Диск фарадея, униполярная машина, парадокс фарадея

Определение.

Электрический двигатель – механизм или специальная машина, предназначенная для преобразования электрической энергии в механическую, при котором так же выделяется тепло.

Предыстория.

Уже в 1821 году, знаменитый британский ученый Майкл Фарадей продемонстрировал принцип преобразования электромагнитным полем электрической энергии в механическую энергию. Установка состояли из подвешенного провода, которых окунался в ртуть. Магнит устанавливался посередине колбы с ртутью. При замыкании цепи, провод начинал вращение вокруг магнита, демонстрируя то, что вокруг провода, эл. током, образовывалось электрическое поле.

Эту модель двигателя часто демонстрировали в школах и университетах. Данный двигатель считается самым простым видом из всего класса электродвигателей. Впоследствии он получил продолжение в виде Колеса Барлова. Однако новое устройство носило лишь демонстрационный характер, поскольку вырабатываемые им мощности были слишком малы.

Ученые и изобретатели работали над двигателем с целью использования его в производственных нуждах. Все они стремились к тому, чтобы сердечник двигателя двигался в магнитном поле вращательно-поступательно, на манер поршня в цилиндре паровой машины. Русский изобретатель Б.С. Якоби сделал все гораздо проще. Принцип работы его двигателя заключался в попеременном притяжении и отталкивании электромагнитов. Часть электромагнитов были запитаны от гальванической батареи, и направление течения тока в них не менялась, а другая часть подключалась к батарее через коммутатор, благодаря которому изменялось направление течения тока через каждый оборот. Полярность электромагнитов менялась, и каждый из подвижных электромагнитов то притягивался, то отталкивался от соответствующего ему неподвижного электромагнита. Вал приходил в движение.

Изначально мощность двигателя была небольшой и составляла всего 15 Вт, после доработок, Якоби удалось довести мощность до 550 Вт.. 13 сентября 1838 году, лодка, оборудованная этим двигателем, плыла с 12 пассажирами по Неве, против течения, развивая при этом скорость в 3 км/ч. Двигатель был запитан от большой батареи, состоящей из 320 гальванических элементов. Мощность современных электрических двигателей превышает 55 кВт. По вопросом прибретения электрических двигателей .

Принцип действия.

В основу работы электрической машины заложено явление электромагнитной индукции (ЭМИ). Явление ЭМИ заключается в том, что при любом изменении магнитного потока, пронизывающего замкнутый контур, в нем (контуре) образуется индукционный ток.

Сам двигатель состоит из ротора (подвижной части – магнита или катушки) и статора (неподвижной части – катушки). Чаще всего конструкция двигателя представляет собой две катушки. Статор обложен обмоткой, по которой, собственно, и течет ток. Ток порождает магнитное поле, которое воздействует на другую катушку. В ней, по причине ЭМИ, так же образуется ток, который порождает магнитное поле, действующее на первую катушку. И так все повторяется по замкнутому циклу. В итоге, взаимодействие полей ротора и статора создает вращающий момент, приводящий в движение ротор двигателя. Таким образом, происходит трансформация электрической энергии в механическую, которую можно использовать в различных приборах, механизмах и даже в автомобилях.

Вращение электромотора

Классификация электрических двигателей.

По способу питания:

двигатели постоянного тока – запитываются от источников постоянного тока.
двигатели переменного тока - запитываются от источников переменного тока.
универсальные двигатели – запитываются как от постоянного, так и переменного тока.

По конструкции:

Коллекторный электродвигатель - электродвигатель, в котором в качестве датчика положения ротора и переключателя тока используется щеточноколлекторный узел.

Бесколлекторый электродвигатель – электродвигатель, состоящий из замкнутой системы, в которой используются: системы управления (преобразователь координат), силовой полупроводниковый преобразователь (инвертор), датчик положения ротора (ДПР).

С приведением в действие постоянными магнитами;
С параллельным соединением якоря и обмоток возбуждения;
С последовательным соединением якоря и обмоток возбуждения;
Со смешанным соединением якоря и обмоток возбуждения;

По количеству фаз:

Однофазные – запускаются вручную, либо же имеют пусковую обмотка или фазосдвигающую цепь.
Двухфазные
Трехфазные
Многофазные

По синхронизации:

Синхронный электродвигатель – электрический двигатель переменного тока с синхронным движением магнитного поля питающего напряжения и ротора.
Асинхронный электродвигатель – электрический двигатель переменного тока с отличающейся частотой движения ротора и магнитного поля, порождаемого питающим напряжением.

