Квадратный трехчлен. Разложение квадратного трехчлена на множители

На данном уроке мы с вами научимся раскладывать квадратные трёхчлены на линейные множители. Для этого необходимо вспомнить теорему Виета и обратную ей. Данное умение поможет нам быстро и удобно раскладывать квадратные трёхчлены на линейные множители, а также упростит сокращение дробей, состоящих из выражений.

Итак вернёмся к квадратному уравнению , где .

То, что стоит у нас в левой части, называется квадратным трёхчленом.

Справедлива теорема: Если - корни квадратного трёхчлена, то справедливо тождество

Где - старший коэффициент, - корни уравнения.

Итак, мы имеем квадратное уравнение - квадратный трёхчлен, где корни квадратного уравнения также называются корнями квадратного трёхчлена. Поэтому если мы имеем корни квадратного трёхчлена, то этот трёхчлен раскладывается на линейные множители.

Доказательство:

Доказательство данного факта выполняется с помощью теоремы Виета, рассмотренной нами в предыдущих уроках.

Давайте вспомним, о чём говорит нам теорема Виета:

Если - корни квадратного трёхчлена, у которого , то .

Из данной теоремы вытекает следующее утверждение, что .

Мы видим, что, по теореме Виета, , т. е., подставив данные значения в формулу выше, мы получаем следующее выражение

что и требовалось доказать.

Вспомним, что мы доказали теорему, что если - корни квадратного трёхчлена, то справедливо разложение .

Теперь давайте вспомним пример квадратного уравнения , к которому с помощью теоремы Виета мы подбирали корни . Из этого факта мы можем получить следующее равенство благодаря доказанной теореме:

Теперь давайте проверим правильность данного факта простым раскрытием скобок:

Видим, что на множители мы разложили верно, и любой трёхчлен, если он имеет корни, может быть разложен по данной теореме на линейные множители по формуле

Однако давайте проверим, для любого ли уравнения возможно такое разложение на множители:

Возьмём, к примеру, уравнение . Для начала проверим знак дискриминанта

А мы помним, что для выполнения выученной нами теоремы D должен быть больше 0, поэтому в данном случае разложение на множители по изученной теореме невозможно.

Поэтому сформулируем новую теорему: если квадратный трёхчлен не имеет корней, то его нельзя разложить на линейные множители.

Итак, мы рассмотрели теорему Виета, возможность разложения квадратного трёхчлена на линейные множители, и теперь решим несколько задач.

Задача №1

В данной группе мы будем по факту решать задачу, обратную к поставленной. У нас было уравнение, и мы находили его корни, раскладывая на множители. Здесь мы будем действовать наоборот. Допустим, у нас есть корни квадратного уравнения

Обратная задача такова: составьте квадратное уравнение, чтобы были его корнями.

Для решения данной задачи существует 2 способа.

Поскольку - корни уравнения, то - это квадратное уравнение, корнями которого являются заданные числа. Теперь раскроем скобки и проверим:

Это был первый способ, по которому мы создали квадратное уравнение с заданными корнями, в котором нет каких-либо других корней, поскольку любое квадратное уравнение имеет не более двух корней.

Данный способ предполагает использование обратной теоремы Виета.

Если - корни уравнения, то они удовлетворяют условию, что .

Для приведённого квадратного уравнения , , т. е. в данном случае , а .

Таким образом, мы создали квадратное уравнение, которое имеет заданные корни.

Задача №2

Необходимо сократить дробь .

Мы имеем трёхчлен в числителе и трёхчлен в знаменателе, причём трёхчлены могут как раскладываться, так и не раскладываться на множители. Если же и числитель, и знаменатель раскладываются на множители, то среди них могут оказаться равные множители, которые можно сократить.

В первую очередь необходимо разложить на множители числитель .

Вначале необходимо проверить, можно ли разложить данное уравнении на множители, найдём дискриминант . Поскольку , то знак зависит от произведения ( должно быть меньше 0), в данном примере , т. е. заданное уравнение имеет корни.

Для решения используем теорему Виета:

В данном случае, поскольку мы имеем дело с корнями, то просто подобрать корни будет довольно сложно. Но мы видим, что коэффициенты уравновешены, т. е. если предположить, что , и подставить это значение в уравнение, то получается следующая система: , т. е. 5-5=0. Таким образом, мы подобрали один из корней данного квадратного уравнения.

