Инверсия населённостей. Инверсная населенность энергетических уровней Создание инверсной населенности в активной среде

Для создания лазера необходимо получить инверсию между какой-либо парой уровней в активной среде. Механизм, с помощью которого создается инверсия, называется накачкой. Из полученных в предыдущем разделе выводов следует невозможность создания инверсной населенности в двухуровневой системе посредством воздействия на нее внешнего электромагнитного излучения. В самом деле, из-за насыщения инверсная населенность никогда не будет большей нуля. Тем не менее, задача становится разрешимой, если ввести в рассмотрение дополнительно один или два уровня – так называемые трех- и четырехуровневые схемы накачки. В настоящем разделе мы рассмотрим механизм создания инверсной населенности для обеих схем, используя скоростные уравнения, которые выводятся из условий баланса между скоростями изменения полного числа частиц и полного числа фотонов лазерного излучения. Использование такого подхода дает простое и наглядное описание работы лазера.

Трехуровневая схема

Вначале рассмотрим лазер, работающий по трехуровневой схеме (рис. на слайде). Пусть N 1 ,N 2 ,N 3 – населенности соответствующих уровней,N 0 – полное число частиц. В качестве характеристики интенсивности поля в резонаторе введем величинуq – полное число фотонов в резонаторе. Будем считать, что переходы между уровнями 3 и 2 осуществляются достаточно быстро для того, чтобы можно было положить. Запишем скоростные уравнения для изменения населенностей и числа фотонов:

В уравнении (4.2) первое слагаемое определяет вклад накачки, скорость которой составляет W н (с -1), в изменение населенности уровня 2. Второе слагаемое отражает изменение населенности этого уровня за счет процессов вынужденного излучения и поглощения (для простоты мы положили степени вырождения рассматриваемых уровней одинаковыми).

В уравнении (4.3) первое слагаемое с точностью до знака и коэффициента V совпадает со вторым слагаемым во втором уравнении. Действительно, каждый акт вынужденного излучения сопровождается появлением фотона, а при вынужденном поглощении фотон поглощается. КоэффициентV называется объемом поля (объемом моды) внутри активной среды. По своей сути этот параметр отражает тот факт, что электромагнитное поле занимает в резонаторе не весь объем активной среды. Подробно этот вопрос будет рассмотрен в разделе, посвященном оптическим резонаторам. Времяназывается временем жизни фотона в резонаторе и учитывает уменьшение числа фотонов из-за потерь (например, связанных с пропусканием зеркал).

Наконец, остается отметить, что при написании (4.3) мы пренебрегли слагаемым, учитывающим спонтанное излучение. Действительно, если в нулевой момент времени положить q (0)=0, то получим, что
, и генерация возникнуть не сможет. Однако мы в настоящий момент не можем правильно учесть вклад спонтанного излучения, поскольку для этого необходимо иметь представление о возможных типах конфигурации поля в резонаторе (пространственной и частотной), что возможно сделать только при подробном рассмотрении свойств оптических резонаторов. Тем не менее, при решении системы (4.1)-(4.3) мы получим правильный результат, если предположим, что в момент времениt =0 в резонаторе присутствует небольшое число спонтанных фотонов:q (0)=q 0 .

Прежде чем приступить к дальнейшему рассмотрению системы уравнений (4.1)-(4.3), получим явный вид для коэффициентов B и .

Рассмотрим резонатор длиной L . Для простоты будем считать, что активная среда занимает все пространство между зеркалами. ПустьТ 1 иТ 2 – коэффициенты пропускания зеркал резонатора,Т вн – коэффициент внутренних потерь за проход от одного зеркала до другого. Тогда изменение интенсивности
за двойной проход составит:

где N =N 2 -N 1 .

Для дальнейшего рассмотрения удобным оказывается введение логарифмических потерь, связанных с пропусканием зеркал:

Тогда для всех видов потерь имеем:

(4.6а)

(4.6б)

(4.6в)

С помощью полученных выражений определим полные потери за проход:

. (4.7)

Если уровени потерь на пропускание и внутренних потерь достаточно малы (несколько процентов), то можно считать
.

Имеем после подстановки:

Если ввести дополнительное условие:

<<1, (4.9)

то экспоненциальную функцию можно разложить в ряд и получить:

. (4.10)

Если разделить получившееся выражение на интервал времени
, соответствующий времени двойного прохода, и использовать приближение
, получим:

. (4.11)

Поскольку число фотонов в резонаторе пропорционально интенсивности, то полученное выражение можно сравнить с (4.3). При этом получаются следующие выражения для искомых величин:

. (4.12)

Если теперь для общего случая считать, что длина активной среды l между зеркалами меньше длины резонатораL , а показатель преломления активной среды равенn , то с учетом соотношения, получаемого для так называемой оптической длины резонатораL ’:

, (4.13)

окончательно получаем:

. (4.14)

Если ввести инверсию населенностей
, то с учетом предположений о скоростях переходов между уровнями, сделанных в начале раздела, легко переписать систему (4.1)-(4.3) для переменных
иq :

Начальными условиями для этой системы будут уже полученное нами соотношение
, а также
.