Мы знаем, что первый электродвигатель появился раньше двигателя внутреннего сгорания. Как это было… Работы Андре-Мари Ампера, объединившие два разобщенных ранее явления — магнетизм и электричество, вдохновили другого гениального ученого — Майкла Фарадея. Открытия Ампера, Эрстеда и Араго побудили английского физика заняться вопросом о превращении магнитной и электрической энергии в механическую. В 1821 году поставленная задача была решена с помощью специального прибора, в котором было продемонстрировано явление непрерывного электромагнитного вращения.

После удачного эксперимента Фарадей поставил себе новую задачу о превращении магнетизма в электричество. Явление, составляющее основу современной электроэнергетики, было открыто английским ученым лишь через десять лет. Оно было названо электромагнитной индукцией. Спустя 3 года русский физик Эмилий Ленц, обобщив проделанные Фарадеем опыты, сформулировал новый фундаментальный закон, дававший возможность безошибочно определить направление индуцированного тока.

Так называемый принцип обратимости был доказан Ленцем не только теоретически, но и экспериментально: катушка, при ее вращении между полюсами магнита, генерировала электрический ток, обратная реакция заключалась в том, что катушка начинала вращаться, если в нее посылали ток. Исследование английского физика и опыты русского академика сыграли решающую роль в истории электродвигателя и развитии всего электромашиностроения в целом.

Первые попытки создания электродвигателя

Разработки теоретических предпосылок моментально дали толчок для создания первых электродвигателей и генераторов электрического тока. В 1824 году английский физик и математик Питер Барлоу с помощью прибора наглядно продемонстрировал возможность превращения электрической энергии в механическую. Колесо Барлоу представляло собой два горизонтально расположенных П-образных постоянных магнита, под которыми на одной оси размещены два медных зубчатых колеса. Когда через колеса проходил ток, они начинали вращаться в одном направлении.

При этом ученый заметил, что смена полярности контактов и полюсов магнитов изменяла и направлении вращения колес. По сути, Барлоу изобрел первый униполярный электродвигатель. Его опыт дал пищу для размышления другим изобретателям, и уже в 1831 году была представлена еще одна модель электродвигателя. На этот раз Д. Генри сделал попытку использовать для получения качательного движения отталкивание одноименных и притяжения разноименных магнитных полюсов.

Первый электродвигатель с возможностью практического применения

Модели, созданные Барлоу и Генри, представляли собой электрические устройства с качательными или возвратно-поступательными движениями малой удельной мощности, посему не имели практического применения, а о серийном производстве даже и речи не могло быть. Первый электродвигатель с непосредственным вращением рабочего вала был создан в 1834 году физиком и академиком Борисом Якоби. Но стоит отметить, что впервые идею о создании более с вращательным движением высказал английский ученый В. Риччи еще в 1833 году. Был ли знаком Якоби с работой Риччи, неизвестно.

Двигатель Якоби состоял из двух групп электромагнитов. Попеременное изменение полярностей подвижных электромагнитов происходило путем специального коммутатора. Принцип этого устройства используется в некоторых современных электродвигателях. Мощность двигателя составляла всего 15 Вт, при частоте вращения ротора 80-120 об/мин.

В 1837 году Якоби обратился к Министру народного просвещения графу С. Уварову с предложением о практическом применении своего электродвигателя. О предложении русского академика было доложено Николаю I. Император дал добро на создание «Комиссии для производства опытов относительно приспособления электромагнитной силы к движению машин по способу Якоби».

До сих пор не решена загадка движения униполярного двигателя Фарадея. Дело в том, что изобретенный им двигатель вращается вопреки физическим законам. Ученые не могут пока преодолеть парадокс движущей силы в его двигателе, в котором функционирует вращающийся магнит-ротор.

Взгляните на фото, как выглядит простой двигатель Фарадея, сделанный из винта, батарейки, провода, и магнитного диска.

Любой человек, знакомый с элементами электротехники, знает, что обычные электродвигатели состоят из неподвижного статора и вращающегося ротора. В качестве статора используются два вида магнитов: постоянный или электромагнит (постоянный или переменный). Как правило в моторах устанавливается переменный электромагнит. Вращение ротора происходит за счет притягивания и отталкивания его от статора, таким образом ротору передается непрерывное движение.

