Действия над вероятностями. Простые задачи по теории вероятности. Основная формула

Ответы к контрольной работе по теории вероятности помогут студентам первых курсов, изучающих математические дисциплины. Задания охватывают много теоретического материала, а обоснование их решения пригодится каждому студенту.

Задача 1. Куб все грани которого закрашены, распилен на 1000 кубиков одинаковых размеров. Определить вероятность того что кубик вытянутый наугад будет иметь:

  • а) одну закрашеную грань;
  • б) две закрашеные грани.

Вычисления: Если куб распилить на кубики одинакового размера то все грани будут поделены на 100 квадратов. (Примерно как на рисунке)
Дальше по условию кубик должен иметь одну закрашенную грань - это значит что кубики должны принадлежать внешней поверхности но не лежать на ребрах куба (2 закрашеные поверхности) и не на углах - имеют три закрашеные поверхности.
Следовательно, искомое количество равно произведению 6 граней на количество кубиков в квадрате размером 8*8.
6*8*8=384 – кубики с 1 закрашеной поверхностью.
Вероятность равна количеству благоприятных событий к общему их количеству P=384/1000=0,384.
б) Две закрашеные грани имеют кубики по ребрам без самих вершин куба. На одном ребре будет 8 таких кубиков. Всего в кубе 12 ребер, поэтому две закрашенные грани имеют
8*12=96 кубиков .
А вероятность вытянуть их среди 1000 всех равная
P=96/1000=0,096.
На этом задание решено и переходим к следующему.

Задача 2. На одинаковых карточках написаны буквы А, А, А, Н, Н, С . Какова вероятность того, что случайно разместив карточки в ряд, получим слово АНАНАС?
Вычисления: Нужно рассуждать всегда от того, что известно. Дано 3 буквы А, 2-Н, и 1 - С, всего их 6. Начнем выбирать буквы для слова "ананас" . Первой идет буква А, которую мы можем выбрать 3 способами из 6, потому что есть 3 буквы А среди 6 известных. Поэтому вероятность вытянуть первой А равна
P 1 =3/6=1/2.
Вторая буква Н, но не следует забывать, что после того как вытащили А остается 5 букв для выбора. Поэтому вероятность вытянуть под 2 номером Н равна
P 2 =2/5.
Следующую А вероятность вытянуть среди 4, что осталось
P 3 =2/4.
Далее Н можно извлечь из вероятностью
P 4 =1/3.
Чем ближе к концу тем больше вероятность, и уже А можем извлечь при
P 5 =1/2.
После этого остается одна карточка С, поэтому вероятность ее вытащить равна 100 процентам или
P 6 =1.
Вероятность составить слово АНАНАС равна произведению вероятностей
P=3/6*2/5*2/4*1/3*1/2*1=1/60=0,016(6).
На этом и базируются подобные задачи по теории вероятностей.

Задача 3. Из партии изделий товаровед наугад выбирает образцы. Вероятность того что наугад взятое изделие окажется высшего сорта равна 0,8. Найти вероятность того, что среди 3 отобранных изделий будет два изделия высшего сорта?
Вычисления: Данный пример на применение формулы Бернулли .
p=0,8; q=1-0,8=0,2.
Вероятность вычисляем по формуле

Если объяснять не на языке формул, то нужно составить комбинации из трех событий, два из которых благоприятны, а одно нет. Это можно записать суммой произведений

Оба варианта являются равносильными, только первый можем применить во всех задачах, а второй в подобных к рассмотреной.

Задача 4. Из пяти стрелков двое попадают в цель с вероятностью 0,6 и трое с вероятностью 0,4 . Что вероятнее: наугад выбранный стрелок попадает в цель или нет?
Вычисления: По формуле полной вероятности определяем вероятность, что стрелок попадет.
P=2/5*0,6+3/5*0,4=0,24+0,24=0,48.
Вероятность меньше P<0,5 , следовательно вероятнее что наугад выбранный стрелок не попадет в цель.
Вероятность не попадания составляет

или
P=2/5*(1-0,6)+3/5*(1-0,4)=0,16+0,36=0,52.

Задача 5. C 20 студентов, пришедших на экзамен, 10 подготовлены отлично (знают все вопросы), 7 хорошо (знают по 35 вопросов), а 3 плохо (10 вопросов). В программе 40 вопросов. Наугад вызванный студент ответил на три вопроса билета. Какова вероятность того, что он подготовлен на

  • а) отлично;
  • б) плохо.

Вычисления: Суть задачи заключается в том что студент ответил на три вопроса билета, то есть на все что были заданы, а вот какова вероятность их вытянуть мы сейчас вычислим.
Найдем вероятность что студент ответил на три вопроса правильно. Это будет отношение количества студентов ко всей группе умноженное на вероятность вытянуть билеты которые они знают среди всех возможных

Теперь найдем вероятность что студент принадлежит группе которая подготовлена "на отлично". Это равносильно доле первого слагаемого предварительной вероятности, к самой вероятности

Вероятность, что студент принадлежит группе которая плохо подготовилась достаточно мала и равна 0,00216 .

На этом задание выполнено. Хорошо его разберите и запомните как вычислять, поскольку на контрольных и тестах оно распространено.

Задача 6. Монету бросают 5 раз. Найти вероятность того что герб выпадет менее 3 раз?
Вычисления: Вероятность вытянуть герб или решку равносильна и равна 0,5. Менее 3 раз означает, что герб может выпасть либо 0, либо 1, либо 2 раза. "Или" всегда в вероятности в операциях сказывается добавлением.
Вероятности находим по формуле Бернулли

Поскольку p=q=0,5 , то вероятность равна

Вероятность равна 0,5 .

Задача 7. При штамповке металлических клемм получается в среднем 90% стандартных. Найти вероятность того что среди 900 клемм стандартными будут не менее 790 и не более 820 клемм.

