Альбедо земной поверхности. Альбедо планет и астрология

Поскольку астрология широко использует в своей концепции понятия света, особенно это касается теории аспектов, то имеет смысл обратить внимание на свойства планет отражать свет. Астрономия далеко шагнула вперед в изучении способности планет и любых других объектов отражать свет. Ещё в 1760 году в работе Фотометрия швейцарский астроном, математик и физик Йоганн Генрих Ламберт ввел в оптику понятие альбедо . Термин происходил от латинского albus - белый. Современная формулировка альбедо звучит примерно так: "Альбедо - это коэффициент отражательной способности, который равен отношению количества отраженного света к падающему на объект" Например, альбедо белого свежего снега составляет 0,80-0,90, а черного нового асфальта - 0,04. Показание альбедо для космических тел помогает определить их химический состав, понятно, что планеты с ледяным покровом будут отражать свет интенсивнее, чем каменные. В астрономии принято использовать два типа альбедо - геометрическое и сферическое (альбедо Бонда - по имени его изобретателя американского астронома Джорджа Филипса Бонда), первый вариант учитывает количество света отражаемого в направлении основного источника света - Солнца, а второй, сферический вариант, учитывает отражение света во всех направлениях.

Интересно в какой последовательности выстраиваются планеты Солнечной системы с точки зрения их альбедо?

В первую очередь, по моему мнению, заслуживает внимания геометрическое альбедо , поскольку оно находится чуть ближе к геоцентрической астрологической реальности. Сферическое альбедо, на мой взгляд, ближе к абсолютному, космическому пониманию способности отражать свет. Поскольку нас интересуют дела земные или, по крайней мере, дела в нашей солнечной системе, то геометрическое альбедо будет в приоритете.

Рекордсменом альбедо в Солнечной системе, кстати говоря, является спутник Сатурна ледяной и гладкий Энцелад с показателем сферического альбедо 0,99 . А ещё данные из таблицы позволяют сделать следующий любопытный вывод - если бы вместо Луны, вокруг Земли вращался такого же размера Сатурн, Юпитер или, например, Уран, то он светил бы ярче Луны в 4-5 раз, то есть ночью было бы достаточно светло, а в "полнолуние" просто слепило бы глаза.

Рассмотрим полученные последовательности планет:

С астрологической точки зрения, в первую очередь, заслуживает внимания рассмотреть последовательности №2 поскольку для астролога большую роль играет видимость планет. Земля из списка исключается как точка отсчета в геоцентрической системе астрологии. Очень важно отметить, что в этих последовательностях Солнце отсутствует (как причина и источник света). Из того, что Солнце является главным источником света для нашей системы, следует, что эффект альбедо может иметь отношение к свойствам планет распределять солнечный принцип - давать жизнь, силу, здоровье, энергию .

И действительно, обратите внимание, что первые две планеты последовательности благоприятные - Венера и Юпитер. За ними следуют традиционно неблагоприятные Сатурн и Марс. Кажется, такая логика работает.

Однако, пока не ясно почему замыкают эту последовательность Меркурий и Луна. Почему зловредные планеты расположились в середине последовательности? Может они и не так злы, если под злом понимать их способность отражать солнечный свет - а значит, давать тепло и энергию жизни ?

Луна оказалась в конце последовательности. Неужели она самая скупая на энергию жизни, свет? Нет, она исключение - дело в том, что близость Луны к Земле компенсирует её низкое альбедо, и мы ощущаем силу лунного света в полной мере. Поэтому из последовательности планет можно исключить Луну как спутник Земли, находящийся слишком близко к точке наблюдения.

Если это так, то наиболее безжизненным выглядит Меркурий - планета логики и голой рациональности . И только затем следуют планеты традиционно вредные - Марс и Сатурн.

Если попытаться использовать альбедо для понимания природы добра и зла в целом, то получится, что быть покалеченным, испытывать горе, лишения и потери (Марс и Сатурн), все же лучше, чем подавать минимальные признаки жизни. Мне кажется, что такое понимание зла в астрологии найдет себе применение.

Руслан Суси, 18.10.2011

Примечанияя :

Данные взяты из источника NASA - http://nssdc.gsfc.nasa.gov
- Здесь мне подумалось, что есть смысл математически рассчитать астрологическое альбедо - реально получаемый Землей свет от каждой из планет.

Словарный запас людей сильно разнится. Студент, ученый или разнорабочий отличаются друг от друга по эрудиции как Эллочка-людоедка от современного человека. И неважно, идет ли речь о научной терминологии, молодежном сленге или обычном русском мате. Сегодня мы расскажем вам о том, что такое "альбедо", и какую роль оно играет в различных ситуациях.