Если ротор притягивается к статору, то и статор притягивается к ротору. Если ротор отталкивается от статора, то и статор отталкивается от ротора. На двигателе Фарадея отсутствует статор. Ротору в этом случае не от чего отталкиваться. В соответствии с известными законами физики двигатель не должен вращаться. А он вращается.

Униполярный двигатель впервые был продемонстрирован Майклом Фарадеем в 1821 году в Королевском институте в Лондоне.

Рассмотрим несколько конструкций двигателей на неодимовых магнитах. На обычных магнитах такой двигатель не работает.

Первая модель одна из наиболее простейших, такой мотор можно сделать за минуту. В качестве ротора используется обыкновенный саморез и соединенный с ним неодимовый магнит. Ток подается непосредственно от одного полюса батарейки и через провод.

Вторая разработка мотора на неодимовых магнитах, создание которого понятно из видео

Третий вариант двигателя на магните. Неодимовые магниты в этом магазине.

Можно и так, не обязательно ставить магниты на батарейку:

Четвертая модель двигателя на неодимовых магнитах на видео, в котором вращается сама батарейка вместе с магнитом.

МАЙКЛ ФАРАДЕЙ (1791-1867)

Английский физик и химик. Майкл Фарадей родился в 1791 году в Ньюингтоне, Англия. Он происходил из бедной семьи и в значительной степени был самоучкой. Посвященный в возрасте четырнадцати лет изучению переплетчика и книготорговца, он использовал эту возможность и много читал. В возрасте двадцати лет он присутствовал на лекциях известного британского ученого сэра Хамфри Дэви, который его очаровал. Он написал Дэви и, наконец, получил работу в качестве помощника.

Несколько лет спустя Фарадей уже делал важные открытия самостоятельно. Ему не хватало хорошей математической основы, но он был непревзойденным как физик-экспериментатор. Первое важное открытие в области электричества, Фарадей сделал в 1821. Два года назад Эрстед обнаружил, что магнитная стрелка отклоняется, когда электрический ток течет через проводник, расположенный близко. Фарадей подумал, что если магнитная стрелка будет прикреплена, шнур будет двигаться. Во время работы над этой идеей ему удалось построить устройство, в котором шнур вращается вокруг магнита, пока электрический ток проходит через кабель. Фактически, Фарадей изобрел первый электродвигатель, первое устройство, которое использует электричество для перемещения объектов. Хотя он очень примитивен, Двигатель Фарадея был прародителем всех электродвигателей, которые в настоящее время используются. Это был огромный прорыв, но его практическое значение оставалось ограниченным, поскольку единственным известным источником электрического тока были примитивные химические батареи. Фарадей был убежден, что должен быть какой-то способ, чтобы использовать магнетизм для генерирования электрического тока, и упорно искал такого метода. Оказалось, что неподвижный магнит не генерирует электрический ток в соседнем проводнике, но в 1831 году Фарадей обнаружил, что если магнит проходит через замкнутую проволочную петлю, ток течет через кабель. Это явление называется электромагнитной индукцией, и открытие закона, регулирующего это явление (закон Фарадея), широко рассматривается как величайшее достижение Фарадея. Открытие Фарадея имело большое значение по двум причинам. Прежде всего, закон Фарадея имеет фундаментальное значение в теории электромагнетизма. Во-вторых, электромагнитная индукция может быть использована для генерации электрического тока, как показал сам Фарадей, построив первый генератор. Современные электрогенераторы, которые обеспечивают электроэнергией наши города и фабрики, конечно, гораздо сложнее, но все они основаны на одном и том же принципе электромагнитной индукции.

Фарадей также внес большой вклад в химию. Он изобрел метод сжижения газов и обнаружил множество различных химических веществ, включая бензол. Еще важнее его открытия в области электрохимии (изучение влияния электрического тока на химические соединения). В результате тщательно проведенных экспериментов Фарадей установил два закона электролиза, которые были названы в его честь. Эти законы составляют основу электрохимии. Он также популяризировал многие важные термины, используемые в этой области, такие как анод, катод, электрод и ион. Фарадей представил такие важные понятия для физики, как линии напряженности магнитного поля и линии напряженности электрического поля. Подчеркивая важность не столько магнитов, сколько полей между ними, он подготовил почву для многих достижений современной физики, в том числе уравнений Максвелла. Фарадей также обнаружил, что изменяется плоскость поляризации света, проходящего через магнитное поле. Это открытие было важно, потому что это был первый сигнал, что есть связь между светом и магнетизмом.

