Классификация микрочастиц: фермионы и бозоны; лептоны; кварки; адроны; нуклоны. По величине спина все элементарные частицы делятся на два класса. Истинно элементарные частицы

В физике элементарных частиц калибровочные бозоны – это бозоны, которые переносчиками фундаментальных взаимодействий природы. Точнее, элементарные частицы, взаимодействия которых описываются калибровочной теорией, действуют друг на друга при помощи обмена калибровочными бозонами, обычно как виртуальными частицами.
В Стандартной модели существует три типа калибровочных бозонов: фотоны, W и Z бозоны и глюоны. Каждый тип соответствует одному из трех взаимодействий, описывается в рамках Стандартной модели: фотоны – калибровочные бозоны электромагнитного взаимодействия, W и Z бозоны переносят слабое взаимодействие, а глюоны переносят сильное взаимодействие. Через конфайнмент изолированные глюоны не появляются при низких энергиях. Впрочем, при низких энергиях возможно наблюдение массивных глюболив (glueballs), существование которых на 2006 год экспериментально не подтверждено.
Количество калибровочных бозонов
В квантовой калибровочной теории калибровочные бозоны являются квантами калибровочных полей. Следовательно, калибровочных бозонов существует столько же, сколько источников калибровочных полей. В квантовой электродинамике калибровочная группа – U (1); в этом простейшем случае всего один калибровочный бозон. В квантовой хромодинамике сложнее группа SU (3) имеет 8 источников, что соответствует 8 глюонов. Три W и Z бозоны соответствуют, грубо говоря, трем источникам SU (2) в теории электрослабого взаимодействия.
Массивные калибровочные бозоны
По техническим причинам, включающим калибровочную инвариантность, калибровочные бозоны математически описываются уравнениями поля для безмасових частиц. Следовательно, на наивном теоретическом уровне восприятия все калибровочные бозоны должны быть безмасовимы, а взаимодействия, которые они описывают, должны быть взаимодействиями дальнего действия. Конфликт между этой идеей и экспериментальным фактом, что слабое взаимодействие имеет очень малый радиус действия, требует дальнейшего теоретического исследования.
По Стандартной модели W и Z бозоны получают массу через механизм Хиггса. В механизме Хиггса четыре калибровочных бозона (SU (2) Х U (1) симметрии) электрослабого взаимодействия соединяются в поле Хиггса. Это поле подвержено спонтанному нарушению симметрии через форму его потенциала взаимодействия. В результате через Вселенную проходит ненулевой конденсат поля Хиггса. Этот конденсат соединяется с тремя калибровочными бозонами электрослабого взаимодействия (W ± и Z), сообщая им массу; калибровочный бозон оставшийся остается безмасовим (фотон). Эта теория также предсказывает существование скалярного бозона Хиггса, который до сих пор обнаружен не был.
Теории великого объединения
В теориях великого объединения (ТВО) появляются дополнительные калибровочные X и Y бозоны. Они управляют взаимодействиями между кварками и лептоны, нарушая закон сохранения барионного числа и вызывая распад протона. Эти бозоны имеют огромную по квантовым меркам массу (возможно, даже большую, чем W и Z бозоны) из-за нарушения симметрии. До сих пор не получено ни одного экспериментального подтверждения существования этих бозонов (например, в серии наблюдений за распадами протонов на японской установке Супер-Камиоканде).
Гравитоны
Четвертая фундаментальное взаимодействие, гравитация, также может переноситься бозоном, который был назван гравитон. При отсутствии экспериментальной очевидности и математически последовательной теории квантовой гравитации неизвестно, гравитон калибровочным бозоном или нет. Роль калибровочной инвариантности в Общей теории относительности играет похожая симметрия – инвариантность дифеоморфизму.

Составные частицы:

1.1 адроны -- частицы, участвующие во всех видах фундаментальных взаимодействий. Они состоят из кварков и подразделяются, в свою очередь, на:

1.1.1 мезоны (адроны с целым спином, т. е. бозоны);

1.1.2 барионы (адроны с полуцелым спином, т. е. фермионы). К ним, в частности, относятся частицы, составляющие ядро атома, -- протон и нейтрон.

Фундаментальные (бесструктурные) частицы:

2.1 лептоны -- фермионы, которые имеют вид точечных частиц (т. е. не состоящих ни из чего) вплоть до масштабов порядка 10?18 м. Не участвуют в сильных взаимодействиях. Участие в электромагнитных взаимодействиях экспериментально наблюдалось только для заряженных лептонов (электроны, мюоны, тау-лептоны) и не наблюдалось для нейтрино. Известны 6 типов лептонов.

2.2 кварки -- дробнозаряженные частицы, входящие в состав адронов. В свободном состоянии не наблюдались (для объяснения отсутствия таких наблюдений предложен механизм конфайнмента). Как и лептоны, делятся на 6 типов и являются бесструктурными, однако, в отличие от лептонов, участвуют в сильном взаимодействии.