Рассмотрим вначале вопрос о величине пороговой инверсной населенности. Для возникновения генерации необходимо, чтобы величина была положительной. Из (4.16) видно, что это условие выполняется, когда
>. Отсюда пороговое значение инверсной населенности:

. (4.17)

Минимальная мощность накачки, необходимая для создания пороговой инверсной населенности, получается из (4.15) при условиях:
,
,q =0. Это означает, что, с одной стороны, фотонов в резонаторе еще нет (кроме небольшого количества спонтанныхq 0), а с другой стороны, скорость накачки уровня 2 начинает уравновешивать скорость спонтанных переходов с этого уровня. Сделав подстановку (4.17) в (4.15), получаем:

. (4.18)

Если мощность накачки больше пороговой, то число фотонов будет возрастать, и при постоянной мощности накачки оно достигнет некоторого стационарного значения, не меняющегося во времени. Стационарные значения числа фотонов и инверсной населенности естественным образом получаются из системы (4.15)-(4.16), если в ней положить
. Таким образом:

, (4.19)

. (4.20)

Если ввести коэффициент
, то:

. (4.21)

Проанализируем полученный результат. На первый взгляд может показаться странным, что независимо от мощности накачки в стационарных условиях инверсная населенность всегда равна пороговому значению. Однако, ясно, что в стационарном режиме число фотонов (и интенсивность поля) в резонаторе не меняется. Очевидно, что это условие может выполняться только при равенстве усиления сумме всех потерь. При любом другом соотношении между усилением и потерями интенсивность будет либо увеличиваться, либо уменьшаться. Поскольку усиление пропорционально величине инверсной населенности, то соотношение (4.19) как раз и устанавливает равенство усиления активной среды совокупным потерям, на которое мощность накачки не оказывает никакого влияния.

В то же время, число фотонов в резонаторе, а следовательно, и выходная мощность излучения лазера прямо пропорциональна мощности накачки (если, например, выходным считать зеркало 2, то
). После подстановки окончательно получаем:

. (4.22)

Четырехуровневая схема

Проведем теперь аналогичный расчет для случая четырехуровневой схемы накачки (рисунок на слайде). Полагая, что переходы между уровнями 3 и 2 и уровнями 1 и 0 являются быстрыми, то есть
, получаем следующую систему скоростных уравнений:

После сведения этой системы к системе из двух уравнений в переменных
:

Можно заметить, что полученное скоростное уравнение для числа фотонов совпадает с аналогичным уравнением в случае трехуровневой системы. Однако скоростные уравнения для инверсной населенности отличаются множителем 2 во втором слагаемом, имеющимся в случае четырехуровневой схемы. Физический смысл этого отличия заключается в том, что в трехуровневой схеме накачки при излучении фотона с уровня 2 населенность этого уровня уменьшается на единицу, а населенность уровня 1 увеличивается на единицу. Поэтому инверсия уменьшается на 2. В четырехуровневой схеме населенность 2-го уровня тоже уменьшается на единицу, но из-за быстрой релаксации с уровня 1 на уровень 0 населенность 1-го уровня не меняется, то есть инверсия уменьшается на 1.

Величины пороговой и стационарной инверсной населенности получаются такими же, как и в случае трехуровневой схемы:

, (4.28)

что является следствием того, что эта величина определяется уровнем суммарных потерь в резонаторе.

Для пороговой мощности накачки получаем:

. (4.29)

Сравнение с (4.18) показывает, что для четырехуровневой схемы пороговая мощность накачки в
1 раз меньше по сравнению с трехуровневой схемой при одном и том же значении. Этот результат также объясняется достаточно наглядно. В трехуровневой схеме для создания инверсной населенности необходимо перевести с уровня 1 на уровень 2 по крайней мере половину частиц. В случае же четырехуровневой схемы перевод на уровень 2 даже одной частицы создает инверсную населенность, поскольку населенность уровня 1 всегда практически равна нулю. Это является основным преимуществом четырехуровневой схемы.

Для стационарного числа фотонов в резонаторе получается следующее выражение:

, (4.30)

а для выходной мощности:

. (4.31)

Рассмотренные нами механизмы создания инверсной населенности называются оптической накачкой. При оптической накачке в качестве источника излучения используются, как правило, мощные широкополосные лампы. Поскольку эффективность накачки тем больше, чем больше излучения источника поглотится активной средой, то лучше всего оптическая накачка подходит для веществ, имеющих сильно уширенные линии, то есть для твердотельных и жидкостных лазеров.

Кроме оптической накачки, существует множество других способов создания инверсной населенности. Одним из наиболее широко распространенных способов является электрическая накачка, которая осуществляется посредством электрического разряда. Этот механизм особенно эффективен для веществ с узкой линией поглощения. Поэтому электрическая накачка является основным методом создания инверсии в газовых лазерах.

Среди других механизмов накачки отметим химическую накачку (необходимая для возникновения инверсии выделяется при экзотермической реакции), газодинамическую накачку (сверхзвуковое расширение газовой смеси), а также лазерную накачку, когда лазерный луч одного лазера служит для накачки другого.

Накачка осуществляется, как правило, одним из двух способов: оптическим или электрическим. При оптической накачке излучение мощного источника света поглощается активной средой и таким образом переводит атомы активной среды на верхний уровень. Этот способ особенно хорошо подходит для твердотельных или жидкостных лазеров. Механизмы уширения линий в твердых телах и жидкостях приводят к очень значительному уширению спектральных линий, так что обычно имеют дело не с накачкой уровней, а с накачкой полос поглощения. Эти полосы поглощают заметную долю света, излучаемого лампой накачки. Электрическая накачка осуществляется посредством достаточно интенсивного электрического разряда, и ее особенно хорошо применять для газовых и полупроводниковых лазеров. В частности, в газовых лазерах из-за того, что уних спектральная ширина линий поглощения невелика, а лампы накачки дают широкополосное излучение, осуществлять оптическую накачку довольно трудно. Оптическую накачку весьма эффективно было бы использовать для полупроводниковых лазеров. дело в том, что у полупроводников имеет полоса сильного поглощения. Однако применение в данном случае электрической накачки оказывается более удобным, поскольку через полупроводник очень легко проходит электрический ток.