Вычисления: Вычисления необходимо проводить

Необходимость в действиях над вероятностями наступает тогда, когда известны вероятности некоторых событий, а вычислить нужно вероятности других событий, которые связаны с данными событиями.

Сложение вероятностей используется тогда, когда нужно вычислить вероятность объединения или логической суммы случайных событий.

Сумму событий A и B обозначают A + B или A B . Суммой двух событий называется событие, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий. Это означает, что A + B – событие, которое наступает тогда и только тогда, когда при наблюдении произошло событие A или событие B , или одновременно A и B .

Если события A и B взаимно несовместны и их вероятности даны, то вероятность того, что в результате одного испытания произойдёт одно из этих событий, рассчитывают, используя сложение вероятностей.

Теорема сложения вероятностей. Вероятность того, что произойдёт одно из двух взаимно несовместных событий, равна сумме вероятностей этих событий:

Например, на охоте произведены два выстрела. Событие А – попадание в утку с первого выстрела, событие В – попадание со второго выстрела, событие (А + В ) – попадание с первого или второго выстрела или с двух выстрелов. Итак, если два события А и В – несовместные события, то А + В – наступление хотя бы одного из этих событий или двух событий.

Пример 1. В ящике 30 мячиков одинаковых размеров: 10 красных, 5 синих и 15 белых. Вычислить вероятность того, что не глядя будет взят цветной (не белый) мячик.

Решение. Примем, что событие А – «взят красный мячик», а событие В – «взят синий мячик». Тогда событие - «взят цветной (не белый) мячик». Найдём вероятность события А :

и события В :

События А и В – взаимно несовместные, так как если взят один мячик, то нельзя взять мячики разных цветов. Поэтому используем сложение вероятностей:

Теорема сложения вероятностей для нескольких несовместных событий. Если события составляют полное множество событий, то сумма их вероятностей равна 1:

Сумма вероятностей противоположных событий также равна 1:

Противоположные события образуют полное множество событий, а вероятность полного множества событий равна 1.

Вероятности противоположных событий обычно обозначают малыми буквами p и q . В частности,

из чего следуют следующие формулы вероятности противоположных событий:

Пример 2. Цель в тире разделена на 3 зоны. Вероятность того что некий стрелок выстрелит в цель в первой зоне равна 0,15, во второй зоне – 0,23, в третьей зоне – 0,17. Найти вероятность того, что стрелок попадет в цель и вероятность того, что стрелок попадёт мимо цели.

Решение: Найдём вероятность того, что стрелок попадёт в цель:

Найдём вероятность того, что стрелок попадёт мимо цели:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей" .

Сложение вероятностей взаимно совместных событий

Два случайных события называются совместными, если наступление одного события не исключает наступления второго события в том же самом наблюдении. Например, при бросании игральной кости событием А считается выпадение числа 4, а событием В – выпадение чётного числа. Поскольку число 4 является чётным числом, эти два события совместимы. В практике встречаются задачи по расчёту вероятностей наступления одного из взаимно совместных событий.

Теорема сложения вероятностей для совместных событий. Вероятность того, что наступит одно из совместных событий, равна сумме вероятностей этих событий, из которой вычтена вероятность общего наступления обоих событий, то есть произведение вероятностей. Формула вероятностей совместных событий имеет следующий вид:

Поскольку события А и В совместимы, событие А + В наступает, если наступает одно из трёх возможных событий: или АВ . Согласно теореме сложения несовместных событий, вычисляем так:

Событие А наступит, если наступит одно из двух несовместных событий: или АВ . Однако вероятность наступления одного события из нескольких несовместных событий равна сумме вероятностей всех этих событий:

Аналогично:

Подставляя выражения (6) и (7) в выражение (5), получаем формулу вероятности для совместных событий:

При использовании формулы (8) следует учитывать, что события А и В могут быть:

  • взаимно независимыми;
  • взаимно зависимыми.

Формула вероятности для взаимно независимых событий:

Формула вероятности для взаимно зависимых событий:

Если события А и В несовместны, то их совпадение является невозможным случаем и, таким образом, P (AB ) = 0. Четвёртая формула вероятности для несовместных событий такова:

Пример 3. На автогонках при заезде на первой автомашине вероятность победить , при заезде на второй автомашине . Найти:

  • вероятность того, что победят обе автомашины;
  • вероятность того, что победит хотя бы одна автомашина;

1) Вероятность того, что победит первая автомашина, не зависит от результата второй автомашины, поэтому события А (победит первая автомашина) и В (победит вторая автомашина) – независимые события. Найдём вероятность того, что победят обе машины:

2) Найдём вероятность того, что победит одна из двух автомашин:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей" .

Решить задачу на сложение вероятностей самостоятельно, а затем посмотреть решение

Пример 4. Бросаются две монеты. Событие A - выпадение герба на первой монете. Событие B - выпадение герба на второй монете. Найти вероятность события C = A + B .

Умножение вероятностей

Умножение вероятностей используют, когда следует вычислить вероятность логического произведения событий.

При этом случайные события должны быть независимыми. Два события называются взаимно независимыми, если наступление одного события не влияет на вероятность наступления второго события.

Теорема умножения вероятностей для независимых событий. Вероятность одновременного наступления двух независимых событий А и В равна произведению вероятностей этих событий и вычисляется по формуле:

Пример 5. Монету бросают три раза подряд. Найти вероятность того, что все три раза выпадет герб.

Решение. Вероятность того, что при первом бросании монеты выпадет герб , во второй раз , в третий раз . Найдём вероятность того, что все три раза выпадет герб:

Решить задачи на умножение вероятностей самостоятельно, а затем посмотреть решение

Пример 6. Имеется коробка с девятью новыми теннисными мячами. Для игры берут три мяча, после игры их кладут обратно. При выборе мячей игранные от неигранных не отличают. Какова вероятность того, что после трёх игр в коробке не останется неигранных мячей?

