направленный вдоль оси эвакуированной трубки, вставленной внутрь соленоида. На входе в соленоид помещается конденсатор, на который подается переменное напряжение. Поле, создаваемое конденсатором, отклоняет электроны пучка от оси прибора на небольшие изменяющиеся со временем углы а. Это приводит к «завихрению» пучка - электроны начинают двигаться по различным спиральным траекториям. На выходе из соленоида ставится флуоресцирующий экран. Если подобрать магнитную индукцию В так, чтобы расстояние Г от конденсатора до экрана удовлетворяло условию

(l - шаг спирали, - целое число), то точка пересечения траекторий электронов попадет на экран - электронный пучок окажется сфокусированным в этой точке и возбудит на экране резкое светящееся пятно. Если условие (74.6) не соблюдается, светящееся пятно на экране будет размытым. Решив совместно уравнения (74.4), (74.5) и (74.6), можно найти

Наиболее точное значение удельного заряда электрона, установленное с учетом результатов, полученных разными методами, равно

Величина (74.7) дает отношение заряда электрона к его массе покоя . В опытах Томсона, Буша и других аналогичных опытах определялось отношение заряда к релятивистской массе, равной

В опытах Томсона скорость электронов составляла примерно 0,1 с. При такой скорости релятивистская масса превышает массу покоя на 0,5%. В последующих опытах скорость электронов достигала очень больших значений. Во всех случаях было обнаружено уменьшение измеряемых значений с ростом v, происходившее в точном соответствии с формулой (74.8).

Заряд электрона был определен с большой точностью Милликеном в 1909 г. В закрытое пространство между горизонтально расположенными пластинами конденсатора (рис. 74.3) Милликен вводил мельчайшие капельки масла. При разбрызгивании капельки электризовались, и их можно было устанавливать неподвижно, подбирая величину и знак напряжения на конденсаторе.

Равновесие наступало при условии

здесь - заряд капельки, Р - результирующая силы тяжести и архимедовой силы, равная

(74.10)

( - плотность капельки, - ее радиус, - плотность воздуха).

Из формул (74.9) и (74.10), зная , можно было найти . Для определения радиуса измерялась скорость равномерного падения капельки в отсутствие поля. Равномерное движение капельки устанавливается при условии, что сила Р уравновешивается силой сопротивления (см. формулу (78.1) 1-го тома; - вязкость воздуха):

(74.11)

Движение капельки наблюдалось с помощью микроскопа. Для измерения определялось время, за которое капелька проходила расстояние между двумя нитями, видимыми в поле зрения микроскопа.

Точно зафиксировать равновесие капельки очень трудно. Поэтому вместо поля, отвечающего условию (74.9), включалось такое поле, под действием которого капелька начинала двигаться с небольшой скоростью вверх. Установившаяся скорость подъема определяется из условия, что сила Р и сила в сумме уравновешивают силу

Исключив из уравнения (74.10), (74.11) и (74.12) Р и , получим выражение для

(в эту формулу Милликен вносил поправку, учитывающую, что размеры капелек были сравнимы с длиной свободного пробега молекул воздуха).

Итак, измерив скорость свободного падения капельки и скорость ее подъема известном электрическом поле , можно было найти заряд капельки е. Произведя измерение скорости при некотором значении заряда , Милликен вызывал ионизацию воздуха облучая пространство между пластинами рентгеновскими лучами. Отдельные ионы, прилипая к капельке, изменяли ее заряд, в результате чего скорость также менялась. После измерения нового значения скорости снова облучалось пространство между пластинами и т. д.

Измеренные Милликеном изменения заряда капельки и сам заряд каждый раз получались целыми кратными одной и той же величины . Тем самым была экспериментально доказана дискретность электрического заряда, т. е. тот факт, что всякий заряд слагается из элементарных зарядов одинаковой величины.