Еще один способ накачки – химическая. Есть два достойный внимания вида химической накачки: 1) ассоциативная реакция, ведущая к образованию молекулы АВ в возбужденном колебательном состоянии, и 2) диссоциативная реакция, , ведущая к образованию частицы В (атома или молекулы) в возбужденном состоянии.

Другим способом накачки газовой молекулы является сверхзвуковое расширение газовой смеси, содержащей данную молекулу (гадодинамическая накачка). Следует упомянуть также о специальном виде оптической накачки, когда лазерный луч используется для накачки другого лазера (лазерная накачка). Свойства направленного лазерного луча делают его очень удобным для накачки другого лазера, причем здесь не требуется специальных осветлителей, как в случае (некогерентой) оптической накачки. Благодаря монохроматичности излучения лазера накачки ее применение не ограничивается твердотельными и жидкостными лазерами, но ее можно также использовать для накачки газовых лазеров. В данном случае линия, излучаемая накачивающим лазером, должна совпадать с линией поглощения накачиваемого лазера. Это применяется, например, для накачки большинства лазеров дальнего ИК-диапазона.

В случае оптической накачки свет от мощной некогерентной лампы с помощью соответствующей оптической системы предается активной среде. На рис. 1 представлены три наиболее употребительные схемы накачки. Во всех трех случаях среда имеет форму цилиндрического стержня. Изображенная на рис. 1а лампа имеет форму спирали; при этом свет попадает в активную среду либо непосредственно, либо после отражения от зеркальной цилиндрической поверхности (на рис. Цифра 1). Такая конфигурация использовалась при создании первого рубинового лазера и до сих пор иногда применяется для импульсных лазеров. на рис. 1б лампа имеет форму цилиндра (линейная лампа), радиус и длина которого приблизительно те же, что и у активного стержня. Лампа размещается вдоль одной из фокальных осей F1 зеркально отражающего эллиптического цилиндра (1), а лазерный стержень располагается вдоль другой фокальной оси F2. Большая часть света, излучаемого лампой, благодаря отражению от эллиптического цилиндра попадает в лазерный стержень. На рис. 1в изображен пример так называемой конфигурации с плотной упаковкой. Лазерный стержень и линейная лампа располагаются как можно ближе друг к другу и плотно окружаются цилиндрическим отражателем (1). Эффективность конфигурации с плотной упаковкой обычно ненамного ниже, чем в случае эллиптического цилиндра. Часто вместо зеркально отражающих рефлекторов в схемах на рис 1а и в применяются цилиндры, изготовленные из диффузно отражающих материалов. Применяются и сложные типы осветителей, в конструкции которых использованы более чем один эллиптический цилиндр или несколько ламп в конфигурации с плотной упаковкой.


Определим КПД накачки непрерывного лазера как отношение минимальной мощности накачки Pm, необходимой для создания определенной скорости накачки, к электрической мощности накачки Р, фактически подведенной к лампе. Минимальная мощность накачки может быть записана в виде: , где V – объем активной среды, vp – разность частот между основным и верхним лазерными уровнями. Распространение скорости накачки по активному стержню является во многих случаях неоднородным. Поэтому более правильно определять среднюю минимальную мощность накачки , где усреднение производится по объему активной среды. Таким образом

Для импульсного лазера по аналогии средний КПД накачки имеем

где интеграл по времени берется в пределах от начала до конца импульса накачки, а Е – электрическая энергия, подведенная к лампе.

Процесс накачки можно рассматривать состоящим из 4 различных этапов: 1) испускания излучения от лампы, 2) переноса этого излучения к активному стержню, 3) поглощения его в стержне и 4) передачи поглощенной энергии верхнему лазерному уровню.

Из выражения (1) или (!а) можно найти скорость накачки Wp:

Электрическая накачка применяется в газовых и п/п лазерах. Электрическая накачка газового лазера осуществляется пропусканием через газовую смесь постоянного, высокочастотного (ВЧ) или импульсного тока. Вообще говоря, ток через газ может протекать либо вдоль оси лазера (продольный разряд, рис. 2а), либо поперек ее (поперечный разряд, рис. 2б). В лазерах я продольным разрядом электроды нередко имеют кольцеобразную форму, причем, чтобы ослабить деградацию материала катода вследствие столкновения с ионами, площадь поверхности катода делается намного больше, чем у анода. В лазерах же с поперечным разрядом электроды вытягиваются на всю длину лазерной среды. В зависимости от типа лазера применяют самые различные конструкции электродов. Схемы с продольным разрядом используются обычно для непрерывных лазеров, в то время как поперечный разряд применяется как для накачки постоянным, так и импульсным и ВЧ током. Поскольку поперечные размеры лазера обычно существенно меньше продольных, в одной и той же газовой смеси напряжение, которое необходимо приложить в случае поперечной конфигурации, значительно ниже, чем напряжение для продольной конфигурации. Однако продольный разряд, когда он происходит в диэлектрической (пр., стеклянной) трубке (рис. 2а) позволяет получить более однородное и стабильное распределение накачки.

В электрическом разряде образуются ионы и свободные электроны, а поскольку они приобретают дополнительную энергию от приложенного электрического поля, они могут возбуждать при столкновении нейтральные атомы. Положительные ионы благодаря своей большой массе ускоряются значительно хуже, чем электроны, и поэтому не играют существенной роли в процессе возбуждения.

5.20. Оптические резонаторы. Гауссовские пучки света .