Фарадей был не только очень талантливым человеком, но и очень красивым. Он также был очень хорошим научным пропагандистом. Тем не менее он оставался скромным и не придавал значения славе, деньгам и почестям. Он не принял титул дворянина или позицию председателя Британского королевского общества, которую он предложил. Его брак был долгим и счастливым, но бездетным. Он умер в 1867 году недалеко от Лондона.

Александр Микеров, д. т. н., проф. каф. систем автоматического управления СПбГЭТУ «ЛЭТИ» - [email protected]

После обнаружения Эрстедом магнитного действия тока начались эксперименты по преобразованию электрической энергии в механическое движение, а их результат продемонстрировали Фарадей, Барлоу, Ричи, Генри и другие ученые в своих приборах вращательного и качательного движения

Предыдущие статьи данного цикла были посвящены зарождению теории и практики автоматического регулирования в XIX веке, который начинался как век пара. Однако в конце этого века на смену пару приходит электричество, поэтому многие объекты регулируют уже с помощью электромеханических систем на базе двигателей постоянного и переменного тока. Это приводит к появлению различных видов электродвигателей, генераторов, датчиков, усилителей и других элементов систем автоматики. В настоящей статье будут рассмотрены первые опыты по использованию электричества в механических системах, выполненные в начале XIX века.

О способности электрического тока производить механическое движение европейские ученые узнали из публикации датского профессора Ганса Христиана Эрстеда (Hans Christian ?rsted), который в 1819 г. во время лекций показывал студентам тепловое воздействие тока на проводник, подключенный к Вольтовой батарее. Изначально этот проводник лежал в меридианном направлении поверх морского магнитного компаса, стрелка которого располагалась параллельно проводнику, однако она немедленно поворачивалась перпендикулярно ему при включении тока. Это явление было настолько революционным, что имя Эрстеда было увековечено в единице напряженности магнитного потока. Впоследствии было обнаружено, что этот эффект наблюдал еще в 1802 г. итальянский ученый Джованни Романьози (Gian Romagnosi), но его сообщение осталось незамеченным .

Рис. 1. Молодой Фарадей (1791-1867)

Необычное явление, несомненно свидетельствующее о магнитном действии тока, вызвало огромный интерес ученых и сразу же породило вопрос о возможности непрерывного электромагнитного вращения. Ответить на этот вопрос смог только гений экспериментального искусства Майкл Фарадей (Michael Faraday) .

Великий английский физик Майкл Фарадей (рис. 1) происходил из простой семьи, дед его был кузнецом. Никакой школы, кроме начальной, он не закончил, и во всех его многочисленных работах вы не встретите ни одной математической формулы. Свои разносторонние знания Фарадей приобрел самостоятельно. Сначала работал учеником переплетчика в книжном магазине, внимательно изучая все попавшиеся ему книжки, особенно естественнонаучные, а потом ему посчастливилось посетить несколько лекций знаменитого химика Гемфри Дэви (Humphry Davy), президента Лондонского королевского общества (английский аналог Академии наук), читавшего лекции для широкой публики в Королевском институте. Заметив пытливого слушателя, Дэви пригласил его в Королевский институт сначала лаборантом, а затем и ассистентом, в обязанности которого входили подготовка и проведение всех опытов профессоров. В свободное время Фарадей стал заниматься собственными экспериментами и в 1821 г. добился непрерывного электромагнитного вращения с помощью прибора, состоявшего из двух последовательно включенных устройств (рис. 2), которые уже можно назвать электрическими двигателями .

Рис. 2. Двигатели Фарадея

Оба двигателя содержали серебряные чаши (1) и (2) с ртутью, постоянные магниты (3) и (4), проводники (5) и (6) на стойке (7), погруженные в ртуть. Двигатели отличались друг от друга тем, что в правом магнит (4) был неподвижен и проводник (6) свободно вращался вокруг магнита, а в левом двигателе наоборот: провод­ник (5) был неподвижным, а магнит (3) вращался.

Рассмотрим подробнее принцип действия правого двигателя, показанный на рис. 3, с предположением, что магнит имеет северный полюс N наверху. Поскольку магнитный поток магнита Ф направлен на рисунке вправо, то, по правилу левой руки, сила Ампера f, действующая на проводник с током в магнитном поле, направлена вниз и проводник начинает вращаться по часовой стрелке. Аналогично действует и левый двигатель на рис. 2, только в этом случае проводник (5) неподвижен, а вокруг него вращается магнит (3).