Второй корень мы будем искать методом подставления уже известного в систему уравнений, к примеру, , т.е. .

Таким образом, мы нашли оба корня квадратного уравнения и можем подставить их значения в исходное уравнение, чтобы разложить его на множители:

Вспомним изначальную задачу, нам необходимо было сократить дробь .

Попробуем решить поставленную задачу, подставив вместо числителя .

Необходимо не забыть, что при этом знаменатель не может равняться 0, т. е. , .

Если данные условия будут выполняться, то мы сократили исходную дробь до вида .

Задача №3 (задача с параметром)

При каких значениях параметра сумма корней квадратного уравнения

Если корни данного уравнения существуют, то , вопрос: когда .

Квадратным трехчленом называется многочлен вида ax 2 + bx + c , где x – переменная, a, b, c – некоторые числа, причем a ≠ 0.

Коэффициент а называют старшим коэффициентом , c свободным членом квадратного трехчлена.

Примеры квадратных трехчленов:

2 x 2 + 5 x + 4 (здесь a = 2, b = 5, c = 4)

x 2 – 7x + 5 (здесь a = 1, b = -7, c = 5)

9x 2 + 9x – 9 (здесь a = 9, b = 9, c = -9)

Коэффициент b или коэффициент c либо оба коэффициента одновременно могут быть равны нулю. Например:

5 x 2 + 3 x (здесь a = 5, b = 3, c = 0, поэтому значение c в уравнении отсутствует).

6x 2 – 8 (здесь a = 6, b = 0, c = -8)

2x 2 (здесь a = 2, b = 0, c = 0)

Значение переменной, при котором многочлен обращается в ноль, называют корнем многочлена .

Чтобы найти корни квадратного трехчлена ax 2 + bx + c , надо приравнять его к нулю –
то есть решить квадратное уравнение ax 2 + bx + c = 0 (см.раздел "Квадратное уравнение").

Разложение квадратного трехчлена на множители

Пример:

Разложим на множители трехчлен 2x 2 + 7x – 4.

Мы видим: коэффициент а = 2.

Теперь найдем корни трехчлена. Для этого приравняем его к нулю и решим уравнение

2x 2 + 7x – 4 = 0.

Как решается такое уравнение – см. в разделе «Формулы корней квадратного уравнения. Дискриминант». Здесь же мы сразу назовем результат вычислений. Наш трехчлен имеет два корня:

x 1 = 1/2, x 2 = –4.

Подставим в нашу формулу значения корней, вынеся за скобки значение коэффициента а , и получим:

2x 2 + 7x – 4 = 2(x – 1/2) (x + 4).

Полученный результат можно записать иначе, умножив коэффициент 2 на двучлен x – 1/2:

2x 2 + 7x – 4 = (2x – 1) (x + 4).

Задача решена: трехчлен разложен на множители.

Такое разложение можно получить для любого квадратного трехчлена, имеющего корни.

ВНИМАНИЕ!

Если дискриминант квадратного трехчлена равен нулю, то этот трехчлен имеет один корень, но при разложении трехчлена этот корень принимают как значение двух корней – то есть как одинаковое значение x 1 и x 2 .

К примеру, трехчлен имеет один корень, равный 3. Тогда x 1 = 3, x 2 = 3.

КВАДРАТНЫЙ ТРЕХЧЛЕН III

§ 54. Разложение квадратного трехчлена на линейные множители

В этом параграфе мы рассмотрим следующий вопрос: в каком случае квадратный трехчлен ax 2 + bx + c можно представить в виде произведения

(a 1 x + b 1) (a 2 x + b 2)

двух линейных относительно х множителей с действительными коэффициентами a 1 , b 1 , a 2 , b 2 (a 1 =/=0, a 2 =/=0) ?

1. Предположим, что данный квадратный трехчлен ax 2 + bx + c представим в виде

ax 2 + bx + c = (a 1 x + b 1) (a 2 x + b 2). (1)

Правая часть формулы (1) обращается в нуль при х = - b 1 / a 1 и х = - b 2 / a 2 (a 1 и a 2 по условию не равны нулю). Но в таком случае числа - b 1 / a 1 и - b 2 / a 2 являются корнями уравнения

ax 2 + bx + c = 0.