2.3 калибровочные бозоны -- частицы, посредством обмена которыми осуществляются взаимодействия:

2.3.1 фотон -- частица, переносящая электромагнитное взаимодействие;

2.3.2 восемь глюонов -- частиц, переносящих сильное взаимодействие;

2.3.3 три промежуточных векторных бозона W+, W? и Z0, переносящие слабое взаимодействие;

2.3.4 гравитон -- гипотетическая частица, переносящая гравитационное взаимодействие. Существование гравитонов, хотя пока не доказано экспериментально в связи со слабостью гравитационного взаимодействия, считается вполне вероятным; однако гравитон не входит в Стандартную модель.

Адроны и лептоны образуют вещество. Калибровочные бозоны -- это кванты разных видов излучения.

Кроме того, в Стандартной Модели с необходимостью присутствует хиггсовский бозон, который, впрочем, пока ещё не обнаружен экспериментально.

Первоначально термин «элементарная частица» подразумевал нечто абсолютно элементарное, первокирпичик материи. Однако, когда в 1950-х и 1960-х годах были открыты сотни адронов с похожими свойствами, стало ясно, что по крайней мере адроны обладают внутренними степенями свободы, т. е. не являются в строгом смысле слова элементарными. Это подозрение в дальнейшем подтвердилось, когда выяснилось, что адроны состоят из кварков.

Таким образом, мы продвинулись ещё немного вглубь строения вещества: самыми элементарными, точечными частями вещества сейчас считаются лептоны и кварки. Для них (вместе с калибровочными бозонами) и применяется термин «фундаментальные частицы».

Между частицами существуют четыре типа взаимодействий, каждое из которых переносится своим типом бозонов: фотон, квант света -- электромагнитные взаимодействия, гравитон -- силы тяготения, действующие между любыми телами, имеющими массу. Восемь глюонов переносят сильные ядерные взаимодействия, связывающие кварки. Промежуточные векторные бозоны переносят слабые взаимодействия, ответственные за некоторые распады частиц. Считается, что к этим четырем взаимодействиям сводятся все силы в природе. Одним из самых ярких достижений нашего века стало доказательство того, что при очень высоких температурах (или энергиях) все четыре взаимодействия сливаются в одно.

При энергии 100 ГэВ (10 9 эВ) объединяются электромагнитное и слабое взаимодействия. Такая энергия соответствует температуре Вселенной через 10 -10 с после Большого Взрыва, и в 4 триллиона раз выше комнатной. Это открытие позволило предположить, что при энергии порядка 10 15 ГэВ можно достичь объединения с ними сильных взаимодействий, как это утверждается в Теориях Великого Объединения (ТВО), а при энергии 10 19 ГэВ к взаимодействиям ТВО присоединится и гравитационное взаимодействие, «образуя» ТВС (Теорию Всего Сущего).

Ускорителей, на которых можно получить такие энергии и проверить эти теории, пока нет и не предвидится, поэтому обращаются к Вселенной, чтобы найти в ней возможные ограничения для огромного числа элементарных частиц. В последние тридцать лет между физикой элементарных частиц и космологией существует тесная связь. Совокупность астрофизических данных можно рассматривать как «экспериментальный материал», накопленный в результате работы Вселенной -- гигантского ускорителя частиц. Мы можем иметь дело только с косвенными следствиями происходивших и происходящих процессов, с усредненным по всей Вселенной результатом их влияния на эволюцию материи.

Среди лептонов наиболее известен электрон, вероятно, он не состоит из других частиц, т. е. элементарен. Другой лептон -- нейтрино. Это самый распространенный лептон во Вселенной и в то же время самый неуловимый. Нейтрино не участвует ни в сильном, ни в электромагнитном взаимодействиях. После предсказания нейтрино было обнаружено только через 30 лет на ускорителях. Нейтрино бывает трех видов -- электронное, мюонное и тау-нейтрино. Мюон -- тоже широко распространенный в природе лептон. Он был обнаружен в космических лучах в 1936 г.; это нестабильная частица, а в остальном он похож на электрон. За две миллионные доли секунды он распадается на электрон и два нейтрино. Фоновое космическое излучение в большей части состоит из мюонов. В конце 70-х гг. был обнаружен третий заряженный лептон (кроме электрона и мюона) -- тау-лептон. Он ведет себя очень похоже на своих собратьев, но тяжелее электрона в 3500 раз. У каждого лептона есть и античастица, т.е. всего их 12.

Адронов существует очень много, их сотни. Поэтому часто их считают не элементарными частицами, а составленными из других. Они бывают электрически заряженными и нейтральными. Все адроны участвуют в сильном, слабом и гравитационном взаимодействиях. Среди них самые известные -- протон и нейтрон. Остальные живут очень мало, распадаясь за 10 -6 с за счет слабого взаимодействия или за 10 -23 с -- за счет сильного. Адроны рассортировали по массе, заряду и спину. В этом помогла гипотеза кварков, или частиц, составляющих адроны.

Кварки могут соединяться для этого тройками, составляя барионы, либо парами: кварк--антикварк, составляя мезоны (промежуточные частицы). Кварки имеют заряд 1/3 или 2/3 заряда электрона. Тогда в комбинации они дадут 0 или 1. Все кварки имеют спин, равный 1/2, т.е. они относятся к фермионам. Считают, что они сцепляются сильным взаимодействием, но участвуют и в слабом. Особенности сильного взаимодействия характеризуют типами («ароматами») -- «верхний», «нижний», «странный». Но слабое взаимодействие может поменять «аромат» кварка. Например, при распаде нейтрона один из «нижних» кварков становится «верхним», а избыток заряда уносит рождающийся электрон. Так что сильное взаимодействие не может менять «аромат», а без изменения «аромата» кварка невозможен распад адрона.