Публикация Фарадеем этого опыта неожиданно вызвала обвинения в плагиате, в том числе и от его непосредственного патрона Дэви, препятствовавшего в 1823 г. его избранию в члены Королевского общества . Дело заключалось в следующем. Непосредственным поводом к проведению эксперимента послужила заказанная научным журналом статья по развитию науки об электричестве и магнетизме, для которой молодой ассистент решил самостоятельно проверить все известные критические опыты, а затем попробовать получить электромагнитное вращение.

Рис. 3. Принцип действия двигателя Фарадея

О важности такого опыта говорил с Дэви в присутствии Фарадея и известный химик Уильям Волластон (William Wollaston). Сам Фарадей упомянул об этом в докладе Королевскому институту: «… мы обязаны проницательности д-ра Волластона первою мыслью о возможности вращения электромагнитной проволоки вокруг ее оси вследствие приближения магнита». Однако опыты самого Волластона никаких результатов не дали, поэтому он не нашел в действиях Фарадея ничего предосудительного и одним из первых подписал петицию о его принятии в члены Королевского общества, которая и была в итоге одобрена подавляющим большинством его членов.

Оригинальность своих идей и научную проницательность Фарадей впоследствии неоднократно подтвердил многочисленными открытиями в электрохимии, оптике, изучении диэлектриков, электрического разряда в газах и электромагнетизме, вершиной которых было открытие в 1831 г. электромагнитной индукции. В честь него названы единицы емкости конденсатора (1 фарад) и величина заряда в электрохимии (1 фарадей).

Рис. 4. Колесо Барлоу

Вслед за открытием Фарадея сразу же появились и другие электродвигатели, описанные, например, в работах . Среди первых был прибор, созданный в 1824 г. английским физиком и математиком Питером Барлоу (Peter Barlow), показанный на рис. 4. Медное зубчатое колесо (1), частично погруженное в ванну с ртутью (2), помещено между полюсами подковообразного магнита (3). При прохождении тока от оси колеса вниз через ванну возникает сила Ампера, вызывающая вращение колеса, направление которого определяется полюсами магнита. Отметим попутно, что, как доказал коллега Барлоу, физик и изобретатель Уильям Стёрджен (William Sturgeon), зубчатость диска здесь не имеет принципиального значения. Точно так же вращается и круглый диск, погруженный в ртуть.

Рис. 5. Электромагнит Стэрджена

Дальнейший прогресс подтолкнуло изобретение в 1825 г. тем же Стёрдженом электромагнита, показанного на рис. 5, - в виде подковообразного сердечника с обмоткой, концы которой погружены в чашечки с ртутью. Обмотка выполнялась неизолированным проводом, накрученным на покрытый лаком сердечник. Электромагнит сразу стали использовать в конструкциях электродвигателей. Например, среди первых было устройство, созданное известным венгерским ученым профессором Будапештского университета Аньошом Йедликом (?nyos Jedlik) в 1828 г. (рис. 6). Оно содержит неподвижную обмотку (1) и вращающийся электромагнит (2), который подключается к батарее через ртутный коммутатор (3) в виде чашечки с ртутью, разделенной перегородкой на два изолированных сектора, в которые погружены выводы обмотки электромагнита. Йедлик также одним из первых предложил идею электрогенератора с самовозбуждением (динамо-машины).

Рис. 6. Двигатель Йедлика

К сожалению, Йедлик опубликовал свое изобретение только спустя почти двадцать лет, поэтому более известным стал аналогичный двигатель (рис. 7), предложенный в 1833 г. профессором Вильямом Ричи (William Ritchie), коллегой Фарадея по Королевскому институту. Он также имеет ртутный коммутатор (3) и вращающийся электромагнит (2), но взамен электромагнитного возбуждения используется постоянный магнит (1).

Рис. 7. Двигатель Ричи

В то же время многие изобретатели предлагали двигатели с качательным движением. Так, в 1831 г. Джозеф Генри (Joseph Henry), профессор математики и физики из штата Нью-Йорк (США), начинавший свою карьеру актером провинциального театра, продемонстрировал устройство, показанное на рис. 8, где: 1 - качающееся коромысло в виде электромагнита на оси (2) и стойке (3) с контактами А, Б, А’, Б’; 4 - два постоянных магнита; 9 - две медно-цинковые батареи Вольта, с выводами в виде чашечек со ртутью (5–8), в которые могут погружаться контакты А, Б, А’, Б’.