Следовательно, дискриминант квадратного трехчлена ax 2 + bx + c должен быть неотрицательным.

2. Обратно, предположим, что дискриминант D = b 2 - 4ас квадратного трехчлена ax 2 + bx + c неотрицателен. Тогда этот трехчлен имеет действительные корни x 1 и x 2 . Используя теорему Виета, получаем:

ax 2 + bx + c = а (x 2 + b / a х + c / a ) = а [x 2 - (x 1 + x 2) х + x 1 x 2 ] =

= а [(x 2 - x 1 x ) - (x 2 x - x 1 x 2)] = а [х (х - x 1) - x 2 (х - x 1) =

= a (х - x 1)(х - x 2).

ax 2 + bx + c = a (х - x 1)(х - x 2), (2)

где x 1 и x 2 - корни трехчлена ax 2 + bx + c . Коэффициент а можно отнести к любому из двух линейных множителей, например,

a (х - x 1)(х - x 2) = ( - ax 1)(х - x 2).

Но это означает, что в рассматриваемом случае квадратный трехчлен ax 2 + bx + c представим в виде произведения двух линейных множителей с действительными коэффициентами.

Объединяя результаты, полученные в пунктах 1 и 2, мы приходим к следующей теореме.

Теорема. Квадратный трехчлен ax 2 + bx + c тогда и тoлько тогда можно представить в виде произведения двух линейных множителей с действительными коэффициентами,

ax 2 + bx + c = ( - ax 1)(х - x 2),

когда дискриминант этого квадратного трехчлена неотрицателен (то есть когда этот трехчлен имеет действительные корни) .

Пример 1 . Разложить на линейные множители 6x 2 - х -1.

Корни этого квадратного трехчлена равны x 1 = 1 / 2 и x 2 = - 1 / 3 .

Поэтому по формуле (2)

6x 2 - х -1 = 6 (х - 1 / 2)(х + 1 / 3) = (2х - 1) (3x + 1).

Пример 2 . Разложить на линейные множители x 2 + х + 1. Дискриминант этого квадратного трехчлена отрицателен:

D = 1 2 - 4 1 1 = - 3 < 0.

Поэтому данный квадратный трехчлен на линейные множители с действительными коэффициентами не раскладывается.

Упражнения

Разложить на линейные множители следующие выражения (№ 403 - 406):

403. 6x 2 - 7х + 2. 405. x 2 - х + 1.

404. 2x 2 - 7ах + 6а 2 . 406. x 2 - 3ах + 2а 2 - аb - b 2 .

Сократить дроби (№ 407, 408):

Решить уравнения:

Калькулятор онлайн.
Выделение квадрата двучлена и разложение на множители квадратного трехчлена.

Эта математическая программа выделяет квадрат двучлена из квадратного трехчлена , т.е. делает преобразование вида:
\(ax^2+bx+c \rightarrow a(x+p)^2+q \) и раскладывает на множители квадратный трехчлен : \(ax^2+bx+c \rightarrow a(x+n)(x+m) \)

Т.е. задачи сводятся к нахождению чисел \(p, q \) и \(n, m \)

Программа не только даёт ответ задачи, но и отображает процесс решения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного трехчлена, рекомендуем с ними ознакомиться.

Правила ввода квадратного многочлена

В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x - 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 - 5&6/5x +1/7x^2
Результат: \(3\frac{1}{3} - 5\frac{6}{5} x + \frac{1}{7}x^2 \)

При вводе выражения можно использовать скобки . В этом случае при решении введённое выражение сначала упрощается.
Например: 1/2(x-1)(x+1)-(5x-10&1/2)