Значение элементарного заряда, установленное с учетом измерений Милликена и данных, полученных другими методами, равно

Все вокруг нас на планете состоит из маленьких, неуловимых для зрения частиц. Электроны - это одни из них. Их открытие произошло относительно недавно. И оно открыло новые представления о механизмах передачи электричества и устройства мира в целом.

Как делили неделимое

В современном понимании электроны - это элементарные частицы. Они являются целостными и не раскалываются на более мелкие структуры. Но такое представление существовало не всегда. До 1897 года об электронах не имели никакого понятия.

Ещё мыслители Древней Греции догадывались о том, что каждая вещь на свете, подобно зданию, состоит из множества микроскопических «кирпичиков». Наименьшей единицей вещества тогда считался атом, и это убеждение сохранялось веками.

Представление об атоме изменились только в конце XIX века. После исследований Дж. Томсона, Э. Резерфорда, Х. Лоренца, П. Зеемана, мельчайшими неделимыми частицами были признаны атомные ядра и электроны. Со временем были открыты протоны, нейтроны, а ещё позже - нейтрино, каоны, пи-мезоны и т. д.

Сейчас науке известно огромное количество элементарных частиц, свое место среди которых неизменно занимают и электроны.

Открытие новой частицы

  • n - главное число, определяющее запас энергии электрона (соответствует номеру периода химического элемента);
  • l - орбитальное число, которое описывает форму электронного облака (s - сферическая, p - форма восьмерки, d - форма клевера или двойной восьмерки, f - сложная геометрическая форма);
  • m - магнитное число, определяющее ориентацию облака в магнитном поле;
  • ms - спиновое число, характеризующее обращение электронов вокруг своей оси.

Заключение

Итак, электроны - это стабильные отрицательно заряженные частицы. Они элементарные и не могут распадаться на другие элементы. Их относят к фундаментальным частицам, то есть таким, которые входят в структуру вещества.

Электроны движутся вокруг атомных ядер и составляют их электронную оболочку. Они влияют на химические, оптические, механические и магнитные свойства различных веществ. Эти частицы участвуют в электромагнитном и гравитационном взаимодействии. Их направленное движение создает электрический ток и магнитное поле.

ФИЗИЧЕСКИЕ ОСНОВЫ РАБОТЫ ИОННЫХ

И ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ

1.1. Свойства электрона

Электрическое поле в электронных приборах ускоряет или тор-

мозит движение электронов. Пусть на электрон е , находящийся в

электрическомполеснапряжённостьюЕ , действуетсилаF (рис. 1.1)

F = − eE,

направленная против силы поля.

Согласно второму закону Ньютона, сила F равна произведению

массы электрона m на ускорениеa , сообщаемое электрону силойF

в поле с напряжённостью Е :

F = ma.

Из (1.1) и (1.2) ускорение элек-

a = Ee ,

из уравнения (1.3) видно, что c из-

менениемнапряжённостиэлектри-

Рис. 1.1. Электрон в однородном

ческого поля изменяется ускоре-

электрическом поле

ниеэлектрона. Крометого, присо-

впадениисилыполяснаправлениемначальнойскоростиv 0

электрон

движется ускоренно и приобретает наибольшую скорость и кинети-

ческую энергию в конце своего пути.

Скорость v электрона найдём исходя из известных положений

физики. Во-первых, работа сил поля по перемещению в нём элект-

рона из точки А в точку Б представляет собой произведение заряда

электрона е на разность потенциалов этих точек:

W e = (− e )(U А − U Б ).

Так как U Б >U A , то

U А− U Б= − U .

Следовательно, работа

We = (e)(− U) = eU.

Во-вторых, по закону сохранения энергии, работаW e , затрачен-

ная полем на перемещение электрона, равна приращению кинети-

ческойэнергииэлектрона, перемещающегосявэлектрическомполе:

W = m (v 2− v 2) / 2 .