При горизонтальном положении коромысла батареи не подключены и ток в электромагните отсутствует. Однако если качнуть коромысло, например влево, то контакты А’, Б’ подключают электромагнит к батарее таким образом, что его левый полюс становится северным (N), а правый – южным (S), как показано на рисунке. Коромысло отбрасывается вправо, подключается правая батарея, создающая ток обратного знака, полюса электромагнита перемагничиваются, и коромысло отбрасывается влево. Такой двигатель совершал 84 качания в минуту при мощности менее 0,05 Вт.

Рис. 8. Двигатель Генри

Однако знаменитым Джозефа Генри сделали другие его достижения: он наблюдал явление электромагнитной индукции, возможно, ранее Фарадея (но своевременно этого не опубликовал), открыл самоиндукцию, построил самые мощные для своего времени электромагниты (поднимающие более одной тонны), применив, в отличие от Стёрджена, многослойную обмотку проводом с изоляцией шелком; изобрел электромагнитное реле, давшее толчок развитию телеграфа, и т. д. Его имя присвоено единице индуктивности (1 генри).

Похожие конструкции имели двигатели 1834 г. - итальянских профессоров С. Даль Негро (S. Dal Negro) и Д. Ботто (G. Botto), - снабженные механизмом преобразования качательного движения во вращательное, что, очевидно, было попыткой копировать паровую машину.

Однако все эти демонстрационные макеты были скорее игрушками, которые невозможно было реально использовать в силу ничтожной мощности (в сотые доли ватта) и непрактичных ртутных коммутаторов. Первым устройством, пригодным для применения, стал электродвигатель Якоби, который и будет рассмотрен в следующей статье.

Созданию первых практически полезных электродвигателей предшествовал ряд опытов по преобразованию электричества в механическое движение:

  • обнаружение в 1819 г. Эрстедом способности электрического тока вызывать механическое движение магнитной стрелки;

  • демонстрация Фарадеем в 1821 г. электромагнитного вращения (проводник с током в ртути вокруг постоянного магнита);

  • создание в период 1821–34 гг. первых приборов ничтожной мощности, показывающих различные способы электромеханического вращения или качания (Барлоу, Йедлик, Ричи, Генри и др.).

Вконтакте

Литература

  1. Микеров А.Г. Первые регуляторы паровых машин. Control Engineering Россия. 2014. № 4 (52).
  2. Микеров А. Г. Проблема устойчивости первых регуляторов. Control Engineering Россия. 2014. № 5 (53).
  3. Микеров А.Г. Классики линейной теории автоматического регулирования. Control Engineering Россия. 2015. №1 (55).
  4. Микеров А.Г. Истоки теории устойчивости систем автоматического управления. Control Engineering Россия. 2015. №3 (57).
  5. История электротехники / Под ред. И. А. Глебова. М.: Изд-во МЭИ. 1999.
  6. Guarnieri M. Once upon a time… The compass. IEEE Industrial Electronics Mag., v. 8, № 2. June 2014.
  7. Радовский М. И. Фарадей. М.: Журнально-газетное объединение.1936.
  8. Электродвигатель в его историческом развитии / Сост. Д. В. Ефремов, М. И. Радовский, под ред. В. Ф. Миткевича. М.-Л.: Изд-во АН СССР. 1936.
  9. Белькинд Л. Д. и др. История энергетической техники. М.-Л.: Госэнергоиздат. 1960.

Изучая диск Фарадея и т.н. "парадокс Фарадея", провел несколько простых опытов и сделал несколько интересных выводов. В первую очередь о том, на что следует обращать больше всего внимания для того, чтобы лучше понять процессы происходящие в этой (и подобных) униполярной машине.

Понимание принципа работы диска Фарадея помогает понять также то, как работают вообще все трансформаторы, катушки, генераторы, электродвигатели (в т.ч. униполярный генератор и униполярный двигатель) и т.п.

В заметке рисунки и подробное видео с разными опытами, иллюстрирующими все выводы без формул и подсчетов, "на пальцах".

Все нижеизложенное - попытка осмысления без претензий на академическую достоверность.