Физика

Если говорить об истинном значении слова "альбедо", это физическая величина, которая характеризует отражающие свойства поверхности. Альбедо поверхности будет отличаться для разных диапазонов длины волны света и спектральных характеристик тела. Если углубляться в детали, то эту величину можно разбить на три различных типа.

Нормальное альбедо

Истинное (нормальное) альбедо - это коэффициент, который показывает, насколько сильно рассеивается падающий свет из-за отражения от поверхности. Вычислить его можно через отношение падающего светового потока к отраженному. Несмотря на то что существует формула и задачи на вычисление этого коэффициента, в обычной ситуации данная величина определяется либо с помощью прибора (альбедометра), либо с помощью готовой таблицы с наиболее распространенными веществами.

Геометрическое

Когда речь заходит об астрономии величинах подобного масштаба, то утверждать что-либо очень сложно. Говоря про астрономические величины, альбедо - это соотношение освещенности возле поверхности Земли и величины освещенности, которую можно было бы получить, разместив вместо планеты абсолютно белый экран того же размера и в той же фазе. В большинстве случаев альбедо уже посчитано и может быть взято из готовых таблиц.

Бондовское

Сферическое альбедо - это величина, определяемая соотношением рассеиваемого света к потоку, падающему на тело. Ее можно вычислить как для определенного диапазона, так и для всего спектра. Данные величины также давно просчитаны. Например, сферическое альбедо Земли составляет примерно 0,29.

Деталь

С первого взгляда может показаться, что сейчас пойдет речь о каком-либо механизме или устройстве, но это не так. Все та же астрономия. Деталью альбедо называют область на небесном теле, которая ярко выделяется на окружающем фоне, независимо от того, темнее она или ярче. Обычно данный термин применяется к образованиям, которые нельзя объяснить с точки зрения геологии и рельефа планеты.

Данное понятие постепенно устаревает. С развитием телескопов и другой аппаратуры, помогающей изучать небесные тела, деталью стали называть временно неизученные участки поверхности, а термин остался только в употреблении астрономов-любителей.

В игре "Ведьмак 3"

Красота слова, его произношение и "загадочность" часто влияют на разработчиков игр и развлекательных приложений. Не обошла эта участь и слово "альбедо". Игра "Ведьмак 3" также использует данное понятие, но далеко не в его первоначальном значении. И даже не в метафоричном, чтобы указать на что-то значительное, выделяющееся.

В Witcher 3 рассматриваемое слово используется для обозначения алхимической смеси, которая нужна при создании различных зелий, бомб и экипировки. Даже сам порошок грязно серого цвета похож больше на порох, чем на пыль далеких планет.

Как получить в игре?

Этот немаловажный вопрос волнует многих геймеров, ведь без данного материала практически невозможно нормально проходить игру - без хороших доспехов вас будут постоянно убивать, без сильных взрывчатых веществ тяжело уничтожать группы монстров, а без зелий меч будет наносить мало урона боссам. Существует два пути решения этой проблемы.

  1. Купить ингредиент. У продвинутых травников и корчмарей есть внушительные запасы данного вещества. Кроме того, вы можете раздобыть материал у старой знакомой Кейры Мец.
  2. Сделать самостоятельно. Рецепт альбедо можно обнаружить в стартовой локации "Белый сад". Он находится в восточной части карты, чуть западнее от домика, с двумя солдатами по второстепенному квесту, в котором надо искать с собакой пропавших на поле боя воинов.

Однако приготовление порошка не так просто. Вам потребуется множество различных ингредиентов. Каких именно?

  • Эликсир "Белая чайка". Его создание также потребует от игрока неимоверного количества реагентов и в первую очередь алкоголя.
  • Вороний глаз.
  • Корень зарника.
  • Омела.
  • Цветок двустрела.
  • Сенжигрон.

В результате к концу игры вы сможете приготовить всего несколько пригоршней, но этого будет достаточно для удовлетворения всех необходимых потребностей.

Медицина

Вряд ли человек, производящий медицинское оборудование или медикаменты, на самом деле знал значение слова "альбедо", но его благозвучное произношение не ускользнуло от внимания одного рекламного отдела, в результате чего мы имеем компанию, занимающуюся производством и продажей медицинского оборудования.

Ультразвуковой ингалятор "Альбедо" - устройство, которое позволяет из жидкого лекарства сделать аэрозоль. К сожалению, найти правдивые отзывы об этом приборе очень тяжело, поэтому ограничимся общим описанием.

