Основные определения радиолокации. Диапазоны длин волн, используемые в радиолокации

Радиолокация (от «радио» и латинского слова locatio - расположение) - область науки и техники, занимающаяся наблюдением различных объектов в воздухе, на воде, на земле, определением их местоположения и расстояния до них при помощи радио. Всем хорошо знакомо эхо. Мы слышим звук, когда говорим, и слышим вторично, когда он возвращается после отражения от стены здания или утеса. В радиолокации происходит то же самое, но с той только разницей, что вместо звуковых волн действуют радиоволны. Радиолокатор посылает импульс радиоволн в сторону объекта и принимает его после отражения. Зная скорость распространения радиоволн и время прохождения импульса до отражающего объекта и обратно, нетрудно определить расстояние между ними.

Любой радиолокатор состоит из радиопередатчика, радиоприемника, работающего на той же волне, направленной антенны и индикаторного устройства (см. Индикатор).

Передатчик радиолокатора посылает в антенну сигналы короткими очередями - импульсами. Антенна радиолокатора, обычно имеющая форму вогнутого прожекторного зеркала, фокусирует радиоволны в узкий луч и направляет его на объект (рис. 1). Она может вращаться и изменять угол наклона, посылая радиоволны в различных направлениях. Одна и та же антенна попеременно автоматически с частотой импульсов подключается то к радиопередатчику, то к радиоприемнику (рис. 2). В промежутках между излучениями импульсов радиопередатчика работает радиоприемник. Он принимает отраженные радиоволны, а включенное на его выходе индикаторное устройство показывает расстояние до объекта.

Роль индикаторного устройства выполняет электроннолучевая трубка (см. Кинескоп). Электронный луч перемещается по экрану трубки с точно заданной скоростью, создавая движущуюся светящуюся линию. В момент посылки радиопередатчиком импульса радиоволн светящаяся линия на экране трубки делает всплеск. Аналогичный всплеск на светящейся линии трубки появляется и по возвращении «радиоэха». Поскольку скорость распространения радиоволн известна - она равна скорости света (300 000 км/с), то по интервалу между всплесками электронного луча на экране трубки можно определить расстояние до объекта. Радиоволны отражаются землей, водой, деревьями, металлическими и другими предметами. Наилучшее отражение происходит тогда, когда длина излучаемых радиоволн меньше отражающего их предмета. Поэтому радиолокаторы работают в диапазоне ультракоротких волн (см. Радио).

Радиолокаторы, установленные на судах, позволяют получить картину береговой линии, «прощупать» водные просторы, они предупреждают о приближении других судов и плавающих ледяных гор - айсбергов. По сигналам на экранах радиолокаторов диспетчеры аэропортов (см. Диспетчерское управление) контролируют движение самолетов по воздушным трассам, а пилоты точно определяют высоту полета и наблюдают очертания местности, над которой они летят (см. Навигационные приборы). Используя радиолокационные средства, синоптики следят за образованием и передвижением облаков, развитием и прохождением ураганов и тайфунов (см. Метеорологическая техника).

Физической основой радиолокации является рассеяние радиоволн объектами, отличающимися своими электрическими характеристиками (электрической проницаемостью диэлектрической проницаемостью и электропроводностью а) от соответствующих характеристик окружающей среды при их облучении.

Интенсивность рассеяния или отражения радиоволн (интенсивность вторичного поля) зависит от степени отличия электрических характеристик объекта и среды, от формы объекта, от соотношения его размеров I и длины волны А. и от поляризации радиоволн. Результирующее вторичное электромагнитное поле состоит из поля отражения, распространяющегося в сторону облучающего первичного поля, и теневого поля, распространяющегося за объект (в ту же сторону, что и первичное поле).

С помощью приемной антенны и приемного устройства можно принять часть рассеянного сигнала, преобразовать и усилить его для последующего обнаружения. Таким образом, простейшая РЛС может состоять из передатчика, формирующего и генерирующего радиосигналы, передающей антенны, излучающей эти радиосигналы, приемной антенны, принимающей отраженные сигналы, радиоприемника, усиливающего и преобразующего сигналы и, наконец, выходного устройства, обнаруживающего отраженные сигналы (рис. 1.1).