Принимая начальную скорость v 0 = 0, из (5) находим значение

конечной скорости электрона

2 W e=

2 Ue .

Скоростьэлектронавэлектронныхприборахзначительномень-

ше скорости света, поэтому соотношение величин e /m ≈ e /m 0

v ≈ 600

Из (1.9) видно, что скорость движения электрона в электриче-

ском поле (км/с) зависит только от разности потенциалов между

начальной и конечной точками пути, пройденного электроном, и

не зависит от формы пути. Иногда скорость электрона измеряют в

вольтах. Например: скоростьэлектрона100 В. Этозначит, чтоэлек-

тронприобрёлтакуюскорость, пройдяразностьпотенциалов100 В.

Если электрон начинает своё движение из состояния покоя, он

будет двигаться равноускоренно, прямолинейно против силовых

линий электрического поля, поглощая энергию из поля. Электри-

ческое поле для электрона является ускоряющим.

Если начальная скорость совпадает с направлением силовых

линийэлектрическогополя, такоеполедляэлектронаявляетсятор-

мозящим. Скорость электрона будет уменьшаться, энергия элект-

рона также будет уменьшаться (будет возвращаться полю). Если

позволят размеры поля, электрон остановится, а затем начнёт двигаться против силовых линий этого поля.

Еслиначальнаяскоростьнаправленапротивсиловыхлинийэлектрического поля, такое поле для электрона является ускоряющим. Положительныезарядыэлектрическоеполеперемещаетпонаправлению силовых линий поля.

1.2. Виды электронной эмиссии

Явление испускания электронов с поверхности твёрдого тела называют электронной эмиссией, а сам источник электронов - эмиттером. В зависимости от способов внешнего энергетического воздействиянаэлектроны, вызывающихихвыходизэмиттера, различают несколько видов электронной эмиссии.

Термоэлектронная эмиссия возникает в результате нагрева эмиттера. С повышением температуры возникают тепловые колебания решёткитвёрдоготела. Засчётэтойэнергиитепловоговозбуждениячасть электроноввыходитизэмиттера, образуятокэмиссии. Чемвышетемпература эмиттера, тем больше электронов приобретает такую энергию, вследствие чего возрастает ток термоэлектронной эмиссии. Минимальная температура, при которой появляется ток эмиссии, называется критической. Она зависит от материала эмиттера.

Вторичная электронная эмиссия - испускание вторичных элек-

тронов с поверхности эмиттера при облучении его потоком первичных электронов. Первичный электронный поток, падающий на вторичный эмиттер, частично отражается от его поверхности, а частично проникает вглубь. Здесь первичные электроны сталкиваютсясэлектронамикристаллическойрешёткиэмиттера, отдаютим часть своей энергии, возбуждая их. Часть возбуждённых электронов выходит во внешнюю среду, эти электроны являются вторичными.

Эффективность вторичного эмиттера оценивается коэффициентом вторичной эмиссии σ , равным отношению числа вторичных электроновn 2 (или токаI 2 ) к числу первичных электроновn 1 (или токаI 1 ).

σ = n 2/ n 1= I 2/ I 1

Эмиссия под действием тяжёлых частицаналогична вторичной электронной эмиссии. Такими частицами могут быть положительныеионы. Приудареобэмиттер(катод) частицыотдаютчастьэнергииэлектронам. Еслиполнаяэнергия, сообщённаяэлектрону, больше, чем работа выхода, возникает эмиссия электронов.

Электростатическая электронная эмиссия (автоэлектронная)

возникает с поверхности твёрдого или жидкого тела под действием внешнего ускоряющего электрического поля с высокой напряжённостью (107 В/м). Чем больше напряжённость поля, тем больше ток автоэлектронной эмиссии.

Фотоэлектронная эмиссия возникает при облучении эмиттера световым потоком. Эффективность данного вида эмиссии зависит от длины волны (обратная зависимость) и от величины светового потока (зависимость прямая).