В открытых структурах типа интерферометра Фабри-Перо существуют характерные колебательные моды. К настоящему времени известно большое число модификаций открытых резонаторов, отличающихся друг от друга конфигурацией и взаимным расположением зеркал. Наибольшей простотой и удобством отличается резонатор, образованный двумя сферическими отражателями с равной кривизной, обращенными вогнутыми поверхностями навстречу друг другу и расположенные на расстоянии радиуса кривизны, равного радиусу сфер, друг от друга. Фокусное расстояние сферического зеркала равно половине радиуса кривизны. Поэтому фокусы отражателей совпадают, вследствие чего резонатор называется конфокальным (рис. 1). Интерес в конфокальному резонатору обусловлен удобством его юстировки не требующей сорогой параллельности отражателей друг другу. Необходимо лишь, чтобы ось конфокального резонатора пересекала каждый отражатель достаточно далеко от его края. В противном случае дифракционные потери могут быть слишком большими.

Рассмотрим конфокальный резонатор более подробно.

Пусть все размеры резонатора велики по сравнению с длиной волны. Тогда моды резонатора, распределение полей в нем и дифракционные потери можно получить на основе принципа Гюйгенса-Френеля путем решения соответствующего интегрального уравнения. Если отражатели конфокального резонатора имеют квадратное сечение со стороной 2а, которая мала по сравнению с расстоянием между зеркалами l, равным их радиусу кривизны R, а числа Френеля велики, то собственные функции интегрального уравнения типа Фокса и Ли аппроксимируются произведениями полиномов Эрмита Hn(x) на гауссову функцию .

В декартовой системе координат, начало которой помещено в центр резонатора, а ось z совпадает с осью резонатора (рис. 1), поперечное распределение поля дается выражением

где определяет размер той области поперечного сечения, при выходе на которой интенсивность поля в резонаторе, пропорциональная S2, падает в е раз. Другими словами – это ширина распределения интенсивности.

Полиномы Эрмита нескольких первых степеней имеют вид:

Собственными функциями уравнения, дающим поперечное распределение (1), соответствуют собственные частоты, определяемые условием

На рис. 2 графически представлены три первые функции Эрмита-Гаусса для одной из поперечных координат, построенные по формуле (1) с учетом (2). Эти графики наглядно показывают характер изменения поперечного распределения поля с увеличением поперечного индекса n.

Резонансы в конфокальном резонаторе имеют место только для целых значений . Спектр мод к.р. вырожден, увеличение m+n на две единицы и уменьшение q на единицу дает то же значение частоты. Основной является мода ТЕМ00q, поперечное распределение поля определяется простой гауссовой функцией . Ширина распределения интенсивности меняется вдоль оси z по закону

где , а имеет смысл радиуса пучка в фокальной плоскости резонатора. Величина определяется длиной резонатора и составляет

На поверхности зеркала площадь пятна основной моды, как видно из (4) и (5), вдвое больше, чем площадь сечения шейки каустики.

Решение (1) получено для поля внутри резонатора. Но когда одно из зеркал частично прозрачно, как это бывает в случае активных лазерных резонаторов, то выходящая наружу волна является бегущей волной с поперечным распределением (1).

По существу, выделение основной моды активного конфокального резонатора – это способ получения гауссова пучка монохроматического света. Рассмотрим их более подробно.) ширина , чему соответствует угловая расходимость

В результате основная часть энергии гауссова пуска сосредоточена в телесном угле

Таким образом, расходимость лазерного излучения в основной моде определяется не поперечным, а продольным размером резонатора лазера.

По существу, формула (8) описывает дифрагированную волну, являющуюся результатом самодифракции гауссова пуска. Дифракционная картина, описываемая (8), характеризуется монотонным уменьшением интенсивности при отходе от осевого направления, т.е. полным отсутствием каких-либо осцилляций в яркости дифракционной картины, а также быстрым спаданием интенсивности волны на крыльях распределения. Такой характер имеет дифракция гауссова пучка на любой апертуре, лишь бы размер ее в достаточной мере превышал ширину распределения интенсивности пучка.

Для того, чтобы поучить усиление падающего света, необходимо каким-либо образом обратить населенность уровней. Т.е. сделать так, чтобы большему значению энергии соответствовало и большее число атомов . При этом говорят, что совокупность атомов имеет инверсную (обратную) населенность уровней.

Отношение числа атомов на уровнях и равно:

В случае инверсной населенности . Отсюда следует, что показатель экспоненты должен быть больше нуля ‑ . Но . Следовательно, чтобы показатель экспоненты был больше нуля, необходимо чтобы температура была отрицательной ‑ .

Поэтому состояние с инверсной населенностью уровней называют иногда состоянием с отрицательной температурой. Но это выражение носит условный характер, потому что само понятие температуры применимо к равновесным состояниям, а состояние с инверсной населенностью является неравновесным состоянием.

В случае инверсной населенности, свет, проходя через вещество, будет усиливаться. Формально это соответствует тому, что в законе Бугера коэффициент поглощения будет отрицательным. Т.е. совокупность атомов с инверсной населенностью уровней можно рассматривать как среду, с отрицательным коэффициентом поглощения.


Итак, для усиления света веществом нам необходимо создать инверсную населенность уровней этого вещества. Посмотрим, как это делается на примере рубинового лазера.

Рубин представляет собой окись алюминия , в которой некоторые атомы алюминия заменены атомами хрома . Этот рубин облучают широким спектром частот электромагнитных волн. При этом ионы хрома переходят в возбужденное состояние (см. рис. 4). Ионы алюминия в этом деле заметной роли не играют.