Рис. 1.1. Принцип действия простейшей РЛС

Как правило, амплитуда (или мощность) принимаемого сигнала мала, а сам сигнал имеет случайный характер. Малая мощность сигнала объясняется большим расстоянием до объекта (цели) и поглощением энергии сигнала при его распространении. Кроме того, на интенсивность отраженного сигнала существенно влияют размеры целей. Случайный характер сигнала является следствием флуктуации отраженного сигнала за счет: случайного перемещения элементов цели сложной формы при отражении радиоволн; многолучевого распространения радиоволн; хаотических изменений амплитуды сигнала при распространении и ряда других факторов. В результате принимаемый сигнал по виду, интенсивности и характеру изменения похож в приемном тракте на шумы и помехи. Поэтому первой и основной задачей РЛС является обнаружение полезного радиосигнала, т.е. вынесение решения о присутствии полезного сигнала в поступающей на вход приемного тракта смеси полезного сигнала с помехами, называемой входной реализацией. Эта статистическая задача решается входящим в РЛУ специальным устройством - обнаружителем, в котором стараются использовать алгоритм оптимального (наилучшего) обнаружения. Качество процесса обнаружения характеризуют вероятностью правильного обнаружения когда присутствующий во входной реализации сигнал обнаруживается, и вероятностью ложной тревоги когда за полезный сигнал принимается помеха, а сам сигнал отсутствует. Обнаружитель тем лучше, чем больше и меньше

Большинство параметров принимаемого сигнала априори неизвестны, поэтому при обнаружении приходится осуществлять поиск нужного параметра радиосигнала, отличающего его от сопутствующих шумов и помех.

Построение РЛС на базе современных технологий обработки информации заключается в использовании в качестве антенн фазированной антенной решетки (ФАР), в качестве генератора пусковых импульсов синтезатора частоты - синхронизатора, в качестве выходного устройства - цифрового процессора. Передатчик в зависимости от того, какая антенна используется в РЛС, может быть реализован в модульном варианте и встроен в активную ФАР, либо в виде модулятора и однокаскадного или многокаскадного генератора радиочастоты для пассивной ФАР или зеркальной антенны. Таким образом, перспективная РЛС (рис. 1.2) состоит из ФАР,

Рис. 1.2. Построение современной импульсной

синтезатора-синхронизатора, аналогового процессора (приемника), цифрового процессора и устройства отображения информации.

Антенна по сигналам от ЭЦВМ осуществляет формирование лучей и их перемещение для обзора пространства. Радиопередатчик формирует зондирующие сигналы, которые излучаются антенной. Радиоприемник усиливает слабые отраженные целью и принятые антенной сигналы. Поскольку эти сигналы приходят в смеси с шумами и помехами, то их выделение осуществляется с помощью согласованных фильтров сосредоточенной селекции и цифровых фильтров. Обычно процессор сигналов (приемник) выдает электрические сигналы в цифровом коде. Дальнейшая обработка сигналов выполняется в процессоре данных по заложенным в него программам алгоритмов обработки. Рабочие частоты и временные интервалы в РЛС задаются с помощью синтезатора-синхронизатора. Устройство отображения информации выполняется обычно на индикаторе с электроннолучевой трубкой или на дисплее процессора.

Количество одновременно обнаруживаемых и сопровождаемых целей определяется быстродействием систем обработки информации - выходного устройства, в качестве которого обычно используется цифровой процессор. На рис. 1.3 изображен диспетчерский пункт регулирования воздушного движения в зоне аэропорта.

Рис. 1.3. Диспетчерский путсг УВД

Типичное изображение на экране индикатора кругового обзора (ИКО) РЛС УВД показано на рис. 1.4, а. Здесь можно различить светящиеся радиальные и круговые метки. В центре экрана «находится» РЛС. Яркие точки - отметки целей. По радиусу можно отсчитать дальность, а по углу поворота радиуса, проходящего через отметку цели, относительно вертикали, проходящей через центр экрана, можно измерить пеленг цели. К каждой отметке на экране «прикреплен» формуляр, который содержит необходимую информацию о бортовом номере, высоте, дальности и азимуте самолета (рис. 1.4, б). На рис. 1.4 для лучшей различимости проведено инвертирование изображения.

Рис. 1.4. Вид экрана РЛС управления воздушным движением: а - общий вид экрана; б - укрупненное изображение фрагмента экрана с формуляром

Радиолокация (слайд 3 )– область радиотехники, задачей которой является обнаружение и распознавание различных объектов в пространстве и определение их координат и параметров движения с помощью радиоволн.