Направление силовых линий магнитного поля

Главный вывод который я для себя сделал: первое, на что стоит всегда обращать внимание в подобных системах - это геометрия магнитного поля , направление и конфигурация силовых линий.

Только геометрия силовых линий магнитного поля, их направление и конфигурация могут внести определенную ясность в понимание процессов, происходящих в униполярном генераторе или униполярном двигателе, диске Фарадея, а также любом трансформаторе, катушке, электродвигателе, генераторе и т.п.

Я для себя распределил степень важности так - 10% физики, 90% геометрии (магнитного поля) для понимания происходящего в этих системах.

Более подробно все описано в видео (см. ниже).

Надо понимать что диск Фарадея и внешняя цепь со скользящими контактами так или иначе образуют хорошо известную со школьных времен рамку - ее образует участок диска от его центра к месту соединения со скользящим контактом у его края, а также вся внешняя цепь (подходящие к контактам проводники).

Направление силы Лоренца, Ампера

Сила Ампера - частный случай силы Лоренца (см. Википедию).

Ниже на двух картинках показана сила Лоренца действующая на положительные заряды во всей цепи ("рамке") в поле магнита типа "бублик" для случая когда внешняя цепь жестко соединена с медным диском (т.е. когда скользящие контакты отсутствуют, и внешняя цепь напрямую припаяна к диску).

1 рис . - для случая когда вся цепь вращается внешним механическим усилием ("генератор").
2 рис . - для случая, когда через цепь подается постоянный ток от внешнего источника ("двигатель").

Нажмите на один из рисунков, чтобы увеличить.

Сила Лоренца проявляется (генерируется ток) только в участках цепи, ДВИГАЮЩИХСЯ в магнитном поле

Униполярный генератор

Итак, поскольку сила Лоренца, действующая на заряженные частицы диска Фарадея или униполярного генератора, будет действовать противоположно на разных участках цепи и диска, то для получения тока из этой машины следует приводить в движение (вращать) только те участки цепи (по возможности), направление силы Лоренца в которых будет совпадать. Остальные участки должны быть либо неподвижны, либо исключены из цепи, либо вращаться в противоположную сторону .

Вращение магнита не изменяет однородность магнитного поля вокруг оси вращения (см. последний раздел), поэтому стоит магнит или вращается - не играет роли (хотя идеальных магнитов не бывает, и неоднородность поля вокруг оси намагниченности, вызванная недостаточным качеством магнита , тоже оказывает некоторое влияние на результат).

Здесь важную роль играет то, какая часть всей цепи (включая подводящие провода и контакты) вращается, а какая неподвижна (т.к. только в движущейся части возникает сила Лоренца). А главное - в какой части магнитного поля находится вращающаяся часть, и из какого участка диска производится съем тока.

Например, если диск будет выступать далеко за пределы магнита, то в выступающей за край магнита части диска можно снять ток направления противоположного току который можно снять в части диска расположенной непосредственно над магнитом.

Униполярный двигатель

Все вышесказанное о генераторе справедливо и для режима "двигатель".

Подавать ток надо по возможности в те части диска, в которых сила Лоренца будет направлена в одну сторону. Именно эти участки надо освободить, предоставив возможность им свободно вращаться и "разорвать" цепь в соответствующих местах, поставив скользящие контакты (см. рисунки далее).

Остальные участки надо по возможности либо исключить, либо минимизировать их влияние.

Видео - опыты и выводы

Время разных этапов этого видео:

3 мин 34 сек - первые опыты

7 мин 08 сек - на что обращать главное внимание и продолжение опытов

16 мин 43 сек - ключевое объяснение

22 мин 53 сек - ГЛАВНЫЙ ОПЫТ

28 мин 51 сек - 2 часть, интересные наблюдения и еще опыты

37 мин 17 сек - ошибочный вывод одного из опытов

41 мин 01 сек - о парадоксе Фарадея

Что от чего отталкивается?

Мы с товарищем-электронщиком долго обсуждали эту тему и он высказал мысль построенную вокруг слова "отталкивается ".
Мысль, с которой я согласен - если что-то начинает движение, то оно от чего-то должно отталкиваться. Если что-то движется, то оно движется относительно чего-то.

Упрощенно говоря, можно сказать, что часть проводника (внешняя цепь или диск) отталкивается от магнита! Соответственно на магнит (через поле) действуют силы отталкивания. Иначе вся картина рушится и теряет логику. Про вращение магнита - см. раздел ниже.