Новый адрон, названный-частицей, был обнаружен на ускорителях (1974). Поэтому в соответствии с теорией кварков ввели еще одну характеристику, четвертый «аромат», так появился «очарованный» кварк.

Так что ш-частица -- это предположительно мезон, состоящий из с-кварка и с-антикварка. Сейчас обнаружено уже много «очарованных» частиц, и все они тяжелые. А в 1977 г. появился -мезон, и вся история повторилась, пятый аромат получил название «прелестный». Так развивается ныне атомистика. Сейчас считают, что существуют 12 кварков -- фундаментальных частиц и столько же античастиц.

Шесть частиц -- это кварки с экзотическими именами «верхний», «нижний», «очарованный», «странный», «истинный», «прелестный». Они являются порождением теории, стремящейся к упорядоченности и красоте, и открыты все, за исключением «истинного». Остальные шесть -- лептоны: электрон, мюон, -частица и соответствующие им нейтрино (электронное, мюонное, нейтрино).

Эти 12 частиц, или две по шесть, группируют в три поколения, каждое из которых состоит из четырех членов.

В первом поколении -- «верхний» и «нижний» кварки, электрон и электронное нейтрино, во втором -- «очарованный» и «странный» кварки, мюон и мюонное нейтрино, в третьем -- «истинный» и «прелестный» кварки и-частица со своим нейтрино. Все обычное вещество состоит из частиц первого поколения. Протон, например, состоит из двух «верхних» кварков и одного «нижнего», нейтрон -- из двух «нижних» и одного «верхнего». Каждый атом состоит из тяжелого ядра (сильно связанных протонов и нейтронов), окруженного электронным облаком.

Кроме данной классификации можно выделять истинно элементарные частицы и условно истинно микрочастицы. Карпенков С.Х. Основные концепции естествознания. М., 2007. С.89.

Истинно элементарные частицы.

На сегодняшний день с теоретической точки зрения известны следующие истинно элементарные (на данном этапе развития науки считающиеся неразложимыми) частицы: кварки и лептоны (эти разновидности относятся к частицам вещества), кванты полей (фотоны, векторные бозоны, глюоны), а также частицы Хиггса.

В соответствий с четырьмя видами фундаментальных взаимодействий различают соответственно четыре вида элементарных частиц: адроны, участвующие во всех взаимодействиях, лептоны, не участвующие. Только в сильном (а нейтрино и в электромагнитном), фотон, участвующий только в электромагнитном взаимодействии, и гипотетический гравитон - переносчик гравитационного взаимодействия.

Элементарные частицы в точном значении этого термина - первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя. В понятии «Элементарные частицы» в современной науки естествознания находит выражение идея о первообразных сущностях, определяющих все известные свойства материального мира, идея, зародившаяся на ранних этапах становления естествознания и всегда игравшая важную роль в его развитии. Понятие «Элементарные частицы» сформировалось в тесной связи с установлением дискретного характера строения вещества на микроскопическом уровне. Обнаружение на рубеже 19-20 вв. мельчайших носителей свойств вещества - молекул и атомов - и установление того факта, что молекулы построены из атомов, впервые позволило описать все известные вещества как комбинации конечного, хотя и большого, числа структурных составляющих - атомов. Выявление в дальнейшем наличия составных слагающих атомов - электронов и ядер, установление сложной природы ядер, оказавшихся построенными всего из двух типов частиц (протонов и нейтронов), существенно уменьшило количество дискретных элементов, формирующих свойства вещества, и дало основание предполагать, что цепочка составных частей материи завершается дискретными бесструктурными образованиями - Элементарные частицы Такое предположение, вообще говоря, является экстраполяцией известных фактов и сколько-нибудь строго обосновано быть не может. Нельзя с уверенностью утверждать, что частицы, элементарные в смысле приведённого определения, существуют. Протоны и нейтроны, например, длительное время считавшиеся Элементарные частицы, как выяснилось, имеют сложное строение. Не исключена возможность того, что последовательность структурных составляющих материи принципиально бесконечна. Может оказаться также, что утверждение «состоит из…» на какой-то ступени изучения материи окажется лишённым содержания. От данного выше определения «элементарности» в этом случае придется отказаться. Существование элементарных частиы - это своего рода постулат, и проверка его справедливости - одна из важнейших задач науки естествознания.

Элемента́рная части́ца - собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить (или пока это не доказано) на составные части. Их строение и поведение изучается физикой элементарных частиц. Понятие элементарных частиц основывается на факте дискретного строения вещества. Ряд элементарных частиц имеет сложную внутреннюю структуру, однако разделить их на части невозможно. Другие элементарные частицы являются бесструктурными и могут считаться первичными фундаментальными частицами.

Со времён первого открытия элементарной частицы (электрона) в 1897 году обнаружено уже более 400 элементарных частиц.

По величине спина все элементарные частицы делятся на два класса:

фермионы - частицы с полуцелым спином (например, электрон, протон, нейтрон, нейтрино);

бозоны - частицы с целым спином (например, фотон).