Радиолокационная цель – объект радиолокации, то есть материальный объект, сведения о котором представляют практический интерес.

Радиолокационные цели могут быть:

    аэродинамические (самолеты, вертолеты, ракеты, аэростаты, воздушные шары);

    баллистические или космические (ИСЗ, боеголовки баллистических ракет, космические корабли);

    наземные и надводные (танки, корабли).

Радиолокационная информация (РЛИ) (слайд 4 ) – совокупность сведений о целях, полученных средствами радиолокации.

Радиолокационная станция (РЛС) – совокупность технических средств, используемых для получения радиолокационной информации.

Одиночные РЛС обладают ограниченными возможностями по ряду основных показателей выдаваемой ими информации (размерам зоны обзора, составу и точности информации). Для полного удовлетворения требований к качеству радиолокационного обеспечения целесообразно техническое или тактическое объединение нескольких РЛС в радиолокационные комплексы.

Радиолокационный комплекс (РЛК) – совокупность функционально связанных технических средств, устройств, отдельных станций, обеспечивающих получение полного состава радиолокационной информации заданного качества.

Второй учебный вопрос.

Краткая история развития

Одна из важнейших задач радиолокации – применение ее в военной технике с целью обнаружения самолетов, баллистических ракет, космических объектов противника, а также наземных подвижных объектов.

Радиолокация – отличное средство для исследований земной атмосферы и ионосферы, а также для изучения метеоров. Она стала незаменимым помощником метеорологов при определении скорости и направления воздушных течений на различных высотах, а также при наблюдении за облаками, грозовыми фронтами и тайфунами.

Радиолокация широко применяется для астрономических наблюдений соседних космических тел солнечной системы: Луны, Солнца, Венеры, Марса и Юпитера; в гляциологии при определении толщины льда, например, при движении ледоколов; в геологии, геофизике при определении подземных неоднородностей полезных ископаемых, в жилищно-коммунальном хозяйстве для определения подземных коммуникаций и т. д.

Начало развития радиолокации относится к30-м года прошлого столетия, но широкое применение она получила только в годы Великой Отечественной войны. Явление отражения радиоволн от препятствий было открыто А.С.Поповым в 1897 году. Во время экспериментов по радиосвязи между кораблями Попов А.С. обнаружил нарушение связи, когда между этими кораблями проходил третий, от которого радиоволны отражались. А.С.Попов указал, что это явление можно использовать для определения местоположения объектов, радионавигации и радиопеленгации.

Однако состояние радиотехники того времени не позволяло использовать указанное явление в практических целях. Сложность радиолокационной техники требовала предварительной всесторонней и глубокой разработки многочисленных научных и технических проблем радиотехники и в первую очередь решения следующих задач:

    Направленного излучения и приема радиоволн.

    Создания приборов для измерения времени прохождения радиоволн.

    Получение мощных колебаний в диапазоне УКВ.

Развитие радиолокационной техники стало возможным только на базе накопившихся в течение четырех десятилетий, со времени открытия А.С.Попова, теоретических и экспериментальных знаний по радиофизике, радиотехнике, электронике и автоматике.

Работы над созданием радиолокационных станций непрерывного излучения начались в СССР в 1933 году под руководством Ю.К.Коровина, П.К.Ощепкова, Б.К.Шембеля и др. В 1938 году промышленность освоила выпуск радиолокаторов «Ревень» с непрерывным методом излучения, а в 1939 году эта РЛС под названием «РУС-1» (радиоулавливатель самолетов) была принята на вооружение частей ВНОС ПВО. Она позволяла предупредить войска о появлении самолетов на 80-100 километровом участке фронта.

С 1934 года в СССР широко развернулись работы по созданию импульсных РЛС. Ученые Ю.Б.Кобзарев, П.А.Погорелко и Н.Я.Чергнцов в 1935 году разработали импульсную РЛС с электронно-лучевым индикатором и «за изобретение прибора для обнаружения самолетов» были удостоены Государственной премии.

В 1939 году производились испытания РЛС «Редут», а в 1941 году «Редут» под названием «РУС-2» (автомобильный вариант) и «Пегматит П-1» (стационарный вариант) была принята на вооружение. Эта станция обнаружения имела дальность действия 100-120 км при высоте полета цели 7000 м.