На рисунках (можно кликнуть для увеличения) - варианты для режима "двигатель".
Для режима "генератор" работают те же принципы.

Здесь действие-противодействие происходит между двумя главными "участниками":

  • магнит (магнитное поле)
  • разные участки проводника (заряженные частицы проводника)

Соответственно, когда диск вращается, а магнит неподвижен , то действие-противодействие происходит между магнитом и частью диска .

А когда магнит вращается вместе с диском, то действие-противодействие происходит между магнитом и внешней частью цепи (зафиксированными подводящими проводниками). Дело в том, что вращение магнита относительно внешнего участка цепи - это тоже самое, что вращение внешнего участка цепи относительно неподвижного магнита (но в противоположную сторону). В этом случае медный диск в процессе "отталкивания" почти не участвует.

Выходит так, что в отличие от заряженных частиц проводника (которые могут двигаться внутри него), магнитное поле жестко связано с магнитом. В т.ч. вдоль окружности вокруг оси намагниченности.
И еще один вывод: сила притягивающая два постоянных магнита - не какая-то загадочная сила перпендикулярная силе Лоренца, а это сила Лоренца и есть. Все дело во "вращении" электронов и той самой "геометрии ". Но это уже другая история...

Вращение "голого" магнита

В конце видео есть забавный опыт, и вывод о том, почему часть электрической цепи можно заставить вращаться, а заставить вращаться магнит "бублик" вокруг оси намагниченности - не получается (при неподвижной электрической цепи постоянного тока).

Проводник можно разорвать в местах противоположного направления силы Лоренца, а магнит разорвать нельзя

Дело в том что магнит и весь проводник (внешняя цепь и сам диск) образуют связанную пару - две взаимодействующие системы , каждая из которых замкнута внутри себя . В случае с проводником - замкнута электрическая цепь , в случае с магнитом - "замкнуты" силовые линии магнитного поля .

При этом, в электрической цепи проводник можно физически разорвать , не нарушая самой цепи (поставив диск и скользящие контакты ), в тех местах, где сила Лоренца "разворачивается" в обратном направлении, "отпустив" разные участки электрической цепи двигаться (вращаться) каждый в свою, противоположную друг другу сторону, а разорвать "цепь" силовых линий магнитного поля или магнита, так чтобы разные участки магнитного поля "не мешали" друг другу - видимо невозможно (?). Никаких подобий "скользящих контактов" для магнитного поля или магнита кажется еще не придумали.

Поэтому и возникает проблема с вращением магнита - его магнитное поле представляет собой цельную систему, которая всегда замкнута в себе и неразрывна в теле магнита. В ней противоположные силы на участках, где магнитное поле разнонаправленно, взаимно компенсируются, оставляя магнит неподвижным.

При этом, работа силы Лоренца, Ампера в неподвижно зафиксированном проводнике в поле магнита, уходит видимо не только на нагрев проводника, но и на искажение силовых линий магнитного поля магнита.

КСТАТИ! Интересно было бы провести опыт, в котором через неподвижный проводник, находящийся в поле магнита, пропустить огромный ток , и посмотреть - как будет реагировать магнит. Нагреется ли магнит, размагнитится ли, или может быть он просто разломается на куски (и тогда интересно - в каких местах?).


Все вышеизложенное - попытка осмысления без претензий на академическую достоверность.

Вопросы

Что осталось не до конца ясным и требует проверки:

1. Можно ли все-таки заставить вращаться магнит отдельно от диска?

Если дать возможность и диску, и магниту, свободно вращаться независимо друг от друга , и подать ток на диск через скользящие контакты, то будут ли и диск, и магнит вращаться? И если да, то в какую сторону будет вращаться магнит? Для эксперимента нужен большой неодимовый магнит - его у меня пока нет. С обычным магнитом не хватает силы магнитного поля.

2. Вращение разных частей диска в разные стороны

Если сделать свободно вращающимися независимо друг от друга и от неподвижного магнита - центральную часть диска (над "дыркой бублика" магнита), среднюю часть диска, а так же часть диска выступающую за край магнита, и подать ток через скользящие контакты (в т.ч. скользящие контакты между этими вращающимися частями диска) - будут ли центральная и крайняя часть диска вращаться в одну сторону, а средняя - в противоположную?

3. Сила Лоренца внутри магнита

Действует ли сила Лоренца на частицы внутри магнита, магнитное поле которого искажается внешними силами?