Пример подробного решения

Выделение квадрата двучлена. $$ ax^2+bx+c \rightarrow a(x+p)^2+q $$ $$2x^2+2x-4 = $$ $$2x^2 +2 \cdot 2 \cdot\left(\frac{1}{2} \right)\cdot x+2 \cdot \left(\frac{1}{2} \right)^2-\frac{9}{2} = $$ $$2\left(x^2 + 2 \cdot\left(\frac{1}{2} \right)\cdot x + \left(\frac{1}{2} \right)^2 \right)-\frac{9}{2} = $$ $$2\left(x+\frac{1}{2} \right)^2-\frac{9}{2} $$ Ответ: $$2x^2+2x-4 = 2\left(x+\frac{1}{2} \right)^2-\frac{9}{2} $$ Разложение на множители. $$ ax^2+bx+c \rightarrow a(x+n)(x+m) $$ $$2x^2+2x-4 = $$
$$ 2\left(x^2+x-2 \right) = $$
$$ 2 \left(x^2+2x-1x-1 \cdot 2 \right) = $$ $$ 2 \left(x \left(x +2 \right) -1 \left(x +2 \right) \right) = $$ $$ 2 \left(x -1 \right) \left(x +2 \right) $$ Ответ: $$2x^2+2x-4 = 2 \left(x -1 \right) \left(x +2 \right) $$

Решить

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Выделение квадрата двучлена из квадратного трехчлена

Если квадратный трехчлен aх 2 +bx+c представлен в виде a(х+p) 2 +q, где p и q - действительные числа, то говорят, что из квадратного трехчлена выделен квадрат двучлена .

Выделим из трехчлена 2x 2 +12x+14 квадрат двучлена.


\(2x^2+12x+14 = 2(x^2+6x+7) \)


Для этого представим 6х в виде произведения 2*3*х, а затем прибавим и вычтем 3 2 . Получим:
$$ 2(x^2+2 \cdot 3 \cdot x + 3^2-3^2+7) = 2((x+3)^2-3^2+7) = $$ $$ = 2((x+3)^2-2) = 2(x+3)^2-4 $$

Т.о. мы выделили квадрат двучлена из квадратного трехчлена , и показоли, что:
$$ 2x^2+12x+14 = 2(x+3)^2-4 $$

Разложение на множители квадратного трехчлена

Если квадратный трехчлен aх 2 +bx+c представлен в виде a(х+n)(x+m), где n и m - действительные числа, то говорят, что выполнена операция разложения на множители квадратного трехчлена .

Покажем на примере как это преобразование делается.

Разложим квадратный трехчлен 2x 2 +4x-6 на множители.

Вынесем за скобки коэффициент a, т.е. 2:
\(2x^2+4x-6 = 2(x^2+2x-3) \)

Преобразуем выражение в скобках.
Для этого представим 2х в виде разности 3x-1x, а -3 в виде -1*3. Получим:
$$ = 2(x^2+3 \cdot x -1 \cdot x -1 \cdot 3) = 2(x(x+3)-1 \cdot (x+3)) = $$
$$ = 2(x-1)(x+3) $$

Т.о. мы разложили на множители квадратный трехчлен , и показоли, что:
$$ 2x^2+4x-6 = 2(x-1)(x+3) $$

Заметим, что разложение на множители квадратного трехчлена возможно только тогда, когда, квадратное уравнение, соответсвующее этому трехчлену имеет корни.
Т.е. в нашем случае разложить на множители трехчлен 2x 2 +4x-6 возможно, если квадратное уравнение 2x 2 +4x-6 =0 имеет корни. В процессе разложения на множители мы установили, что уравнение 2x 2 +4x-6 =0 имеет два корня 1 и -3, т.к. при этих значениях уравнение 2(x-1)(x+3)=0 обращается в верное равенство.

Книги (учебники) Рефераты ЕГЭ и ОГЭ тесты онлайн Игры, головоломки Построение графиков функций Орфографический словарь русского языка Словарь молодежного слэнга Каталог школ России Каталог ССУЗов России Каталог ВУЗов России Список задач

На данном уроке мы с вами научимся раскладывать квадратные трёхчлены на линейные множители. Для этого необходимо вспомнить теорему Виета и обратную ей. Данное умение поможет нам быстро и удобно раскладывать квадратные трёхчлены на линейные множители, а также упростит сокращение дробей, состоящих из выражений.

Итак вернёмся к квадратному уравнению , где .

То, что стоит у нас в левой части, называется квадратным трёхчленом.

Справедлива теорема: Если - корни квадратного трёхчлена, то справедливо тождество

Где - старший коэффициент, - корни уравнения.

Итак, мы имеем квадратное уравнение - квадратный трёхчлен, где корни квадратного уравнения также называются корнями квадратного трёхчлена. Поэтому если мы имеем корни квадратного трёхчлена, то этот трёхчлен раскладывается на линейные множители.