Эти и ряд других работ позволили создать промышленные образцы радиолокаторов, успешно применявшихся во время Великой Отечественной войны.

Для преподавателя. К середине 1941 года в войсках в Московской и Северных зонах ПВО было развернуто 25-30 РЛС «РУС-2» и 45 комплексов «РУС-1» в Закавказье и на Дальнем Востоке.

В трудные годы войны советские ученые, инженеры-конструкторы разработали и наладили серийный выпуск РЛС различного тактического назначения, что позволило значительно повысить боевые возможности войск (РЛС П-2, П-2М, П-3, П-3А и др.).

После войны развитие радиолокации не только не приостановилось, но и продолжалось в широких масштабах. Это объясняется тем, что радиолокация оказалась грозным оружием и нашла широкое применение ив других родах войск и в народном хозяйстве.

Увеличение скорости, высоты и дальности полета современных летательных аппаратов выдвинуло вопрос о создании РЛС с большой дальностью действия (сотни и тысячи километров), объединения этих станций в комплекс совместно действующих устройств и соединения этого комплекса с системами скоростной обработки данных (ЭВМ) и автоматического управления противовоздушными оборонительными средствами с целью защиты государственных границ и важных промышленных и военных объектов.

В настоящее время развитие радиолокационной техники осуществляется по следующим направлениям:

    увеличения дальности действия РЛС;

    улучшения качества информации о наблюдаемых объектах;

    повышения помехозащищенности, надежности и живучести;

    автоматизации процессов управления, обработки и передачи радиолокационной информации.

Такова краткая история развития радиолокации в СССР.

Третий учебный вопрос.

Основные принципы радиолокации

Основной задачей радиолокатора является обнаружение летательного аппарата и определение его местоположения.

Местоположение летательного аппарата относительно РЛС определяется тремя пространственными координатами (рис. 1.1, слайд 5 ):

- наклонной дальностью Д – расстояние от РЛС до объекта по прямой;

- азимутом – угол в горизонтальной плоскости между направлением на истинный Север и проекцией наклонной дальности;

-углом места – угол в вертикальной плоскости между прямой, соединяющей точку стояния РЛС и цель (Ц), и проекцией этой прямой на горизонтальную плоскость.

Часто третьей координатой вместо угла места служит высота цели (Н), определяемая соотношением

Н = Д sin

Решение основной задачи радиолокатора основано на использовании трех принципов радиолокации. (слайд 6 )

Первый принцип радиолокации заключается в том, что электромагнитные волны способны отражаться от неоднородностей, встречающихся на пути их распространения («вторичное излучение»).

Второй принцип радиолокации заключается в том, что электромагнитные волны с помощью антенн РЛС можно сконцентрировать в узкий луч.

Третий принцип радиолокации заключается в том, что электромагнитные волны распространяются в пространстве прямолинейно и с постоянной скоростью (с = 3  10 8 м\с).

Для проведения урока предлагается конспект, сопровождаемый мультимедийной презентацией, которая создана в программе MicrosoftPowerPoint.

Методическая цель - показать возможность использования мультимедийной презентации для проведения лекции по физике на примере темы « Распространение радиоволн. Радиолокация»

  1. Восприятие и первичное закрепление нового учебного материала.
  2. Ознакомить учащихся со свойствами радиоволн, объяснить принцип радиолокации и

применение.

1. Формирование навыков: анализировать информацию, работать с литературой.

2. Развитие мышления, концентрации внимания, познавательного интереса.

3. 3. Формирование научного мировоззрения.

Повторение:

Что такое электромагнитная волна?

Опишите процесс возникновения электромагнитной волны.

От чего зависит скорость электромагнитной волны?

Что является источником электромагнитных волн?

Что такое дифракция?

Изучение нового материала:

1. Радиосвязь.

2. Понятие об ионосфере.

3. Радиолокация.

4. Расчет пути пройденного Радиосвязь осуществляется на:

5. Длинных 10000 - 1000м радиоволнами.

6. Применение.

Средних 1000 - 100м

Коротких 100 - 10м

Ультракоротких меньше 10м волнах.

Дифракция - явление огибания волнами препятствий, встречающихся на их пути, и проникновения их в область за препятствия. Дифракция присуща волнам любой природы.

ДЛИННЫЕ ВОЛНЫ за счет дифракции распространяются далеко за пределами видимого горизонта; радиопередачи на длинных волнах можно принимать на больших расстояниях за пределами прямой видимости антенны.