Пример 7. 32 буквы русского алфавита написаны на карточках разрезной азбуки. Пять карточек вынимаются наугад одна за другой и укладываются на стол в порядке появления. Найти вероятность того, что из букв получится слово "конец".

Пример 8. Из полной колоды карт (52 листа) вынимаются сразу четыре карты. Найти вероятность того, что все эти четыре карты будут разных мастей.

Пример 9. Та же задача, что в примере 8, но каждая карта после вынимания возвращается в колоду.

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей, а также вычислять произведение нескольких событий - на странице "Различные задачи на сложение и умножение вероятностей" .

Вероятность того, что произойдёт хотя бы одно из взаимно независимых событий , можно вычислить путём вычитания из 1 произведения вероятностей противоположных событий , то есть по формуле:

Пример 10. Грузы доставляют тремя видами транспорта: речным, железнодорожным и автотранспортом. Вероятность того, что груз будет доставлен речным транспортом, составляет 0,82, железнодорожным транспортом 0,87, автотранспортом 0,90. Найти вероятность того, что груз будет доставлен хотя бы одним из трёх видов транспорта.

А.А. Халафян

ТЕОРИЯ ВЕРОЯТНОСТЕЙ

И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

тексты лекций

Краснодар 2008

Статистическое определение вероятности

Существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения. В первую очередь это события с неравновозможными исходами (например, игральная кость «нечестная», монета сплющена и т.д.). В таких случаях может помочь статистическое определение вероятности, основанное на подсчете частоты наступления события в испытаниях.

Определение 2. Статистической вероятностьюнаступления события А называется относительная частота появления этого события в n произведенных испытаниях , т.е.

(А ) = W(A ) = m/n ,

где (А ) статистическое определение вероятности; W(A ) относительная частота; n количество произведенных испытаний; m число испытаний, в которых событие А появилось. Заметим, что статистическая вероятность является опытной, экспериментальной характеристикой.

Причем при n → ∞, (А ) → P(А ), так, например, в опытах Бюффона (XVIII в.) относительная частота появления герба при 4040 подбрасываниях монеты, оказалось 0,5069, в опытах Пирсона (XIX в.) при 23000 подбрасываниях 0,5005.

Геометрическое определение вероятности

Еще один недостаток классического определения, ограничивающий его применение, является то, что оно предполагает конечное число возможных исходов. В некоторых случаях этот недостаток можно устранить, используя геометрическое определение вероятности. Пусть, например, плоская фигура g составляет часть плоской фигуры G (рис.3).

На фигуру G наудачу бросается точка. Это означает, что все точки области G «равноправны», в отношении попадания туда брошенной случайной точки. Полагая, что вероятность события А – попадание брошенной точки на g пропорциональна площади этой фигуры S g и не зависит ни от ее расположения относительно области G , ни от формы g , найдем

Р (А ) = S g /S G

где S G – площадь области G . Но так как области g и G могут быть одномерны- ми, двухмерными, трехмерными и многомерными, то, обозначив меру области черезmeas , можно дать более общее определение геометрической вероятности

P = measg / measG .

Доказательство.

Р (В/А ) = Р (В ÇА )/Р (А ) = Р (А ÇВ )/Р (А ) = {P (a/b )Р (В )}/Р (А ) = {Р (А )Р (В )}/Р (А ) = Р (В ).

Из определения 4 вытекают формулы умножения вероятностей для зависимых и независимых событий.

Следствие 1. Вероятность совместного появления нескольких событий равна произведению вероятности одного из них на условные вероятности всех остальных, причем вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже появились:



P (A 1 A 2 … A n ) = P (A 1 )P A1 (A 2 )P A1A2 (A 3 )… P A1A2… An-1 (A n ).

Определение 6 . События A 1, A 2, …, A n независимы в совокупности, если независимы любые два из них и независимы любое из этих событий и любые комбинации (произведения) остальных событий .

Следствие 2. Вероятность совместного появления нескольких событий, независимых в совокупности, равна произведению вероятностей этих событий:

P (A 1 A 2 … A n ) = P (A 1)P (A 2)… P (A n).

Доказательство.

P (A 1 A 2 … A n) = P (A 1 ·A 2 … A n) = P (A 1)P (A 2 … A n).=…= P (A 1)P (A 2)… P (A n ).

Определение 7 . Событие А 1 ,А 2 ,… А n образуют полную группу событий, если они попарно несовместны (А i А j = Ø, для любого i ≠ j )и в совокупности образуют Ω, т.е . .

Теорема 2. Если события А 1, A 2 ,… А n образуют полную группу событий, Р (А i ) > 0 (так как не будет определено P (B /A i )), то вероятность некоторого события B Î S определяется, как сумма произведений безусловных вероятностей наступления события А i на условные вероятности наступления события B , т.е.

. (1)

Доказательство. Так как события А i попарно несовместны, то их пересечение с событием B также попарно несовместны, т.е. B∩А i и B∩А j – несовместны при i ¹ j. Используя свойство дистрибутивности ((ÈА i В = È(А i ÇВ )), событие B можно представить как . Воспользуемся аксиомой сложения 3 и формулой умножения вероятностей, получим

.

Формула (1) называется формула полной вероятности.

Из формулы полной вероятности легко получить формулу Байеса, при дополнительном предположении, что P (B )>0

,

где k = 1, 2, …, n .

Доказательство. P(А k /B) = P(А k ∩ B)/P(B)

Вероятности событий P (А i ), i =1, 2, …, n называются априорными вероятностями, т.е. вероятностями событий до выполнения опыта, а условные вероятности этих событий P (А k /B ), называются апостериорными вероятностями, т.е. уточненными в результате опыта, исходом которого послужило появление события В .