Ингаляторы "Альбедо" выполняют функции стационарного устройства как для домашнего использования, так и для медицинских учреждений. При применении специальных аксессуаров можно сделать даже собственную галокамеру или помещение для групповой терапии. Естественно, подобное многофункциональное устройство не может стоить слишком дешево. Ценовой диапазон колеблется в районе 20000 рублей, что может стать проблемой для обычно потребителя, но достаточно бюджетной для медицинских организаций.

Настольная игра

Фанатам игр в реальности тоже есть чем поживиться. "Альбедо" - серия комиксов про фурри-миры, выпускавшаяся с 1983 по 2005 год. Это научно-фантастическое произведение про удаленный участок космоса, населенный удивительными антропоморфными животными. Основные события разворачиваются вокруг политической обстановки.

У настольной игры "Альбедо" довольно сложные правила, для описания которых выпускались отдельные журналы и книги. Всего существует три издания, последнее из которых датируется 2005 годом. Несмотря на то что игры принадлежат одной серии, в них делается упор на различные составляющие. Например, первая редакция от 1988 выделяется рандомной генерацией персонажа. Вторая часть больше похожа на классические компьютерные РПГ вроде "Фоллаута 1". Что же касается третьего издания, то в нем делается упор на взаимодействие тактических групп. Одной из главных "фишек" серии стала смертность персонажей. Кроме того, в ней используются не только физические параметры персонажей, но и такие качества, как стрессоустойчивость и мотивация. В свое время это стало целым прорывом в индустрии настольных играх.

К сожалению, данная игра давно не выпускается. Найти ее можно разве что на частных аукционах либо в перепродаже на сайтах вроде Ebay.

Суммарная радиация, достигающая земной поверхности, не поглощается ею полностью, а частично отражается от земли. Поэтому при расчетах прихода солнечной энергии для какого-нибудь места необходимо принимать во внимание отражательную способность земной поверхности. Отражение радиации происходит также и от поверхности облаков. Отношение величины всего потока коротковолновой радиации Rк, отраженного данной поверхностью по всем направлениям, к потоку радиации Q, падающему на эту поверхность, называется альбедо (А) данной поверхности. Эта величина

показывает, какая часть падающей на поверхность лучистой энергии отражается от нее. Часто величину альбедо выражают в процентах. Тогда

(1.3)

В табл. № 1.5 приводятся величины альбедо различных видов земной поверхности. Из данных табл. № 1.5 видно, что наибольшей отражательной способностью обладает свежевыпавший снег. В отдельных случаях наблюдалась величина альбедо снега до 87%, а в условиях Арктики и Антарктики даже до 95%. Слежавшийся, подтаявший и тем более загрязненный снег отражает уже гораздо меньше. Альбедо различных почв и растительного покрова, как следует из табл. № 4, отличаются сравнительно незначительно. Многочисленные исследования показали, что величина альбедо часто изменяется в течение суток.

При этом наибольшие значения альбедо отмечаются утром и вечером. Объясняется это тем, что отражательная способность шероховатых поверхностей зависит от угла падения солнечных лучей. При отвесном падении солнечные лучи проникают глубже в растительный покров и там поглощаются. При малой высоте солнца лучи меньше проникают внутрь растительности и в большей мере отражаются от ее поверхности. Альбедо водных поверхностей в среднем меньше, чем альбедо поверхности суши. Объясняется это тем, что солнечные лучи (коротковолновая зелено-голубая часть солнечного спектра) в значительной мере проникают в прозрачные для них верхние слои воды, где рассеиваются и поглощаются. В связи с этим на отражательную способность воды оказывает влияние степень ее мутности.

Таблица № 1.5

Для загрязненной и мутной воды величины альбедо заметно возрастает. Для рассеянной радиации альбедо воды в среднем около 8-10%. Для прямой солнечной радиации альбедо водной поверхности зависит от высоты солнца: с уменьшением высоты солнца величина альбедо увеличивается. Так, при отвесном падении лучей отражается только около 2-5%. При низком положении солнца над горизонтом отражается 30-70%. Очень велика отражательная способность облаков. В среднем альбедо облаков около 80%. Зная величину альбедо поверхности и значение суммарной радиации, можно определить количество радиации, поглощенной данной поверхностью. Если А - альбедо, то величина а = (1-А) представляет собой коэффициент поглощения данной поверхности, показывающий, какая часть падающей на эту поверхность радиации ею поглощается.

Например, если на поверхность зеленой травы (А = 26%) падает поток суммарной радиации Q = 1,2 кал/см 2 мин, то процент поглощенной радиации будет

Q = 1- А = 1 - 0,26 = 0,74, или а = 74%,

а величина поглощенной радиации

В погл = Q (1 - А) = 1,2 ·0,74 = 0,89 кал\см2 ·мин.