По видам взаимодействий элементарные частицы делятся на следующие группы:

Составные частицы:

адроны - частицы, участвующие во всех видах фундаментальных взаимодействий. Они состоят из кварков и подразделяются, в свою очередь, на:

мезоны (адроны с целым спином, т. е. бозоны);

барионы (адроны с полуцелым спином, т. е. фермионы). К ним, в частности, относятся частицы, составляющие ядро атома, - протон и нейтрон.

Фундаментальные (бесструктурные) частицы:

лептоны - фермионы, которые имеют вид точечных частиц (т. е. не состоящих ни из чего) вплоть до масштабов порядка 10−18 м. Не участвуют в сильных взаимодействиях. Участие в электромагнитных взаимодействиях экспериментально наблюдалось только для заряженных лептонов (электроны, мюоны, тау-лептоны) и не наблюдалось для нейтрино. Известны 6 типов лептонов.

кварки - дробнозаряженные частицы, входящие в состав адронов. В свободном состоянии не наблюдались. Как и лептоны, делятся на 6 типов и являются бесструктурными, однако, в отличие от лептонов, участвуют в сильном взаимодействии.

калибровочные бозоны - частицы, посредством обмена которыми осуществляются взаимодействия:

фотон - частица, переносящая электромагнитное взаимодействие;

восемь глюонов - частиц, переносящих сильное взаимодействие;

три промежуточных векторных бозона W+, W− и Z0, переносящие слабое взаимодействие;

гравитон - гипотетическая частица, переносящая гравитационное взаимодействие. Существование гравитонов, хотя пока не доказано экспериментально в связи со слабостью гравитационного взаимодействия, считается вполне вероятным; однако гравитон не входит в Стандартную модель.

Адроны и лептоны образуют вещество. Калибровочные бозоны - это кванты разных видов излучения.

Кроме того, в Стандартной Модели с необходимостью присутствует хиггсовский бозон, который, впрочем, пока ещё не обнаружен экспериментально.

Способность к взаимным превращениям – это наиболее важное свойство всех элементарных частиц. Элементарные частицы способны рождаться и уничтожаться (испускаться и поглощаться). Это относится также и к стабильным частицам с той только разницей, что превращения стабильных частиц происходят не самопроизвольно, а при взаимодействии с другими частицами. Примером может служить аннигиляция (т. е. исчезновение) электрона и позитрона, сопровождающаяся рождением фотонов большой энергии. Может протекать и обратный процесс – рождение электронно-позитронной пары, например, при столкновении фотона с достаточно большой энергией с ядром. Такой опасный двойник, каким для электрона является позитрон, есть и у протона. Он называется антипротоном. Электрический заряд антипротона отрицателен. В настоящее время античастицы найдены у всех частиц. Античастицы противопоставляются частицам потому, что при встрече любой частицы со своей античастицей происходит их аннигиляция, т. е. обе частицы исчезают, превращаясь в кванты излучения или другие частицы.

В многообразии элементарных частиц, известных к настоящему времени, обнаруживается более или менее стройная система классификации.Наиболее удобной систематикой многочисленных элементарных частиц является их классификация по видам взаимодействий, в которых они участвуют. По отношению к сильному взаимодействию все элементарные частицы делятся на две большие группы: адроны (от греч. hadros — большой, сильный) и лептоны (от греч. leptos — легкий).

Первоначально термин «элементарная частица» подразумевал нечто абсолютно элементарное, первокирпичик материи. Однако, когда в 1950-х и 1960-х годах были открыты сотни адронов с похожими свойствами, стало ясно, что по крайней мере адроны обладают внутренними степенями свободы, т. е. не являются в строгом смысле слова элементарными. Это подозрение в дальнейшем подтвердилось, когда выяснилось, что адроны состоят из кварков.

Таким образом, человечество продвинулись ещё немного вглубь строения вещества: самыми элементарными, точечными частями вещества сейчас считаются лептоны и кварки. Для них (вместе с калибровочными бозонами) и применяется термин «фундаментальные частицы».

2. ХАРАКТЕРИСТИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Все элементарные частицы являются объектами исключительно малых масс и размеров. У большинства из них массы имеют порядок величины массы протона, равной 1,6×10 -24 г (заметно меньше лишь масса электрона: 9×10 -28 г). Определённые из опыта размеры протона, нейтрона, p-мезона по порядку величины равны 10 -13 см. Размеры электрона и мюона определить не удалось, известно лишь, что они меньше 10 -15 см. Микроскопические массы и размеры Элементарные частицы лежат в основе квантовой специфики их поведения. Характерные длины волн, которые следует приписать Элементарные частицы в квантовой теории (, где - постоянная Планка, m - масса частицы, с - скорость света) по порядку величин близки к типичным размерам, на которых осуществляется их взаимодействие (например, для p-мезона 1,4×10 -13 см). Это и приводит к тому, что квантовые закономерности являются определяющими для элементарных частиц.