Задача. В торговую фирму поступили сотовые телефоны последних моделей от трех производителей Alcatel , Siemens , Motorola в соотношении 1: 4: 5. Практика показала, что телефоны, поступившие от 1-го, 2-го, 3-го производителя, не потребуют ремонта в течение гарантийного срока соответственно в 98 %, 88 % и 92 % случаев. Найти вероятность того, что поступивший в продажу телефон не потребует ремонта в течение гарантийного срока, проданный телефон потребовал ремонта в течение гарантийного срока, от какого производителя вероятнее всего поступил телефон.

Пример 1.

Пример 2 .

Определение 1. Случайной величиной вероятностного пространства { , S, P} называется любая функция X (w), определенная для wÎΩ, и такая, что для всех действительных х () множество { w: X (w) < x}принадлежит полю S. Другими словами для любого такого события w определена вероятность P (X (w) < x ) = P (X < x ).

Случайные величины будем обозначать прописными латинскими буквами X , Y , Z , …, а значения случайных величин – строчными латинскими буквами x , y , z ...

Определение 2 . Случайная величина X называется дискретной, если она принимает значения только из некоторого дискретного множества. Другими словами, существует конечное или счетное число значений x 1 , x 2 , …, таких, что P (X = x i) = р i ³ 0, i = 1, 2…, причем å p i = 1.

Если известны значения случайной величины и соответствующие им вероятности, то говорят, что определен закон распределения дискретной случайной величины.

Если составлена таблица, в верхней части которой располагаются значения случайных величин, а в нижней части соответствующие им вероятности, то получим ряд распределения случайной величины, который задает закон распределения дискретной случайной величины.

Пример 3. Составим ряд распределения выпадения герба при 2 подбрасываниях монеты. Возможные исходы – ГГ, ГР, РГ, РР. Из возможных исходов видно, что герб может выпасть 0, 1 и 2 раза, с соответствующими вероятностями – ¼, ½, ¼. Тогда ряд распределения примет вид

Определение 3. Функцией распределения случайной величины X называется функция F (x ), зависящая от х Î R и принимающая значение, равное вероятности события w, что X < x , т.е.,F (x ) = P {w: X (w) < x } = P (X < x ).

Из определения следует, что любая случайная величина имеет функцию распределения.

Равномерное распределение

Определение 1. Случайная величина Х , принимающая значения 1, 2, …, n, имеет равномерное распределение, если P m = P (Х = m ) = 1/n ,

m = 1, …, n.

Очевидно, что .

Рассмотрим следующую задачу.В урне имеется N шаров, из них M шаров белого цвета. Наудачу извлекается n шаров. Найти вероятность того, что среди извлечённых будет m белых шаров.

Нетрудно видеть, что .

Распределение Пуассона

Определение 4. Случайная величина Х имеет распределение Пуассона с параметром l, если , m = 0, 1, …

Покажем, что Σp m = 1. .

Биномиальное распределение

Определение 5. Случайная величина X имеет биномиальное распределение, если , m = 0, 1, …, n ,

где n – число испытаний по схеме Бернулли, m – число успехов, р – вероятность успеха в единичном исходе, q = 1–p .

Распределение Бернулли

Определение 6. Случайная величина Х имеет распределение Бернулли, если P (Х = m ) = P m = p m q n - m , m = 0, 1, …, n .

При больших m и n становится проблематичным вычисление по формуле Бернулли. Поэтому в ряде случаев удается заменить формулу Бернулли подходящей приближенной асимптотической формулой. Так если n – велико, а р мало, то .

Теорема Пуассона. Если n ® ¥, а p ® 0, так что np ® l, то .

Доказательство . Обозначим l n = np , по условию теоремы , тогда

При n ® ¥, l n m ® l m ,

Отсюда получаем утверждение теоремы. Р n (m ) ® при n ® ¥.

Формула Пуассона хорошо приближает формулу Бернулли, если npq £ 9. Если же произведение npq велико, то для вычисления Р n (m) используют локальную теорему Муавра–Лапласа.

Локальная теорема Муавра – Лапласа. Пусть p Î(0;1) постоянно, величина равномерно ограничена, т.е. $с, |x m |<с . Тогда

,

где b(n;m) – бесконечно малая величина, причем .

Из условий теоремы следует, что ,

где , .

Для вычисления Р n (m) по формуле, приведенной рнее, используют таблицы функции

.

Задача 1 . В магазин одежды один за другим входят трое посетителей. По оценкам менеджера, вероятность того, что вошедший посетитель совершит покупку, равна 0,3. Составить ряд числа посетителей, совершивших покупку.

Решение.

x i
р i 0,343 0,441 0,189 0,027

Задача 2 . Вероятность поломки произвольного компьютера равна 0,01. Построить ряд распределения числа вышедших из строя компьютеров с общим числом 25.

Решение.

Задача 3 . Автомобили поступают в торговый салон партиями по 10 шт. В салоне подвергаются контролю качества и безопасности только 5 из 10 поступивших автомобилей. Обычно 2 из 10 поступивших машин не удовлетворяют стандартам качества и безопасности. Чему равна вероятность, что хотя бы одна из 5 проверяемых машин будет забракована.

Решение . Р = Р (1) + Р (2) = + =0,5556 + 0,2222 = 0,7778

Доказательство.

Задача 1 . Вероятность того, что случайно выбранный прибор нуждается в дополнительной настройке, равна 0,05. Если при выборочной проверке партии приборов обнаруживается, что не менее 6 % отобранных приборов нуждаются в регулировке, то вся партия возвращается для доработки. Определить вероятность того, что партия будет возвращена, если для контроля из партии выбрано 500 приборов.