СРЕДНИЕ ВОЛНЫ испытывают меньшую дифракцию у поверхности Земли и распространяются за счет дифракции на меньшее расстояние за пределы прямой видимости.

КОРОТКИЕ ВОЛНЫ еще менее способны к дифракции у поверхности Земли, но их можно принимать в любой точке на поверхности Земли.

Распространение коротких радиоволн на большие расстояния от передающей радиостанции объясняется их способностью отражаться от и ИОНОСФЕРЫ.

ИОНОСФЕРОЙ называется верхняя часть атмосферы, начинающаяся с расстояния 50 км от поверхности Земли, и переходящая в межпланетную плазму на расстояниях 70 - 80 тыс.км.

ОСОБЕННОСТЬЮ ИОНОСФЕРЫ ЯВЛЯЕТСЯ ВЫСОКАЯ КОНЦЕНТРАЦИЯ В НЕЙ СВОБОДНЫХ ЗАРЯЖЕННЫХ ЧАСТИЦ- ИОНОВ И ЭЛЕКТРОНОВ.

Ионизация верхних слоев атмосферы создается ультрафиолетовым и рентгеновским излучениями Солнца.

Максимальное значение количества Свободных электронов в ионосфере 2*10- 5*10

Электронов в кубическом сантиметре - достигается на высотах 250-400 км от поверхности Земли.

ПРВОДЯЩИЙ СЛОЙ ЗЕМНОЙ АТМОСФЕРЫ - ИОНОСФЕРА - СПОСОБЕН ПОГЛОЩАТЬ И ОТРАЖАТЬ ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ.

От ионосферы хорошо отражаются длинные радиоволны. Это явление наряду с дифракцией увеличивает дальность распространения длинных волн.

Хорошо отражаются ионосферой и короткие волны (радио)

Многократные отражения коротких радиоволн от ионосферы и земной поверхности делают возможность радиосвязь на коротких волнах между любыми точками на Земле.

Ультракороткие проникают сквозь ионосферу и почти не огибают поверхность Земли. Поэтому используются для радиосвязи между пунктами в пределах прямой видимости, а также для связи с космическими кораблями.

ИТАК:

ДЛИННЫЕ ВОЛНЫ *скользят* вдоль поверхности Земли;

КОРОТКИЕ ВОЛНЫ многократно отражаются от ионосферы и поверхности Земли;

УЛЬТРОКОРОТКИЕ проникают сквозь ионосферу.

- РАДИОЛОКАЦИЯ -

Большую роль в современном морском флоте, авиации и космонавтике играют РАДИОЛОКАЦИОННЫЕ СРЕДСТВА СВЯЗИ.

Радиолокация - обнаружение и точное определение местонахождение объекта с помощью радиоволн.

В основе принципа радиолокации лежит свойство отражения электромагнитных волн.

Определение пути пройденного радиоволнами:

Если измерить с помощью электронной аппаратуры длительность промежутка времени t между моментами времени отправления и возвращения электромагнитных вол, можно определить путь, пройденный радиоволнами:

C - скорость электромагнитной волны

Так как волны прошли путь до тела и обратно, расстояние до тела, отражавшего радиоволны, равно половине этого пути:

Чтобы определить не только расстояние до тела, но и его положение в пространстве, необходимо посылать радиоволны узконаправленным пучком. Узконаправленный пучок создается с помощью антенны, имеющей форму, близкую к сферической. Используются ультракороткие волны.

Вода, суша, влажная почва, городские строения и транспортные коммуникации по-разному

отражают радиоволны. Это позволяет получить своеобразную карту местности, на которой летит самолет, с помощью радиолокационных приборов на самолете.

Облака не являются преградой для электромагнитных волн.

Пеленгация - определение координат, местоположения объектов.

Применение:

1.Авиация, космонавтика, флот: безопасность движения судов, при любой погоде и в любое время суток, предотвращение их столкновения, безопасность взлета и посадки.

2.Военное дело: своевременное обнаружение самолетов или ракет противника, автоматическая корректировка огня.

3.Радиолокация планет: измерение расстояния до них, уточнение параметров их орбит, определение периода вращения, наблюдение рельефа поверхности.

4. Аварийная радиоспасательная служба- в России *КОСПАС* , в США, Канаде, Франции *САРСАТ*.С ее помощью удалось предотвратить гибель многих людей при авариях.