Состояние с энергией представляет собой целую полосу, вследствие взаимодействия ионов с кристаллической решеткой. С уровня для ионов хрома возможны два пути.

1. Возвращение в исходное состояние с энергией с испусканием фотона.

2. Переход в метастабильное состояние с энергией путем теплового взаимодействия с ионами кристаллической решетки алюминия.

Время жизни на уровне как и обычно, равно времени жизни в возбужденном состоянии ‑ . Спонтанный переход на уровень обозначен стрелкой , а переход на метастабильный уровень обозначен стрелкой .

Расчеты и эксперимент показывают, что вероятность перехода много больше вероятности перехода . Кроме того, переход из метастабильного состояния с энергией в основное состояние запрещен правилами отбора (правила отбора не абсолютно строги, они указывают лишь большую или меньшую вероятность перехода).



Поэтому время жизни на метастабильном уровне составляет , что в сто тысяч раз превышает время жизни на уровне .

Таким образом, при достаточно большом числе атомов хрома может возникнуть инверсная населенность уровня ‑ число атомов на уровне превысит число атомов на уровне , т.е. может получиться то, что мы желаем.

Спонтанный переход с уровня на основной уровень обозначен стрелкой , Возникающий при этом переходе фотон может вызвать вынужденное излучение следующего фотона, который обозначен стрелкой . Этот еще одного и т.д. Т.е. образуется каскад фотонов.

Рассмотрим теперь техническое устройство рубинового лазера.

Он представляет собой стержень, диаметром порядка и длиной . Торцы стержня строго параллельны друг другу и тщательно отшлифованы. Один торец представляет собой идеальное зеркало, второй ‑ полупрозрачное зеркало, пропускающее около падающей энергии.

Вокруг рубинового стержня устанавливают несколько витков лампы накачки ‑ ксеноновой лампы, работающей в импульсном режиме.

Итак, в теле стержня образовались вынужденные фотоны. Те фотоны, направление распространения которых составляет малые углы с осью стержня, будут многократно проходить стержень и вызывать вынужденное излучение метастабильных атомов хрома. Вторичные фотоны будут иметь то же направление, что и первичные, т.е. вдоль оси стержня. Фотоны другого направления не разовьют значительный каскад и выйдут из игры. При достаточной интенсивности пучка часть его выходит наружу.

Рубиновые лазеры работают в импульсном режиме с частотой повторения несколько импульсов в минуту. Кроме того, внутри них происходит выделение большого количества тепла, поэтому их приходится интенсивно охлаждать.

Рассмотрим теперь работу газового лазера, в частности гелий-неонового.

Он состоит из кварцевой трубки, внутри которой находится смесь газов гелия и неона. Гелий находится под давлением , а неон под давлением , при этом атомов гелия приблизительно в 10 раз больше, чем атомов неона. Основными излучающими атомами здесь являются атомы неона, а атомы гелия играют вспомогательную роль для создания инверсной населенности атомов неона.

Подкачка энергии в этом лазере осуществляется за счет энергии тлеющего разряда. При этом атомы гелия возбуждаются и переходят в возбужденное состояние ( см. рис. 5) . Это состояние для атомов гелия является метастабильным, т.е. обратный оптический переход запрещен правилами отбора. Поэтому атомы гелия могут перейти в невозбужденное состояние, передавая энергию атомам неона при столкновениях. Вследствие этого атомы неона приходят в возбужденное состояние , которое близко состоянию для гелия. Атомы неона возбуждаются как за сет энергии тлеющего разряда, так и за счет столкновений с атомами гелия.

Кроме того разгружают уровень , подбирая такие размеры трубки, чтобы атомы неона, находясь на уровне , при соударениях со стенками передавали бы им энергию, переходя на основной уровень.

Вследствие этих процессов происходит инверсная населенность уровня для неона. С уровня возможен переход на уровень .

Основным конструктивным элементом этого лазера является кварцевая газоразрядная трубка, диаметром около . В ней расположены электроды для создания электрического разряда. По торцам трубки расположены плоско-параллельные зеркала, одно из которых, переднее, полупрозрачное. Условия для усиления возникают только у тех фотонов, которые вылетают параллельно оси лазера.

Рабочей частотой лазера является переход . Правилами отбора разрешено около тридцати переходов. Для выделения одной частоты зеркала делают многослойными, настроенными на отражение только одной определенной волны. Широко распространены лазеры, излучающие волны с длиной . Но наиболее интенсивным является переход с длиной волны , т.е. в инфракрасной области спектра.

Газовые лазеры работают в непрерывном режиме и не нуждаются в интенсивном охлаждении.

Отличительными особенностями лазерного излучения являются.

1. Временная и пространственная когерентность.

2. Строгая монохроматичность .

3. Большая мощность

4. Узость лазерного пучка.

Лекция 15. (2 часа)

Инверсия населённостей

в физике, состояние вещества, при котором более высокие уровни энергии составляющих его частиц (атомов, молекул и т. п.) больше «населены» частицами, чем нижние (см. Населённость уровня). В обычных условиях (при тепловом равновесии) имеет место обратное соотношение: на верхних уровнях находится меньше частиц, чем на нижних (см. Больцмана статистика).