Решение. Партия будет возвращена, если число отобранных приборов, нуждающихся в настройке, будет больше 6%, т.е. m 1 = 500 × 6/100 = 30. Далее: p = 0,05: q = 0,95; np = 25; 4,87. За успех считаем, если прибор требует дополнительной настройки.

Применим интегральную теорему Муавра–Лапласа.

Задача 2. Определить, сколько надо отобрать изделий, чтобы с вероятностью 0,95 можно было утверждать, что относительная частота бракованных изделий будет отличаться от вероятности их появления не более чем на 0,01.

Решение. Для решения задачи выберем в качестве математической модели схему Бернулли и воспользуемся формулой (4). Надо найти такое n , чтобы выполнялось равенство (4), если e = 0,01, b = 0,95, вероятность р неизвестна.

Ф (х b) = (1 + 0,95) / 2 = 0,975. По таблице приложения найдем, что х b = 1,96. Тогда по формуле (4) найдем n = ¼ × 1,96 2 /0,01 2 = 9600.

Равномерное распределение

Определение 5. Непрерывная случайная величина Х, принимающая значение на отрезке , имеет равномерное распределение, если плотность распределения имеет вид

. (1)

Нетрудно убедиться, что ,

.

Если случайная величина равномерно распределена, то вероятность того, что она примет значение из заданного интервала не зависит от положения интервала на числовой прямой и пропорциональна длине этого интервала

.

Покажем, что функция распределения Х имеет вид

. (2)

Пусть х Î (–¥,a ), тогда F (x ) = .

Пусть х Î [a ,b ], тогда F (x ) = .

Пусть х Î (b ,+¥], тогда F (x ) = = 0 + .

Найдем медиану x 0,5 . Имеем F (x 0,5) = 0,5, следовательно

Итак, медиана равномерного распределения совпадает с серединой отрезка . На рис.1 приведен график плотности р (х ) и функции распределения F (x )

для равномерного распределения.

Нормальное распределение

Определение 7. Непрерывная случайная величина имеет нормальное распределение, с двумя параметрами a, s, если

, s>0. (5)

Тот факт, что случайная величина имеет нормальное распределение, будем кратко записывать в виде Х ~ N (a ;s ).

Покажем, что p (x ) – плотность

(показано в лекции 6).

График плотности нормального распределения (рис. 3) называют нормальной кривой (кривой Гаусса).

Плотность распределения симметрична относительно прямой х = a . Если х ® ¥, то р (х ) ® 0. При уменьшении s график «стягивается» к оси симметрии х = a .

Нормальное распределение играет особую роль в теории вероятностей и ее приложениях. Это связано с тем, что в соответствии с центральной предельной теоремой теории вероятностей при выполнении определенных условий сумма большого числа случайных величин имеет «примерно» нормальное распределение.

Так как – плотность нормального закона распределения с параметрами а = 0 и s =1, то функция = Ф (х ), с помощью которой вычисляется вероятность , является функцией распределения нормального распределения с параметрами а = 0 и s =1.

Функцию распределения случайной величины Х с произвольными параметрами а , s можно выразить через Ф (х ) – функцию распределения нормальной случайной величины с параметрами а = 0 и s =1.

Пусть Х ~ N (a ;s), тогда

. (6)

Сделаем замену переменных под знаком интеграла , получим

=

F (x ) = . (7)

В практических приложениях теории вероятностей часто требуется найти вероятность того, что случайная величина примет значение из заданного отрезка . В соответствии с формулой (7) эту вероятность можно найти по табличным значениям функции Лапласа

Найдем медиану нормальной случайной величины Х ~ N (a ;s ). Так как плотность распределения р(х) симметрична относительно оси х = а , то

р (х < a ) = p (x > a ) = 0,5.

Следовательно, медиана нормальной случайной величины совпадает с параметром а :

Х 0,5 = а.

Задача 1. Поезда в метро идут с интервалом в 2 мин. Пассажир выходит на платформу в некоторый момент времени. Время Х, в течение которого ему придется ждать поезд, представляет собой случайную величину, распределенную с равномерной плотностью на участке (0, 2) мин. Найти вероятность того, что пассажиру придется ждать ближайший поезд не более 0,5 мин.

Решение . Очевидно, что p(x) = 1/2. Тогда, Р 0,5 = Р(1,52) = = 0,25

Задача 2. Волжский автомобильный завод запускает в производство новый двигатель. Предполагается, что средняя длина пробега автомобиля с новым двигателем – 160 тыс. км, со стандартным отклонением – σ = 30 тыс.км. Чему равна вероятность, что до первого ремонта число км. пробега автомобиля будет находиться в пределах от 100 тыс. км. до 180 тыс. км.

Решение. Р(100000< X < 180000) = Ф(2/3)–Ф(–2) = 0,2454 + 0,4772 = 0,7226.

Свойства дисперсии

1.Дисперсия постоянной C равна 0,DC = 0, С = const .

Доказательство . DC = M (С MC ) 2 = М (С С ) = 0.

2. D (CX ) = С 2 DX .

Доказательство. D (CX ) = M (CX ) 2 – M 2 (CX ) = C 2 MX 2 – C 2 (MX ) 2 = C 2 (MX 2 – M 2 X ) = С 2 DX .

3. Если X и Y независимые случайные величины , то

Доказательство .

4. Если Х 1 , Х 2 , … не зависимы, то .

Это свойство можно доказать методом индукции, используя свойство 3.

Доказательство . D(X – Y) = DX + D(–Y) = DX + (–1) 2 D(Y) = DX + D(Y).

6.

Доказательство . D(C+X) = M(X+C–M(X+C)) 2 = M(X+C–MX–MC) 2 = M(X+C–MX–C) 2 = M(X–MX) 2 = DX.