Закрепление материала:

1. На каких принципах основана работа радиолокатора?

Ответ: Работа радиолокатора основана на отражении радиоволн различными препятствиями.

2. Имеются ли существенные различия между условиями распространения радиоволн на Земле и на Луне?

Ответ: Луна не имеет ионосферы. Следовательно радиосвязь на Луне во всех диапазонах может происходить только в пределах прямой видимости. На Земле же радиосвязь на больших расстояниях осуществляется за счет отражения радиоволн от ионосферы и огибания земной поверхности.

3.Решение задач из сборника Рымкевич № 995, № 1009 (ответ 30 км).

Молния представляет собой искровой разряд в атмосфере длительностью несколько десятков микросекунд. Он порождает электромагнитные волны, наибольшая мощность которых приходится на диапазон средних и длинных волн радиоприемников.

Дано: t =200 мкс = 2*10 -4 с

Радиосигнал локатора прошел путь 2l, где l - расстояние до объекта, со скоростью с-скорость света в воздухе.

Тогда 2l=ct. Отсюда

L=ct/2=3*10 8 *2*10 4 c /2=3*10 4 м = 30км.

Ответ: L=30км.

Домашнее задание:

&55, 56, Задача, сборник Рымкевич № 996, 997.

Если бы Максвелл не предсказал существование радиоволн, а Герц не открыл их на практике, наша действительность была бы совсем другой. Мы не могли бы быстро обмениваться информацией при помощи радио и мобильных телефонов, исследовать далёкие планеты и звёзды с помощью радиотелескопов, наблюдать за самолётами, кораблями и другими объектами с помощью радиолокаторов.

Каким же образом радиоволны помогают нам в этом?

Источники радиоволн

Источниками радиоволн в природе являются молнии – гигантские электрические искровые разряды в атмосфере, сила тока в которых может достигать 300 тысяч ампер, а напряжение – миллиарда вольт. Молнии мы наблюдаем во время грозы. Кстати, они возникают не только на Земле. Вспышки молний были обнаружены на Венере, Сатурне, Юпитере, Уране и других планетах.

Практически все космические тела (звёзды, планеты, астероиды, кометы и др.) также являются естественными источниками радиоволн.

В радиовещании, радиолокации, спутниках связи, стационарной и мобильной связи, различных системах навигации применяются радиоволны, полученные искусственным путём. Источником таких волн служат высокочастотные генераторы электромагнитных колебаний, энергия которых передаётся в пространство с помощью передающих антенн.

Свойства радиоволн

Радиоволны – это электромагнитные волны, частота которых находится в интервале от 3 кГц до 300 ГГц, а длина - от 100 км до 1 мм соответственно. Распространяясь в среде, они подчиняются определённым законам. При переходе из одной среды в другую наблюдается их отражение и преломление. Присущи им и явления дифракции и интерференции.

Дифракция , или огибание, происходит, если на пути радиоволн встречаются препятствия, размеры которых меньше длины радиоволны. Если же их размеры оказываются бόльшими, то радиоволны отражаются от них. Препятствия могут иметь искусственное (сооружения) или природное (деревья, облака) происхождение.

Отражаются радиоволны и от земной поверхности. Причём, поверхность океана отражает их примерно на 50% сильнее, чем сýша.

Если препятствие является проводником электрического тока, то какую-то часть своей энергии радиоволны отдают ему, а в проводнике создаётся электрический ток. Часть энергии расходуется на возбуждение электротоков на поверхности Земли. Кроме того, радиоволны расходятся от антенны кругами в разные стороны, подобно волнам от брошенного в воду камешка. По этой причине радиоволны со временем теряют энергию и затухают. И чем дальше от источника находится приёмник радиоволн, тем слабее сигнал, дошедший до него.

Интерференция, или наложение, вызывает взаимное усиление или ослабление радиоволн.

Радиоволны распространяются в пространстве со скоростью, равной скорости света (кстати, свет – это тоже электромагнитная волна).

Как и любые электромагнитные волны, радиоволны характеризуются длиной и частотой волны. С длиной волны частота связана соотношением:

f = c/ λ ,

где f – частота волны;

λ - длина волны;

c - скорость света.

Как видим, чем больше длина волны, тем меньше её частота.

Радиоволны разбиваются на следующие диапазоны : сверхдлинные, длинные, средние, короткие, ультракороткие, миллиметровые и децимиллиметровые волны.