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Инверсия населённостей" в других словарях:

    - (от лат. inversio переворачивание, перестановка), неравновесное состояние в ва, при к ром для составляющих его ч ц (атомов, молекул и т. п.) выполняется неравенство: N2/g2>N1/g1, где N2 и N1 населённости верх. и ниж. уровней энергии, g2 и g1 их… … Физическая энциклопедия

    Современная энциклопедия

    Инверсия населённостей - (от латинского inversio переворачивание, перестановка), неравновесное состояние вещества, при котором в отличие от обычного состояния теплового равновесия количество составляющих вещество частиц (атомов, молекул), находящихся на более высоких… … Иллюстрированный энциклопедический словарь

    ИНВЕРСИЯ НАСЕЛЁННОСТЕЙ - неравновесное состояние вещества, при котором населённость (концентрация) составляющих его частиц (электронов, атомов, молекул и т.п.) на возбуждённых (верхних) уровнях энергии выше населённости равновесного (нижнего) уровня; является необходимым … Большая политехническая энциклопедия

    Неравновесное состояние вещества, при котором населённость верхнего из пары уровней энергии одного типа атомов (ионов, молекул), входящих в состав вещества, превышает населённость нижнего. Инверсия населённостей лежит в основе работы лазеров и… … Энциклопедический словарь

    Неравновесное состояние в ва, при к ром населённость верхнего из пары уровней энергии одного типа атомов (ионов, молекул), входящих в состав в ва, превышает населённость нижнего. И. и. лежит в основе работы лазеров и др. приборов квантовой… … Естествознание. Энциклопедический словарь

    Одно из фундаментальных понятий физики и статистической механики, используемое для описания принципов функционирования лазеров. Содержание 1 Распределение Больцмана и термодинамическое равновесие … Википедия

    Инверсия электронных населённостей одно из фундаментальных понятий физики и статистической механики, используемое для описания принципов функционирования лазеров. Содержание 1 Распределение Больцмана и термодинамическое равновесие … Википедия

    Инверсия электронных населённостей одно из фундаментальных понятий физики и статистической механики, используемое для описания принципов функционирования лазеров. Содержание 1 Распределение Больцмана и термодинамическое равновесие … Википедия

Инверсная заселенность – это концентрация атомов с одинаковым энергетическим со- стоянием; в термодинамическом равновесии подчиняется статистике Больцмана:

Где – концентрация атомов, состояние электронов в которых соответствует энергетическим уровням с энергией и .

Когда концентрация невозбужденных атомов больше, чем возбужденных, величина Δn = отрицательна, следовательно, населенность нормальная. Когда концентрация возбужденных атомов больше, чем невозбужденных (что обеспечивается воздействием энергии накачки), величина Δn становится положительной, то есть происходит инверсия населенностей и проходящее излучение может усиливаться за счет возбужденных атомов.

Формально условие Δn > 0 выполняется при абсолютной отрицательной температуре T < 0, поэтому состояние с инверсной населенностью иногда называют состоянием с отрицательной температурой, а среду, в которой осуществлено состояние с инверсной населенностью – активной средой.

В полупроводниковых лазерах инверсия между населенностями энергетических уровней зоны проводимости и валентной зоны достигается инжекцией носителей при положительном смещении p-n-перехода.

Лазерное усиление

Лазерное усиление - это усиление оптического излучения, основанное на использовании индуцирующего излучения – при воздействии кванта излучения на атом в возбужденном состоянии, происходит переход электрона из состояния с энергией в состояние с энергией , сопровождаемый испусканием кванта излучения c энергией, равной энергии вынуждающего кванта hν = – .

В среде с достаточной концентрацией возбужденных атомов при пропускании через нее излучения, можно получить режим усиления, если количество образовавшихся фотонов существенно больше потерь на поглощение и рассеяние.

Инжекционный лазер представлен на рисунке 1.3

Рис. 1.3.Схема устройства полупроводникового инжекционного лазера (лазерного диода)

На рис.1. 4 представлено положение уровня Ферми в собственном и примесном полупроводниках. Одно из важных свойств уровня Ферми заключается в том, что в системе, состоящей из полупроводников n- и p-типа и если к ним не приложено напряжение, уровни Ферми у них выравниваются (рис.1. 4 а). А если они находятся под разными потенциалами, то уровни Ферми в них сдвигаются на величину разности потенциалов (рис.1. 4. б).



Рис.1. 4. Энергетическая диаграмма инжекционного полупроводникового лазера: p-n переход без приложенного внешнего напряжения (а); p-n переход при приложении внешнего напряжения в прямом направлении (б). d - ширина p-n перехода, l - реальная ширина области, обеспечивающей работу лазера.

В этом случае в зоне p-n перехода создаётся инверсная населённость и электроны совершают переход из зоны проводимости в валентную зону (рекомбинируют с дырками). При этом испускаются фотоны. По такому принципу работает светодиод. Если для этих фотонов создать обратную положительную связь в виде оптического резонатора, то в области p-n перехода при больших значениях внешнего приложенного напряжения можно получить лазерную генерацию. При этом процесс образования и рекомбинации неравновесных носителей происходит хаотично и излучение обладает малой мощностью и является некогерентным и немонохроматическим. Это соответствует светодиодному режиму работы полупроводникового излучателя. При увеличении тока выше порогового значения излучение становится когерентным, его спектральная ширина сильно сужается, а интенсивность резко возрастает – начинается лазерный режим работы полупроводникового излучателя. При этом также увеличивается степень линейной поляризации генерируемого излучения.

На рис.1. 5 схематично представлена конструкция полупроводникового лазера и распределение интенсивности выходного излучения. Как правило, в таком лазере резонатор создаётся полировкой двух диаметрально противоположных сторон кристалла, перпендикулярных плоскости p-n перехода. Эти плоскости делаются параллельными и полируются с высокой степенью точности. Выходную поверхность можно рассматривать как щель, через которое проходит излучение. Угловая расходимость излучения лазера определяется дифракцией излучения на этой щели. При толщине p-n перехода в 20 мкм и ширине – 120 мкм, угловая расходимость соответствует приблизительно 60 в плоскости XZ и 10 – в плоскости YZ.