Альбедо поверхности воды в большой степени зависит от угла падения солнечных лучей, поскольку чистая вода отражает свет по закону Френеля.

гдеZ п зенитный угол Солнца, Z 0 - угол преломления солнечных лучей.

Приположении Солнца в зените альбедо поверхности спокойного моря равна0,02. При росте зенитного угла СолнцаZ п альбедо увеличивается и достигает 0,35 приZ п =85.Волнение моря приводит к изменению Z п , и существенно уменьшает диапазон значений альбедо, поскольку оно увеличивается при больших Z n благодаря увеличению вероятности попадания лучей на наклоую волновую поверхность.Волнение влияет на отражающих способность не только из-занаклона поверхности волны относительно солнечных лучей, но и за счет образованием пузырей воздуха в воде. Эти пузыри в значительной степени рассеивают свет, увеличивая рассеяннуюрадиацию выходящего из моря. Поэтому при больших волнениях моря, когдавозникает пена и барашки, альбедо под влиянием обоих факторов увеличивается.Рассеянная радиация поступает к поверхности воды под разными углами.Интенсивность лучей различных направлений изменяется при изменении высоты Солнца, от которой зависит, как известно, интенсивность рассеивания солнечной радиации при безоблачном небе. Она зависит также от распределения облаков на небе. Поэтому альбедо поверхности моря для рассеянной радиации не является постоянным. Но границы его колебания более узкие 1 от 0,05 до 0,11.Следовательно, альбедо поверхности воды для суммарной радиации изменяется в зависимости от высоты Солнца, соотношение между прямой и рассеянной радиации, волнения поверхности моря.Надо иметь в виду, что северные части океанов в большой степени покрыты морским льдом. В таком случае надо учитывать и альбедо льда. Как известно, значительные пространства земной поверхности, особенно в средних и высоких широтах, покрытые облаками, которые очень отражают солнечную радиацию. Поэтому знания о альбедо облачности вызывают большой интерес. Были проведены специальные измерения альбедо облаков с помощью самолетов и аэростатов. Они показали, что альбедо облаков зависит от их формы и толщины.Наибольшие значения имеет альбедо высоко-кучевых и слоисто-кучевых облаков.Например, при толщине 300 м альбедо Ас находится в границах 71-73%, Sс - 56-64%, смешанных облаков Сu - Sс - около 50%.

Наиболееполные данные о альбедо облаков полученные в Украине. Зависимость альбедо и функции пропускания р от толщины облаков, является результатомсистематизации данных измерений, приводится в табл. 1.6. Как видно, рост толщины облаков приводит к увеличению альбедо и уменьшение функции пропускания.

Среднеезначение альбедо для облаков St при средней толщине 430 м равна 73%, для облаковS с при среднейтолщине 350м - 66%, а функции пропускания для указанных облаков равны соответственно 21 й 26%.

Альбедо облаков зависит от альбедо земной поверхности r 3 , над которой располагается облако. С физической точки зрения понятно, что чем большеr 3 , тем больше поток отраженной радиации, проходящей вверх через верхнюю границуоблака. Поскольку альбедо - это отношение этого потока до поступающего, то увеличение альбедо земной поверхности приводит к увеличению альбедо облаков.Исследование свойств облаков отражать солнечную радиацию проводились с помощью искусственных спутников Земли путем измерения яркости облаков.Средние значения альбедо облаков, полученные по этим данным, приводятся в табл.1.7.

Таблиця 1.7 - Средние значения альбедо облаков разных форм

По этим данным альбедо облаков колеблется от 29 до 86%. Обращает внимание тот факт, что перистые облака имеют небольшое альбедо по сравнению с другими формами облаков (за исключением кучевых). Только перисто-слоистые облака, которые имеют большую толщину, в значительной степени отражают солнечную радиацию(r= 74%).

Долгосрочный тренд альбедо направлен в сторону похолодания. За последние годы спутниковые измерения показывают незначительный тренд.

Изменение альбедо Земли потенциально является мощным воздействием на климат. Когда альбедо, или отражающая способность, возрастает, больше солнечного света отражается назад в космос. Это оказывает охлаждающее действие на глобальные температуры. Напротив, снижение альбедо нагревает планету. Изменение альбедо всего на 1% дает радиационный эффект 3,4 Вт/м2, сопоставимый с эффектом удвоения СО2. Как же альбедо воздействовало на глобальные температуры в последние десятилетия?