Наиболее важное квантовое свойство всех элементарных частиц - их способность рождаться и уничтожаться (испускаться и поглощаться) при взаимодействии с др. частицами. В этом отношении они полностью аналогичны фотонам. Элементарные частицы - это специфические кванты материи, более точно - кванты соответствующих физических полей. Все процессы с элементарными частицами протекают через последовательность актов их поглощения и испускания. Только на этой основе можно понять, например, процесс рождения p + -мезона при столкновении двух протонов (р + р ® р + n+ p +) или процесс аннигиляции электрона и позитрона, когда взамен исчезнувших частиц возникают, например, два g-кванта (е + +е — ®g + g). Но и процессы упругого рассеяния частиц, например е — +p ® е — + р, также связаны с поглощением начальных частиц и рождением конечных частиц. Распад нестабильных элементарных частиц на более лёгкие частицы, сопровождаемый выделением энергии, отвечает той же закономерности и является процессом, в котором продукты распада рождаются в момент самого распада и до этого момента не существуют. В этом отношении распад элементарных частиц подобен распаду возбуждённого атома на атом в основном состоянии и фотон. Примерами распадов элементарных частиц могут служить: ; p + ®m + + v m ; К + ®p + + p 0 (знаком «тильда» над символом частицы здесь и в дальнейшем помечены соответствующие античастицы).

Различные процессы с элементарными частицами заметно отличаются по интенсивности протекания. В соответствии с этим взаимодействия элементарных частиц можно феноменологически разделить на несколько классов: сильные, электромагнитные и слабые взаимодействия. Все элементарные частицы обладают, кроме того, гравитационным взаимодействием.

Сильные взаимодействия выделяются как взаимодействия, которые порождают процессы, протекающие с наибольшей интенсивностью среди всех остальных процессов. Они приводят и к самой сильной связи элементарных частиц. Именно сильные взаимодействия обусловливают связь протонов и нейтронов в ядрах атомов и обеспечивают исключительную прочность этих образований, лежащую в основе стабильности вещества в земных условиях.

Электромагнитные взаимодействия характеризуются как взаимодействия, в основе которых лежит связь с электромагнитным полем. Процессы, обусловленные ими, менее интенсивны, чем процессы сильных взаимодействий, а порождаемая ими связь заметно слабее. Электромагнитные взаимодействия, в частности, ответственны за связь атомных электронов с ядрами и связь атомов в молекулах.

Слабые взаимодействия , как показывает само название, вызывают очень медленно протекающие процессы с элементарными частицами. Иллюстрацией их малой интенсивности может служить тот факт, что нейтрино, обладающие только слабыми взаимодействиями, беспрепятственно пронизывают, например, толщу Земли и Солнца. Слабые взаимодействия обусловливают также медленные распады так называемых квазистабильных элементарных частиц. Времена жизни этих частиц лежат в диапазоне 10 -8 -10 -10 сек, тогда как типичные времена для сильных взаимодействий элементарных частиц составляют 10 -23 -10 -24 сек.

Гравитационные взаимодействия, хорошо известные по своим макроскопическим проявлениям, в случае элементарных частиц на характерных расстояниях ~10 -13 см дают чрезвычайно малые эффекты из-за малости масс элементарных частиц.

Силу различных классов взаимодействий можно приближённо охарактеризовать безразмерными параметрами, связанными с квадратами констант соответствующих взаимодействий. Для сильных, электромагнитных, слабых и гравитационных взаимодействий протонов при средней энергии процесса ~1 Гэв эти параметры соотносятся как 1:10 -2: l0 -10:10 -38 . Необходимость указания средней энергии процесса связана с тем, что для слабых взаимодействий безразмерный параметр зависит от энергии. Кроме того, сами интенсивности различных процессов по-разному зависят от энергии. Это приводит к тому, что относительная роль различных взаимодействий, вообще говоря, меняется с ростом энергии взаимодействующих частиц, так что разделение взаимодействий на классы, основанное на сравнении интенсивностей процессов, надёжно осуществляется при не слишком высоких энергиях. Разные классы взаимодействий имеют, однако, и другую специфику, связанную с различными свойствами их симметрии, которая способствует их разделению и при более высоких энергиях. Сохранится ли такое деление взаимодействий на классы в пределе самых больших энергий, пока остаётся неясным.

В зависимости от участия в тех или иных видах взаимодействий все изученные элементарные частицы, за исключением фотона, разбиваются на две основные группы: адроны (от греческого hadros - большой, сильный) и лептоны (от греческого leptos - мелкий, тонкий, лёгкий). Адроны характеризуются прежде всего тем, что они обладают сильными взаимодействиями, наряду с электромагнитными и слабыми, тогда как лептоны участвуют только в электромагнитных и слабых взаимодействиях. (Наличие общих для той и другой группы гравитационных взаимодействий подразумевается.) Массы адронов по порядку величины близки к массе протона (т р); минимальную массу среди адронов имеет p-мезон: т p »м 1/7×т р. Массы лептонов, известных до 1975-76, были невелики (0,1 m p), однако новейшие данные, видимо, указывают на возможность существования тяжёлых лептонов с такими же массами, как у адронов. Первыми исследованными представителями адронов были протон и нейтрон, лептонов - электрон. Фотон, обладающий только электромагнитными взаимодействиями, не может быть отнесён ни к адронам, ни к лептонам и должен быть выделен в отд. группу. По развиваемым в 70-х гг. представлениям фотон (частица с нулевой массой покоя) входит в одну группу с очень массивными частицами - т. н. промежуточными векторными бозонами, ответственными за слабые взаимодействия и пока на опыте не наблюдавшимися.