Рис.1. 5. Принципиальная схема лазера на p-n переходе. 1-область p-n перехода (активный слой); 2-сечение лазерного пучка в плоскости ХY.

В современных полупроводниковых лазерах широко используются так называемые полупроводниковые гетероструктуры, в разработку которых значительный вклад внес академик РАН Ж. И. Алферов (Нобелевская премия 2000 года). Лазеры на основе гетероструктур обладают лучшими характеристиками, например, большей выходной мощностью и меньшей расходимостью. Пример двойной гетероструктуры приведен на рис. 1. 6, а её энергетическая схема – на рис. 1. 7.

Рис. 1.6. Полупроводниковая двойная гетероструктура. 1-проводящий металлизированный слой для создания электрического контакта; 2-слой GaAs (n); 3-слой Al0.3Ga0.7As (n); 4-слой, соответствующий зоне инжекции носителей заряда (p-n-переход); 5-слой Al0.3Ga0.7As (p); 6-слой GaAs (p); 7-непроводящий слой оксида металла для ограничения тока через p-n-переход, формирующий зону генерации излучения; 8,9-прилегающие слои для создания электрического контакта; 10-подложка с теплоотводом.

Рис. 1.7 .Энергетическая схема двойной гетероструктуры, ось Y и номера слоёв соответствуют рис. 1. 6. ΔЕgc-ширина запрещённой зоны; ΔЕgv-ширина запрещённой зоны p-n-перехода.

Рис. 1. 8. Полупроводниковый лазер с гетероструктурой: l - длина резонатора

Активная среда

Активная среда– вещество, в котором создается инверсная заселенность. В разных типах лазеров она может быть твердой (кристаллы рубина или алюмоиттриевого граната, стекло с примесью неодима в виде стержней различного размера и формы), жидкой (растворы анилиновых красителей или растворы солей неодима в кюветах) и газообразной (смесь гелия с неоном, аргон, углекислый газ, водяной пар низкого давления в стеклянных трубках). Полупроводниковые материалы и холодная плазма, продукты химической реакции тоже дают лазерное излучение. Лазеры получают названия в зависимости от используемой активной среды.

Хотя полупроводниковые лазеры и являются твердотельными, их принято выделять в особую группу. В этих лазерах когерентное излучение получается вследствие перехода электронов с нижнего края зоны проводимости на верхний край валентной зоны.

Существует два типа полупроводниковых лазеров.

Первый имеет пластину беспримесного полупроводника, где в качестве полупроводников используются арсенид галлия GaAs, сульфид кадмия CdS или селенид кадмия CdSe

Второй тип полупроводникового лазера - так называемый инжекционный лазер – состоит из примесных полупроводников, у которых концентрация донорных и акцепторных примесей составляет 1018-1019 . Для инжекционных лазеров применяют главным образом арсенид галлия GaAs.

Условие создания инверсной населенности для полупроводников на частоте v имеет вид:

∆F= - >hv

То есть, чтобы излучение в полупроводниковом монокристалле усиливалось, расстояние между уровнями Ферми для электронов и дырок должно быть больше энергии кванта света hv. Чем меньше частота, тем при меньшем уровне возбуждения достигается инверсная населенность.

Система накачки

Накачка создает инверсную заселенность в активных средах, причем для каждой среды выбирается наиболее удобный и эффективный способ накачки. В твердотельных и жидкостных лазерах используют импульсные лампы или лазеры, газовые среды возбуждают электрическим разрядом, полупроводники – электрическим током.

В полупроводниковых лазерах используется накачка электронным пучком (для полупроводниковых лазеров из беспримесного полупроводника) и подачей прямого напряжения (для инжекционных полупроводниковых лазеров).

Накачка электронным пучком может быть поперечной (рис. 3.1) или продольной (рис. 3 .2). При поперечной накачке две противоположные грани полупроводникового кристалла отполированы и играют роль зеркал оптического резонатора. В случае продольной накачки применяются внешние зеркала. При продольной накачке значительно улучшается охлаждение полупроводника. Пример такого лазера - лазер на сульфиде кадмия, генерирующий излучение с длиной волны 0,49 мкм и имеющий КПД около 25%.

Рис. 3.1 - Поперечная накачка электронным пучком

Рис. 3.2 - Продольная накачка электронным пучком

В инжекционном лазере имеется p-n-переход, образованный двумя вырожденными примесными полупроводниками. При подаче прямого напряжения понижается потенциальный барьер в p-n-переходе и происходит инжекция электронов и дырок. В области перехода начинается интенсивная рекомбинация носителей заряда, при которой электроны переходят из зоны проводимости в валентную зону и возникает лазерное излучение (рис. 3.3).

Рис. 3.3 - Принцип устройства инжекционного лазера

Накачка обеспечивает импульсный или непрерывный режим работы лазера.

Резонатор

Резонаторпредставляет собой пару зеркал, параллельных друг другу, между которыми помещена активная среда. Одно зеркало («глухое») отражает весь падающий на него свет; второе, полупрозрачное, часть излучения возвращает в среду для осуществления вынужденного излучения, а часть выводится наружу в виде лазерного луча. В качестве «глухого» зеркала нередко используют призму полного внутреннего, в качестве полупрозрачного – стопу стеклянных пластин. Кроме того, подбирая расстояние между зеркалами, резонатор можно настроить так, что лазер станет генерировать излучение только одного, строго определенного типа (так называемую моду).