Пусть – независимые случайные величины, причем , .

Составим новую случайную величину , найдем математическое ожидание и дисперсию Y .

; .

То есть при n ®¥ математическое ожидание среднего арифметического n независимых одинаково распределенных случайных величин остается неизменным, равным математическому ожиданию а, в то время как дисперсия стремится к нулю.

Это свойство статистической устойчивости среднего арифметического лежит в основе закона больших чисел.

Нормальное распределение

Пусть X имеет нормальное распределение. Раннее, в лекции 11 (пример 2) было показано, что если

То Y ~ N(0,1).

Отсюда , и тогда , поэтому найдем сначала DY .

Следовательно

DX = D (sY +a ) = s 2 DY = s 2 , s x = s. (2)

Распределение Пуассона

Как известно

Следовательно,

Равномерное распределение

Известно, что .

Ранее мы показали, что , воспользуемся формулой .

Доказательство.

Последний интеграл в цепочке равенств равен 0, так как из условия задачи следует, что p(MX+t) – четная функция относительно t (p(MX+t) = p(MX-t) ), а t 2 k +1 – нечетная функция.

Так как плотности нормального и равномерного законов распределений симметричны относительно х = МХ , то все центральные моменты нечетного порядка равны 0.

Теорема 2. Если X ~N (a ,s), то .

Чем больше моментов случайной величины известно, тем более детальное представление о законе распределения мы имеем. В теории вероятностей и математической статистике наиболее часто используются две числовые характеристики, основанные на центральных моментах 3-го и 4-го порядков. Это коэффициент асимметрии и эксцесс случайной величины.

Определение 3. Коэффициентом асимметрии случайной величины Х называется число b = .

Коэффициент асимметрии является центральным и начальным моментом нормированной случайной величины Y , где . Справедливость этого утверждения следует из следующих соотношений:

Асимметрия случайной величины Х равна асимметрии случайной величины Y = αХ + β

c точностью до знака α, . Это следует из того, что нормирование случайных величин aХ + b и Х приводит к одной и той же случайной величине Y с точностью до знака

Если распределение вероятностей несимметрично, причем «длинная часть» графика расположена справа от центра группирования, то β(х ) > 0; если же «длинная часть» графика расположена слева, то β(х ) < 0. Для нормального и равномерного распределений β = 0.

В качестве характеристики большей или меньшей степени «сглаженности» кривой плотности или многоугольника распределения по сравнению с нормальной плотностью используется понятие эксцесса.

Определение 4. Эксцессом случайной величины Х называется величина

Эксцесс случайной величины Х равен разности начального и центрального моментов 4-го порядка нормированной случайной величины и числа3, т.е. . Покажем это:

Эксцесс случайной величины Х равен эксцессу случайной величины

Y = αХ + β.

Найдем эксцесс нормальной случайной величины Х.

Если Х ~N (a ,s), то ~ (0,1).

Таким образом, эксцесс нормально распределенной случайной величины равен 0. Если плотность распределения одномодальна и более «островершинна», чем плотность нормального распределения с той же дисперсией, то g(Х ) > 0, если при тех же условиях менее «островершинна», то g(Х ) < 0.

Закон больших чисел

Закон больших чисел устанавливает условия сходимости среднего арифметического случайных величин к среднему арифметическому математических ожиданий.

Определение 1 . Последовательность случайных величин называется сходящейся по вероятности p к числу b, если

.

Перейдем в этом неравенстве к пределу при и получим

.

Интервальная оценка

Если получена точечная оценка неизвестного параметра по выборке, то говорить о полученной оценке как об истинном параметре довольно рискованно. В некоторых случаях, целесообразнее, получив разброс оценки параметра, говорить об интервальной оценке истинного значения параметра. В качестве иллюстрации сказанного рассмотрим построение доверительного интервала для математического ожидания нормального распределения.

Мы показали, что – наилучшая оценка (абсолютно корректная) для математического ожидания МХ = Q, поэтому является абсолютно корректной оценкой также и для параметра a = нормального распределенияР, где t – значение аргумента функции Лапласа, при котором Ф (t ) = , e = .

1. Колемаев В.А., Староверов О.В., Турундаевский В.Б. Теория вероятностей и мате-

матическая статистика. М.: Высшая Школа, 1991.

2. Елисеева И.И., Князевский В.С., Ниворожкина Л.И., Морозова З.А. Теория статистики с основами теории вероятностей. М.: Юнити, 2001.

3. Секей Г. Парадоксы в теории вероятностей и математической статистике. М.: Мир, 1990.

4. Кремер Н.Ш. Теория вероятностей и математическая статистика. М.: Юнити, 2001

5. Смирнов Н.В. Дунин-Барковский И.В. Курс теории вероятностей и математической статистики для технических приложений. М.: Наука,1969.

6. Статистические методы построения эмпирических формул. М.: Высшая Школа, 1988.


ЛЕКЦИЯ 1. ТЕОРИИ ВЕРОЯТНОСТЕЙ. ИСТОРИЯ ВОЗНИКНОВЕНИЯ. КЛАССИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ.. 3

ЛЕКЦИЯ 2. ТЕОРЕМЫ СЛОЖЕНИЯ И УМНОЖЕНИЯ ВЕРОЯТНОСТЕЙ. СТАТИСТИЧЕСКОЕ, ГЕОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ.. 8

ЛЕКЦИЯ 3. АКСИОМАТИЧЕСКОЕ ПОСТРОЕНИЕ ТЕОРИИ ВЕРОЯТНОСТЕЙ. АКСИОМАТИКА КОЛМОГОРОВА.. 14

ЛЕКЦИЯ 4. СЛУЧАЙНАЯ ВЕЛИЧИНА. ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ.. 17

ЛЕКЦИЯ 5. РАСПРЕДЕЛЕНИЯ ДИСКРЕТНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН.. 21