Каждая элементарная частица, наряду со спецификой присущих ей взаимодействий, описывается набором дискретных значений определённых физических величин, или своими характеристиками. В ряде случаев эти дискретные значения выражаются через целые или дробные числа и некоторый общий множитель - единицу измерения; об этих числах говорят как о квантовых числах элементарных частиц и задают только их, опуская единицы измерения.

Общими характеристиками всех элементарных частиц являются масса (m), время жизни (t), спин (J) и электрический заряд (Q). Пока нет достаточного понимания того, по какому закону распределены массы элементарные частицы и существует ли для них какая-то единица
измерения.

В зависимости от времени жизни элементарные частицы делятся на стабильные, квазистабильные и нестабильные (резонансы). Стабильными, в пределах точности современных измерений, являются электрон (t > 5×10 21 лет), протон (t > 2×10 30 лет), фотон и нейтрино. К квазистабильным относят частицы, распадающиеся за счёт электромагнитных и слабых взаимодействий. Их времена жизни > 10 -20 сек (для свободного нейтрона даже ~ 1000 сек). Резонансами называются элементарные частицы, распадающиеся за счёт сильных взаимодействий. Их характерные времена жизни 10 -23 -10 -24 сек. В некоторых случаях распад тяжёлых резонансов (с массой ³ 3 Гэв) за счёт сильных взаимодействий оказывается подавленным и время жизни увеличивается до значений - ~10 -20 сек.

Спин элементарных частиц является целым или полуцелым кратным от величины . В этих единицах спин p- и К-мезонов равен 0, у протона, нейтрона и электрона J= 1/2, у фотона J = 1. Существуют частицы и с более высоким спином. Величина спина элементарных частиц определяет поведение ансамбля одинаковых (тождественных) частиц, или их статистику (В. Паули, 1940). Частицы полуцелого спина подчиняются Ферми - Дирака статистике (отсюда название фермионы), которая требует антисимметрии волновой функции системы относительно перестановки пары частиц (или нечётного числа пар) и, следовательно, «запрещает» двум частицам полуцелого спина находиться в одинаковом состоянии (Паули принцип). Частицы целого спина подчиняются Бозе - Эйнштейна статистике (отсюда название бозоны), которая требует симметрии волновой функции относительно перестановок частиц и допускает нахождение любого числа частиц в одном и том же состоянии. Статистические свойства элементарных частиц оказываются существенными в тех случаях, когда при рождении или распаде образуется несколько одинаковых частиц. Статистика Ферми - Дирака играет также исключительно важную роль в структуре ядер и определяет закономерности заполнения электронами атомных оболочек, лежащие в основе периодической системы элементов Д. И. Менделеева.

Электрические заряды изученных Элементарные частицы являются целыми кратными от величины е » 1,6×10 -19 к, называются элементарным электрическим зарядом. У известных элементарных частиц Q = 0, ±1, ±2.

Помимо указанных величин элементарных частиц дополнительно характеризуются ещё рядом квантовых чисел, называются внутренними. Лептоны несут специфический лептонный заряд L двух типов: электронный (L e) и мюонный (L m); L e = +1 для электрона и электронного нейтрино, L m = +1 для отрицательного мюона и мюонного нейтрино. Тяжёлый лептон t; и связанное с ним нейтрино, по-видимому, являются носителями нового типа лептонного заряда L t .

Для адронов L = 0, и это ещё одно проявление их отличия от лептонов. В свою очередь, значительные части адронов следует приписать особый барионный заряд В (|Е| = 1). Адроны с В = +1 образуют подгруппу
барионов (сюда входят протон, нейтрон, гипероны, барионные резонансы), а адроны с В = 0 - подгруппу мезонов (p- и К-мезоны, бозонные резонансы). Название подгрупп адронов происходит от греческих слов barýs - тяжёлый и mésos - средний, что на начальном этапе исследований элементарные частицы отражало сравнительные величины масс известных тогда барионов и мезонов. Более поздние данные показали, что массы барионов и мезонов сопоставимы. Для лептонов В = 0. Для фотона В = 0 и L = 0.

Барионы и мезоны подразделяются на уже упоминавшиеся совокупности: обычных (нестранных) частиц (протон, нейтрон, p-мезоны), странных частиц (гипероны, К-мезоны) и очарованных частиц. Этому разделению отвечает наличие у адронов особых квантовых чисел: странности S и очарования (английское charm) Ch с допустимыми значениями: 151 = 0, 1, 2, 3 и |Ch| = 0, 1, 2, 3. Для обычных частиц S = 0 и Ch = 0, для странных частиц |S| ¹ 0, Ch = 0, для очарованных частиц |Ch| ¹0, а |S| = 0, 1, 2. Вместо странности часто используется квантовое число гиперзаряд Y = S + В, имеющее, по-видимому, более фундаментальное значение.