Простейшим оптическим резонатором, широко применяемым во всех видах лазеров, служит плоский резонатор (интерферометр Фаби – Перо), состоящий из двух плоскопараллельных пластин, расположенных на расстоянии друг от друга.

В качестве одной пластины можно использовать глухое зеркало, коэффициент отражения которого близок к единице. Вторая пластина должна быть полупрозрачной, чтобы генерируемое излучение могло выйти из резонатора. Для увеличения коэффициента отражения поверхностей пластин на них обычно наносятся многослойные диэлектрические отражающие покрытия. Поглощение света в таких покрытиях практически отсутствует. Иногда отражающие покрытия наносятся непосредственно на плоскопараллельные торцы стержней активной среды. Тогда необходимость в выносных зеркалах отпадает.

Рис. 4.1. Типы оптических резонаторов: а – плоский, б – призменный, в – конфокальный, г – полуконцентрический, д – составной, е – кольцевой, ж,з – скрещенные, и – с брэгговскими зеркалами. Заштрихованы активные элементы.

В качестве глухого зеркала в оптическом резонаторе можно использовать прямоугольную призму (рис. 4.1, б). Лучи света, падающие перпендикулярно к внутренней плоскости призмы, в результате двукратного полного отражения выходят из нее в направлении, параллельном оси резонатора.

Вместо плоских пластин в оптических резонаторах могут использоваться вогнутые полупрозрачные зеркала. Два зеркала с одинаковыми радиусами кривизны, расположенные так, что их фокусы находятся в одной точке Ф (рис. 4.1, в), образуют конфокальный резонатор. Расстояние между зеркалами l=R. Если это расстояние уменьшить в два раза так, чтобы фокус одного зеркала оказался на поверхности другого, то получится софокусный резонатор.

Для научных исследований и различных практических целей применяются более сложные резонаторы, состоящие не только из зеркал, но и других оптических элементов, позволяющих контролировать и изменять характеристики лазерного излучения. Например, рис. 4. 1, д. – составной резонатор, в котором суммируется генерируемое излучение от четырех активных элементов. В лазерных гироскопах используется кольцевой резонатор, в котором два луча распространяются в противоположных направлениях по замкнутой ломаной линии (рис. 4. 1,е).

Для создания логических элементов вычислительных машин и интегральных модулей используются многокомпонентные скрещенные резонаторы (рис. 4. 1. ж,з). Это по существу совокупность лазеров, допускающих их селективное возбуждение и объединенных вместе сильной оптической связью.

Особый класс лазеров составляют лазеры с распределенной обратной связью. В обычных оптических резонаторах обратная связь устанавливается из-за отражения генерируемого излучения от зеркал резонатора. При распределении обратной связи отражение происходит от оптически неоднородной периодической структуры. Примером такой структуры служит дифракционная решетка. Она может быть создана механическим путем (рис. 4. 1, и) или селективным воздействием на однородную среду.

Используются и другие конструкции резонаторов.

По определению, к элементам резонатора необходимо относить также пассивные и активные затворы, модуляторы излучения, поляризаторы и другие оптические элементы, применяемые при получении генерации.

Потери в резонаторе

Генерацию излучения упрощенно можно представить так: рабочее вещество лазера помещают в резонатор и включают систему накачки. Под действием внешнего возбуждения создается инверсная населенность уровней, а коэффициент поглощения в некотором спектральном интервале становится меньше нуля. В процессе возбуждения, еще до создания инверсной населенности, рабочее вещество начинает люминесцировать. Проходя через активную среду, спонтанное излучение усиливается. Величина усиления определяется произведением коэффициента усиления на длину пути света в активной среде. В каждом типе резонаторов имеются такие избранные направления, что лучи света вследствие отражения от зеркал проходят через активную среду в принципе бесконечное число раз. Например, в плоском резонаторе через активную среду могут пройти только лучи, распространяющиеся параллельно оси резонатора. Все остальные лучи, падающие на зеркала под углом к оси резонатора, после одного или нескольких отражений выходят из него. Так появляются потери.

Выделяют несколько видов потерь на резонаторе:

1.Потери на зеркалах.

Поскольку часть генерируемого в среде излучения необходимо вывести из резонатора, применяемые зеркала (по крайней мере одно из них) делаются полупрозрачными. Если коэффициенты отражения зеркал по интенсивности равны R1 и R2 , то коэффициент полезных потерь на выход излучения из резонатора в расчете на единицу длины будет задаваться формулой:

2.Геометрические потери

Если луч распространяется внутри резонатора не строго нормально поверхностям зеркал, то после определенного числа отражений он достигнет краев зеркал и покинет резонатор.

3. Дифракционные потери.

Рассмотрим резонатор, образованный двумя плоскопараллельными круглыми зеркалами радиусом a. Пусть на зеркало 2 падает параллельный пучок излучения с длиной волны λ. Пучок отражается от зеркала и одновременно дифрагирует в угол порядка d ϕ ≈ λ a . Числом Френеля для данного резонатора называется число проходов между зеркалами, когда итоговая расходимость пучка достигнет угла выхода излучения за края зеркал ϕ=a/L

4.Рассеяние на неоднородностях активной среды.

Если резонатор заполнен активной средой, то возникают дополнительные источники потерь. При прохождении излучения через активную среду часть излучения рассеивается на неоднородностях и посторонних включениях, а также ослабляется в результате нерезонансного поглощения. Под нерезонансным поглощением понимают поглощение, связанное с оптическими переходами между уровнями, не являющимися рабочими для данной среды. Сюда же могут быть отнесены потери, связанные с частичным рассеянием и поглощением энергии в зеркалах.