Распространение радиоволн

Радиоволны разной длины распространяются в пространстве не одинаково.

Сверхдлинные волны (длина волны от 10 км и более) легко огибают большие препятствия вблизи поверхности Земли и очень слабо поглощаются ею, поэтому энергии они теряют меньше других радиоволн. Следовательно, затухают они также гораздо медленнее. Поэтому в пространстве такие волны распространяются на расстояния до нескольких тысяч километров. Глубина их проникновения в среду очень велика, и их используют для связи с подводными лодками, находящимися на большой глубине, а также для различных исследований в геологии, археологии и инженерном деле. Способность сверхдлинных волн легко огибать Землю позволяет исследовать с их помощью земную атмосферу.

Длинные , или километровые , волны (от 1 км до 10 км, частота 300 кГц – 30 кГц) также подвергаются дифракции, поэтому способны распространяться на расстояния до 2 000 км.

Средние , или гектометровые , волны (от 100 м до 1 км, частота 3000 кГц – 300 кГц) хуже огибают препятствия на поверхности Земли, сильнее поглощаются, поэтому гораздо быстрее затухают. Они распространяются на расстояния до 1 000 км.

Короткие волны ведут себя иначе. Если мы настроим автомобильный радиоприёмник в городе на короткую радиоволну и начнём двигаться, то по мере удаления от города приём радиосигнала будет всё хуже, а на расстоянии примерно 250 км он прекратится совсем. Однако спустя некоторое время радиотрансляция возобновится. Почему так происходит?

Всё дело в том, что радиоволны короткого диапазона (от 10 м до 100 м, частота 30 МГц – 3 МГц) у поверхности Земли затухают очень быстро. Однако волны, уходящие под большим углом к горизонту, отражаются от верхнего слоя атмосферы – ионосферы, и возвращаются обратно, оставляя позади себя сотни километров «мертвой зоны». Далее эти волны отражаются уже от земной поверхности и снова направляются к ионосфере. Многократно отражаясь, они способны несколько раз обогнуть земной шар. Чем короче волна, тем больше угол отражения от ионосферы. Но ночью ионосфера теряет отражательную способность, поэтому в тёмное время суток связь на коротких волнах хуже.

А ультракороткие волны (метровые, дециметровые, сантиметровые с длиной волны короче 10 м), не могут отражаться от ионосферы. Распространяясь прямолинейно, они пронизывают её и уходят выше. Это их свойство используют для определения координат воздушных объектов: самолётов, стай птиц, уровня и плотности облаков и др. Но и огибать земную поверхность ультракороткие волны тоже не могут. Из-за того что они распространяются в пределах прямой видимости, их применяют для радиосвязи на расстоянии 150 – 300 км.

По своим свойствам ультракороткие волны близки к световым волнам. Но световые волны можно собрать в пучок и направить его в нужное место. Так устроены прожектор и фонарик. Точно так же поступают и с ультракороткими волнами. Их собирают специальными зеркалами-антеннами и узкий пучок посылают в нужном направлении, что особенно важно, например, в радиолокации или спутниковой связи.

Миллиметровые волны (от 1 см до 1 мм), самые короткие волны радиодиапазона, схожи с ультракороткими волнами. Они также распространяются прямолинейно. Но серьёзной помехой для них являются атмосферные осадки, туман, облака. Кроме радиоастрономии, высокоскоростной радиорелейной связи они нашли применение в СВЧ технике, используемой в медицине и в быту.

Субмиллиметровые , или децимиллиметровые, волны (от 1 мм до 0,1 мм) по международной классификации также относятся к радиоволнам. В природных условиях они почти не существуют. В энергии спектра Солнца занимают ничтожно малую долю. Поверхности Земли не достигают, так как поглощаются парами воды и молекулами кислорода, находящимися в атмосфере. Созданные искусственными источниками, применяются в космической связи, для исследования атмосфер Земли и других планет. Высокая степень безопасности этих волн для организма человека позволяет применять их в медицине для сканирования органов.

Субмиллиметровые волны называют «волнами будущего». Вполне возможно, что они дадут учёным возможность изучать строение молекул веществ совершенно новым способом, а в будущем, может быть, даже позволят управлять молекулярными процессами.

Как видим, каждый диапазон радиоволн применяется там, где особенности его распространения используются с максимальной пользой.