Уже первые исследования с обычными адронами выявили наличие среди них семейств частиц, близких по массе, с очень сходными свойствами по отношению к сильным взаимодействиям, но с различными значениями электрического заряда. Протон и нейтрон (нуклоны) были первым примером такого семейства. Позднее аналогичные семейства были обнаружены среди странных и (в 1976) среди очарованных адронов. Общность свойств частиц, входящих в такие семейства, является отражением
существования у них одинакового значения специального квантового числа - изотопического спина I, принимающего, как и обычный спин, целые и полуцелые значения. Сами семейства обычно называются изотопическими мультиплетами. Число частиц в мультиплете (п) связано с I соотношением: n = 2I + 1. Частицы одного изотопического мультиплета отличаются друг от друга значением «проекции» изотопического спина I 3 , и соответствующие значения Q даются выражением:

Важной характеристикой адронов является также внутренняя чётность Р, связанная с операцией пространств, инверсии: Р принимает значения ±1.

Для всех элементарных частиц с ненулевыми значениями хотя бы одного из зарядов О, L, В, Y (S) и очарования Ch существуют античастицы с теми же значениями массы т, времени жизни t, спина J и для адронов изотопического спина 1, но с противоположными знаками всех зарядов и для барионов с противоположным знаком внутренней чётности Р. Частицы, не имеющие античастиц, называются абсолютно (истинно) нейтральными. Абсолютно нейтральные адроны обладают специальным квантовым числом - зарядовой чётностью (т. е. чётностью по отношению к операции зарядового сопряжения) С со значениями ±1; примерами таких частиц могут служить фотон и p 0 .

Квантовые числа элементарных частиц разделяются на точные (т. е. такие, которые связаны с физическими величинами, сохраняющимися во всех процессах) и неточные (для которых соответствующие физические величины в части процессов не сохраняются). Спин J связан со строгим законом сохранения момента количества движения и потому является точным квантовым числом. Другие точные квантовые числа: Q,L, В; по современным данным, они сохраняются при всех превращениях Элементарные частицы Стабильность протона есть непосредственное выражение сохранения В (нет, например, распада р ® е + + g). Однако большинство квантовых чисел адронов неточные. Изотопический спин, сохраняясь в сильных взаимодействиях, не сохраняется в электромагнитных и слабых взаимодействиях. Странность и очарование сохраняются в сильных и электромагнитных взаимодействиях, но не сохраняются в слабых взаимодействиях. Слабые взаимодействия изменяют также внутреннюю и зарядовую чётности. С гораздо большей степенью точности сохраняется комбинированная чётность СР, однако и она нарушается в некоторых процессах, обусловленных слабыми взаимодействиями. Причины, вызывающие несохранение многих квантовых чисел адронов, неясны и, по-видимому, связаны как с природой этих квантовых чисел, так и с глубинной структурой электромагнитных и слабых взаимодействий. Сохранение или несохранение тех или иных квантовых чисел - одно из существенных проявлений различий классов взаимодействий элементарных частиц.

ЗАКЛЮЧЕНИЕ

На первый взгляд, кажется, что изучение элементарных частиц имеет чисто теоретическое значение. Но это не так. Применение элементарным частицам нашли во многих сферах жизни.

Самое простое применение элементарных частиц – на ядерных реакторах и ускорителях. На ядерных реакторах с помощью нейтронов разбивают ядра радиоактивных изотопов, получая энергию. На ускорителях элементарные частицы используются для исследований.

В электронных микроскопах используются пучки «жёстких» электронов, позволяющие увидеть более мелкие объекты, чем в оптическом микроскопе.

Бомбардируя ядрами некоторых элементов полимерные плёнки, можно получить своеобразное «сито». Размер отверстий в нём может быть 10 -7 см. Плотность этих отверстий доходит до миллиарда на квадратный сантиметр. Такие «сита» можно применять для сверхтонкой очистки. Они фильтруют воду и воздух от мельчайших вирусов, угольной пыли, стерилизуют лекарственные растворы, незаменимы при контроле за состоянием окружающей среды.

Нейтрино в перспективе поможет учёным проникнуть в глубины Вселенной и получить сведения о раннем периоде развития галактик.


В многообразии элементарных частиц, известных к настоящему времени, обнаруживается более или менее стройная система классификации (рис. 2).

Так, элементарные частицы, различающиеся по своим свойствам и характеру взаимодействия, принято делить на две большие группы:

фермионы - частицы с полуцелым спином (карки, электрон, протон, нейтрон, нейтрино);

и бозоны - частицы с целым спином (фотон, глюон, мезоны) (рис. 1).

Фермионы составляют вещество, бозоны переносят взаимодействие.

Между частицами существует четыре типа взаимодействия, каждое из которых переносится своим типом бозонов.

Фотон, или квант света переносит электромагнитное взаимодействие.

Глюоны осуществляют перенос сильных ядерных взаимодействий, связывающих кварки.

Векторные бозоны переносят слабые взаимодействия, ответственные за некоторые распады частиц.

Рисунок – 1 Элементарные частицы

По видам взаимодействий элементарные частицы делятся на:

Составные частицы: адроны - частицы, участвующие во всех видах фундаментальных взаимодействий. Общее число около четырехсот. Они состоят из кварков и подразделяются, в свою очередь, на: мезоны – являются частицами с целочисленным спином (нулевым). Такие частицы называют бозонами; барионы – адроны с полуцелым спином (фермионы) и массами не меньше массы протона. За исключением протона все нестабильны.