ЛЕКЦИЯ 6. ИНТЕГРАЛЬНАЯ ТЕОРЕМА МУАВРА–ЛАПЛАСА, ТЕОРЕМА БЕРНУЛЛИ.. 26

ЛЕКЦИЯ 7. НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ... 29

ЛЕКЦИЯ 8. ПОНЯТИЕ МНОГОМЕРНОЙ СЛУЧАЙНОЙ ВЕЛИЧИНЫ... 35

ЛЕКЦИЯ 9. ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ МНОГОМЕРНОЙ СЛУЧАЙНОЙ ВЕЛИЧИНЫ... 39

ЛЕКЦИЯ 10. СВОЙСТВА ПЛОТНОСТИ ВЕРОЯТНОСТЕЙ ДВУМЕРНОЙ СЛУЧАЙНОЙ ВЕЛИЧИНЫ 43

ЛЕКЦИЯ 11. ФУНКЦИИ ОТ СЛУЧАЙНЫХ ВЕЛИЧИН.. 48

ЛЕКЦИЯ 12. ТЕОРЕМА О ПЛОТНОСТИ СУММЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН.. 52

ЛЕКЦИЯ 13. РАСПРЕДЕЛЕНИЯ СТЬЮДЕНТА, ФИШЕРА.ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫ

Теория вероятностей и математическая статистика

1. Предмет теории вероятностей и ее значение для решения экономических, технических задач. Вероятность и ее определение

На протяжении длительного времени человечество изучало и использовало для своей деятельности лишь так называемые детерминистические закономерности. Однако, поскольку случайные события врываются в нашу жизнь помимо нашего желания и постоянно окружают нас, и более того, поскольку почти все явления природы имеют случайный характер, необходимо научиться их изучать и разработать для этой цели методы изучения.

По форме проявления причинных связей законы природы и общества делятся на два класса: детерминированные (предопределенные) и статистические.

Например, на основании законов небесной механики по известному в настоящем положению планет Солнечной системы может быть практически однозначно предсказано их положение в любой наперед заданный момент времени, в том числе очень точно могут быть предсказаны солнечные и лунные затмения. Это пример детерминированных законов.

Вместе с тем не все явления поддаются точному предсказанию. Так, долговременные изменения климата, кратковременные изменения погоды не являются объектами для успешного прогнозирования, т.е. многие законы и закономерности гораздо менее вписываются в детерминированные рамки. Такого рода законы называются статистическими. Согласно этим законам, будущее состояние системы определяется не однозначно, а лишь с некоторой вероятностью.

Теория вероятностей, как и другие математические науки, возродилась и развилась из потребностей практики. Она занимается изучением закономерностей, присущих массовым случайным событиям.

Теория вероятностей изучает свойства массовых случайных событий, способных многократно повторяться при воспроизведении определенного комплекса условий. Основное свойство любого случайного события, независимо от его природы, -- мера, или вероятность его осуществления.

Наблюдаемые нами события (явления) можно подразделить на три вида: достоверные, невозможные и случайные.

Достоверным называют событие, которое обязательно произойдет. Невозможным называют событие, которое заведомо не произойдет. Случайным называют событие, которое может либо произойти, либо не произойти.

Теория вероятностей не ставит перед собой задачу предсказать, произойдет единичное событие или нет, так как невозможно учесть влияние на случайное событие всех причин. С другой стороны, оказывается, что достаточно большое число однородных случайных событий, независимо от их конкретной природы, подчиняется определенным закономерностям, а именно -- вероятностным закономерностям.

Итак, предметом теории вероятностей является изучение вероятностных закономерностей массовых однородных случайных событий.

Некоторые задачи, относящиеся к массовым случайным явлениям, пытались решать, используя соответствующий математический аппарат, еще в начале ХVII в. Изучая ход и результаты различных азартных игр, Б. Паскаль, П. Ферма и Х. Гюйгенс в середине XVII века заложили основы классической теории вероятностей. В своих работах они неявно использовали понятия вероятности и математического ожидания случайной величины. Только в начале XVIII в. Я. Бернулли формулирует понятие вероятности.

Дальнейшими успехами теория вероятностей обязана Муавру, Лапласу, Гауссу, Пуассону и др.

В развитие теории вероятностей огромный вклад внесли русские и советские математики, такие как П.Л. Чебышев, А.А. Марков, А.М. Ляпунов, С.Н. Бернштейн, А.Н. Колмогоров, А.Я. Хинчин, А. Прохоров и др.

Особое место в развитии теории вероятностей принадлежит и узбекистанской школе, яркими представителями которой являются академики В.И. Романовский, С.Х. Сираждинов, Т.А. Сарымсаков, Т.А. Азларов, Ш.К. Фарманов, профессора И.С. Бадалбаев, М.У. Гафуров, Ш.А. Хашимов и др.

Как уже было отмечено, потребности практики, способствовав зарождению теории вероятностей, питали ее развитие как науки, приводя к появлению все новых ее ветвей и разделов. На теорию вероятностей опирается математическая статистика, задача которой состоит в том, чтобы по выборке восстановить с определенной степенью достоверности характеристики, присущие генеральной совокупности. От теории вероятностей отделились такие отрасли науки, как теория случайных процессов, теория массового обслуживания, теория информации, теория надежности, эконометрическое моделирование и др.

В качестве важнейших сфер приложения теории вероятностей можно указать экономические, технические науки. В настоящее время трудно себе представить исследование экономико-технических явлений без моделирований, опирающихся на теорию вероятностей, без моделей корреляционного и регрессионного анализа, адекватности и "чувствительных" адаптивных моделей.

События, происходящие в автомобильных потоках, степень надежности составных частей машин, автокатастрофы на дорогах, различные ситуации в процессе проектирования дорог ввиду их недетерминированности входят в круг проблем, исследуемых посредством методов теории вероятностей.