Доказательство:

Доказательство данного факта выполняется с помощью теоремы Виета, рассмотренной нами в предыдущих уроках.

Давайте вспомним, о чём говорит нам теорема Виета:

Если - корни квадратного трёхчлена, у которого , то .

Из данной теоремы вытекает следующее утверждение, что .

Мы видим, что, по теореме Виета, , т. е., подставив данные значения в формулу выше, мы получаем следующее выражение

что и требовалось доказать.

Вспомним, что мы доказали теорему, что если - корни квадратного трёхчлена, то справедливо разложение .

Теперь давайте вспомним пример квадратного уравнения , к которому с помощью теоремы Виета мы подбирали корни . Из этого факта мы можем получить следующее равенство благодаря доказанной теореме:

Теперь давайте проверим правильность данного факта простым раскрытием скобок:

Видим, что на множители мы разложили верно, и любой трёхчлен, если он имеет корни, может быть разложен по данной теореме на линейные множители по формуле

Однако давайте проверим, для любого ли уравнения возможно такое разложение на множители:

Возьмём, к примеру, уравнение . Для начала проверим знак дискриминанта

А мы помним, что для выполнения выученной нами теоремы D должен быть больше 0, поэтому в данном случае разложение на множители по изученной теореме невозможно.

Поэтому сформулируем новую теорему: если квадратный трёхчлен не имеет корней, то его нельзя разложить на линейные множители.

Итак, мы рассмотрели теорему Виета, возможность разложения квадратного трёхчлена на линейные множители, и теперь решим несколько задач.

Задача №1

В данной группе мы будем по факту решать задачу, обратную к поставленной. У нас было уравнение, и мы находили его корни, раскладывая на множители. Здесь мы будем действовать наоборот. Допустим, у нас есть корни квадратного уравнения

Обратная задача такова: составьте квадратное уравнение, чтобы были его корнями.

Для решения данной задачи существует 2 способа.

Поскольку - корни уравнения, то - это квадратное уравнение, корнями которого являются заданные числа. Теперь раскроем скобки и проверим:

Это был первый способ, по которому мы создали квадратное уравнение с заданными корнями, в котором нет каких-либо других корней, поскольку любое квадратное уравнение имеет не более двух корней.

Данный способ предполагает использование обратной теоремы Виета.

Если - корни уравнения, то они удовлетворяют условию, что .

Для приведённого квадратного уравнения , , т. е. в данном случае , а .

Таким образом, мы создали квадратное уравнение, которое имеет заданные корни.

Задача №2

Необходимо сократить дробь .

Мы имеем трёхчлен в числителе и трёхчлен в знаменателе, причём трёхчлены могут как раскладываться, так и не раскладываться на множители. Если же и числитель, и знаменатель раскладываются на множители, то среди них могут оказаться равные множители, которые можно сократить.

В первую очередь необходимо разложить на множители числитель .

Вначале необходимо проверить, можно ли разложить данное уравнении на множители, найдём дискриминант . Поскольку , то знак зависит от произведения ( должно быть меньше 0), в данном примере , т. е. заданное уравнение имеет корни.

Для решения используем теорему Виета:

В данном случае, поскольку мы имеем дело с корнями, то просто подобрать корни будет довольно сложно. Но мы видим, что коэффициенты уравновешены, т. е. если предположить, что , и подставить это значение в уравнение, то получается следующая система: , т. е. 5-5=0. Таким образом, мы подобрали один из корней данного квадратного уравнения.

Второй корень мы будем искать методом подставления уже известного в систему уравнений, к примеру, , т.е. .

Таким образом, мы нашли оба корня квадратного уравнения и можем подставить их значения в исходное уравнение, чтобы разложить его на множители:

Вспомним изначальную задачу, нам необходимо было сократить дробь .

Попробуем решить поставленную задачу, подставив вместо числителя .

Необходимо не забыть, что при этом знаменатель не может равняться 0, т. е. , .

Если данные условия будут выполняться, то мы сократили исходную дробь до вида .

Задача №3 (задача с параметром)

При каких значениях параметра сумма корней квадратного уравнения

Если корни данного уравнения существуют, то , вопрос: когда .