Фундаментальные частицы - бесструктурная элементарная частица, которую до настоящего времени не удалось описать как составную. В настоящее время термин применяется преимущественно для лептонов и кварков (по 6 частиц каждого рода, вместе с античастицами, составляют набор из 24 фундаментальных частиц) в совокупности с калибровочными бозонами (частицами-переносчиками фундаментальных взаимодействий): лептоны - фермионы, которые имеют вид точечных частиц (т. е. не состоящих ни из чего) вплоть до масштабов порядка 10 −18 м. Не участвуют в сильных взаимодействиях. Участие в электромагнитных взаимодействиях экспериментально наблюдалось только для заряженных лептонов (электроны, мюоны, тау-лептоны) и не наблюдалось для нейтрино. Известны 6 типов лептонов. кварки - дробнозаряженные частицы, входящие в состав адронов. В свободном состоянии не наблюдались (для объяснения отсутствия таких наблюдений предложен механизм конфайнмента).

Обилие открытых и вновь открываемых адронов навела ученых на мысль, что все они построены из каких-то других более фундаментальных частиц. В 1964 г. американским физиком М. Гелл-Маном была выдвинута гипотеза, подтвержденная последующими исследованиями, что все тяжелые фундаментальные частицы – адроны – построены из более фундаментальных частиц, названных кварками. На основе кварковой гипотезы не только была понята структура уже известных адронов, но и предсказано существование новых.

Теория Гелл-Мана предполагала существование трех кварков и трех антикварков, соединяющихся между собой в различных комбинациях. Так, каждый барион состоит из трех кварков. Антибарион строится из трех антикварков. Мезоны состоят из пар кварк–антикварк.

Как и лептоны, кварки делятся на 6 типов и считаются бесструктурными, однако, в отличие от лептонов, участвуют в сильном взаимодействии.

калибровочные бозоны - частицы, посредством обмена которыми осуществляются взаимодействия:

фотон - частица, переносящая электромагнитное взаимодействие. Не обладают массой, тем не менее могут переносить энергию и импульс;

восемь глюонов - частиц, переносящих сильное взаимодействие;

три промежуточных векторных бозона W + , W − и Z 0 , переносящие слабое взаимодействие;

гравитон - гипотетическая частица, переносящая гравитационное взаимодействие. Существование гравитонов, хотя пока не доказано экспериментально в связи со слабостью гравитационного взаимодействия, считается вполне вероятным; однако гравитон не входит в Стандартную модель элементарных частиц.

Адроны и лептоны образуют вещество. Калибровочные бозоны - это кванты разных видов излучения. Кроме того, в Стандартной модели с необходимостью присутствует хиггсовский бозон, который, впрочем, пока ещё не обнаружен экспериментально.

Как видим дать определение элементарной частицы и их свойствам, не так просто. Понятие элементарных частиц основывается на факте дискретного строения вещества. Ряд элементарных частиц имеет сложную внутреннюю структуру, однако разделить их на части невозможно.

В обычном употреблении физики называют элементарными такие частицы, которые не являются атомами и атомными ядрами, за исключением протона и нейтрона.

Другие элементарные частицы на данный момент считаются бесструктурными и рассматриваются как первичные – фундаментальные частицы, под которыми понимаются микрочастицы, внутреннюю структуру которой нельзя представить в виде объединения других свободной частиц.

Рисунок 2 – Классификация элементарных частиц

Итак, микромир – это мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10~ 8 до 10~ 16 см, а время жизни – от бесконечности до 10~ 24 секунд.

Объектами микромира являются фундаментальные и элементарные частицы, ядра, атомы и молекулы.

Элементарные частицы - это частицы, входящие в состав прежде «неделимого» атома, к ним относят также и те частицы, которые получают при помощи мощных ускорителей частиц.

Есть элементарные частицы, которые возникают при прохождении через атмосферу космических лучей, они существуют миллионные доли секунды, затем распадаются, превращаются в другие элементарные частицы или испускают энергию в форме излучения.

Оказалось, таким образом, что дать определение элементарной частицы не так просто. В обычном употреблении физики называют элементарными такие частицы, которые не являются атомами и атомными ядрами, за исключением протона и нейтрона.

После установления сложной структуры многих элементарных частиц потребовалось ввести новое понятие - фундаментальные частицы, под которыми понимаются микрочастицы, внутреннюю структуру которой нельзя представить в виде объединения других свободной частиц.

Фермионы составляют вещество, бозоны переносят взаимодействие. Кварки входят в состав адронов.

Пептоны могут иметь электрический заряд, могут быть нейтральными.

Заряженные лептоны могут, как и электроны (относящиеся к их числу) вращаться вокруг ядер, образуя атомы. Лептоны, не имеющие заряда могут проходить беспрепятственно через вещество (хоть через всю Землю) не взаимодействуя с ним.

У каждой частицы есть античастица, отличающаяся только зарядом.

Для описания явлений микромира обычно привлекают квантовую механику, законы которой составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение атомных ядер, изучать свойства элементарных частиц.

Таким образом, много необычного и неожиданного несет для познания физического мира эта область – Микромир.