Основные понятия теории вероятностей -- это опыт или эксперимент и события. Действия, которые осуществляются при определенных условиях и обстоятельствах, мы назовем экспериментом. Каждое конкретное осуществление эксперимента называется испытанием.

Всякий мыслимый результат эксперимента называется элементарным событием и обозначается через. Случайные события состоят из некоторого числа элементарных событий и обозначаются через A, B, C, D,...

Множество элементарных событий таких, что

1) в результате проведения эксперимента всегда происходит одно из элементарных событий;

2) при одном испытании произойдет только одно элементарное событие называется пространством элементарных событий и обозначается через.

Таким образом, любое случайное событие является подмножеством пространства элементарных событий. По определению пространства элементарных событий достоверное событие можно обозначить через. Невозможное событие обозначается через.

Пример 1. Бросается игральная кость. Пространство элементарных событий, отвечающее данному эксперименту, имеет следующий вид:

Пример 2. Пусть в урне содержатся 2 красных, 3 синих и 1 белый, всего 6 шаров. Эксперимент состоит в том, что из урны вынимаются наудачу шары. Пространство элементарных событий, отвечающее данному эксперименту, имеет следующий вид:

где элементарные события имеют следующие значения: - появился белый шар; - появился красный шар; - появился синий шар. Рассмотрим следующие события:

А -- появление белого шара;

В -- появление красного шара;

С -- появление синего шара;

D -- появление цветного (небелого) шара.

Здесь мы видим, что каждое из этих событий обладает той или иной степенью возможности: одни - большей, другие - меньшей. Очевидно, что степень возможности события В больше, чем события А; события С -- чем события В; события D -- чем события С. Чтобы количественно сравнивать между собой события по степени их возможности, очевидно, нужно с каждым событием связать определенное число, которое тем больше, чем более возможно событие.

Это число обозначим через и назовем вероятностью события А. Дадим теперь определение вероятности.

Пусть пространство элементарных событий является конечным множеством и элементы его суть. Будем считать, что они являются равновозможными элементарными событиями, т.е. каждое элементарное событие не имеет больше шансов появления, чем другие. Как известно, каждое случайное событие А состоит из элементарных событий как подмножество. Эти элементарные события называются благоприятствующими для А.

Вероятность события А определяется формулой

где m -- число благоприятствующих элементарных событий для А, n -- число всех элементарных событий, входящих в.

Если в примере 1 через А обозначить событие, состоящее в том, что выпадет четное число очков, то

В примере 2 вероятности событий имеют следующие значения:

Из определения вероятности вытекают следующие ее свойства:

1. Вероятность достоверного события равна единице.

Действительно, если событие достоверно, то все элементарные события благоприятствуют ему. В этом случае m=n и, следовательно,

2. Вероятность невозможного события равна нулю.

Действительно, если событие невозможно, то ни одно элементарное событие не благоприятствует ему. В этом случае m=0 и, следовательно,

3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных событий. В этом случае, а значит, и, следовательно,

Итак, вероятность любого события удовлетворяет неравенствам

Относительной частотой события называют отношение числа испытаний, в которых событие появилось, к общему числу фактически произведенных испытаний.

Таким образом, относительная частота события А определяется формулой

где т -- число появлений события, п -- общее число испытаний.

Сопоставляя определения вероятности и относительной частоты, заключаем: определение вероятности не требует, чтобы испытания производились в действительности; определение же относительной частоты предполагает, что испытания были произведены фактически.

Пример 3. Из 80 случайно отобранных одинаковых деталей выявлено 3 бракованных. Относительная частота бракованных деталей равна

Пример 4. В течение года на одном из объектов было проведено 24 проверки, причем было зарегистрировано 19 нарушений законодательства. Относительная частота нарушений законодательства равна

Длительные наблюдения показали, что если в одинаковых условиях производятся опыты, в каждом из которых число испытаний достаточно велико, то относительная частота изменяется мало (тем меньше, чем больше произведено испытаний), колеблясь около некоторого постоянного числа. Оказалось, что это постоянное число есть вероятность появления события.

Таким образом, если опытным путем установлена относительная частота, то полученное число можно принять за приближенное значение вероятности. Это есть статистическое определение вероятности.

В заключении рассмотрим геометрическое определение вероятности.

Если пространство элементарных событий рассматривать как некоторую область на плоскости или в пространстве, а А как ее подмножество, то вероятность события А будет рассматриваться как отношение площадей или объемов А и, и находиться по следующим формулам:

Вопросы для повторения и контроля:

1. На какие классы делятся законы природы и общества по форме проявления причинных связей?

2. На какие виды можно подразделить события?

3. Что является предметом теории вероятностей?

4. Что вы знаете об истории развития теории вероятностей?

5. Каково значение теории вероятностей для экономических, технических задач?

6. Что такое эксперимент, испытание, элементарное событие и событие, как они обозначаются?

7. Что называется пространством элементарных событий?

8. Как определяется вероятность события?

9. Какие свойства вероятности вы знаете?

10. Что вы знаете об относительной частоте события?

11. В чем сущность статистического определения вероятности?

12. Каково геометрическое определение вероятности?

Биография и труды Колмогорова А.Н.

Элементарная теория вероятностей -- та часть теории вероятностей, в которой приходится иметь дело с вероятностями лишь конечного числа событий. Теория вероятностей, как математическая дисциплина...

Векторное пространство. Решение задач линейного программирования графическим способом

Теперь рассмотрим несколько задач линейного программирования и их решение графическим методом. Задача 1. max Z = 1+ - , . Решение. Заметим, что полуплоскости, определяемые системой неравенств данной задачи не имеют общих точек (рисунок 2 }