Тренды альбедо до 2000 года

Альбедо Земли определяется несколькими факторами. Снег и лед хорошо отражают свет, так что когда они тают, альбедо понижается. Леса имеют более низкое альбедо, чем открытые пространства, поэтому сведение лесов повышает альбедо (оговоримся, что уничтожение всех лесов не остановит глобальное потепление). Аэрозоли имеют прямое и косвенное влияние на альбедо. Прямым влиянием является отражение солнечного света в космос. Непрямой эффект состоит в действии частиц аэрозолей в качестве центров конденсации влаги, что затрагивает формирование и время жизни облаков. Облака, в свою очередь, влияют на глобальные температуры несколькими способами. Они охлаждают климат за счет отражения солнечного света, но также могут давать эффект нагрева, удерживая исходящее инфракрасное излучение.

Все эти факторы следует учитывать при суммировании различных радиационных воздействий, определяющих климат. Изменения в землепользовании вычисляются исходя из исторических реконструкций изменения состава пахотных земель и пастбищ. Наблюдения со спутников и с земли позволяют определять тренды уровня аэрозолей и альбедо облаков. Можно видеть, что альбедо облаков является самым сильным фактором из различных видов альбедо. Долгосрочный тренд направлен в сторону похолодания, воздействие -0,7Вт/м2 с 1850 по 2000 г.

Рис.1 Среднегодовые общие радиационные воздействия (Chapter 2 of the IPCC AR4) .

Тренды альбедо после 2000 года.

Одним из способов измерения альбедо Земли является пепельный свет Луны. Это солнечный свет, сначала отраженный Землей, а затем отраженный Луной обратно к Земле в ночное время. Пепельный свет Луны измеряется солнечной обсерваторией Big Bear с ноября 1998 года (был также сделан ряд измерений в 1994 и 1995 годах). Рис.2 показывает изменения альбедо по реконструкции спутниковых данных (черная линия) и по измерениям пепельного света Луны (синяя линия) (Palle 2004) .


Рис.2 Изменения альбедо, реконструированные по спутниковым данным ISCCP (черная линия) и по изменениям пепельного света Луны (снняя линия). Правая вертикальная шкала показывает негативное радиационное воздействие (т.е. на охлаждение) (Palle 2004).

Данные на Рис.2 проблематичны. Черная линия, реконструкция спутниковых данных ISCCP "является чисто статистическим параметром и имеет мало физического смысла, поскольку она не учитывает нелинейных отношений между свойствами облаков и поверхности и планетарным альбедо, а также не включает аэрозольных изменений альбедо, например, связанных с вулканом Пинатубо или антропогенной эмиссией сульфатов " (Real Climate).

Еще более проблематическим является пик альбедо около 2003 года, видимый на синей линии пепельного света Луны. Он сильно противоречит спутниковым данным, показывающим в это время незначительный тренд. Для сравнения можно вспомнить извержение Пинатубо в 1991 году, заполнившее атмосферу аэрозолями. Эти аэрозоли отражали солнечный свет, создав отрицательное радиационное воздействие 2,5 Вт/м2. Это резко снизило глобальную температуру. Данные пепельного света тогда показывали воздействие почти -6 Вт/м2, что должно было означать еще большее падение температуры. Никаких похожих событий не произошло в 2003 году. (Wielicki 2007).

В 2008 году была обнаружена причина несоответствия. Обсерватория Big Bear установила новый телескоп для измерения пепельного света Луны в 2004 году. С новыми улучшенными данными они заново откалибровали свои старые данные и пересмотрели свои оценки альбедо (Palle 2008). Рис. 3 показывает старые (черная линия) и обновленные (синяя линия) значения альбедо. Аномальный пик 2003 года исчез. Впрочем, тренд повышения альбедо с 1999 по 2003 год сохранился.


Рис. 3 Изменение альбедо Земли по данным замеров пепельного света Луны. Черная линия - изменения альбедо по публикации 2004 года (Palle 2004). Синяя линия - обновленные изменения альбедо после улучшения процедуры анализа данных, также включены данные за больший период времени (Palle 2008).

Насколько точно определяется альбедо по пепельному свету Луны? Метод не является глобальным по охвату. Он затрагивает примерно треть Земли в каждом наблюдении, некоторые области всегда остаются "невидимыми" с места наблюдений. Кроме того, измерения нечасты, они делаются в узком диапазоне длин волн 0,4-0,7 µm (Bender 2006).

В отличие от этого спутниковые данные, такие как CERES, являются глобальным измерением коротковолнового излучения Земли, включают все эффекты свойств поверхности и атмосферы. По сравнению с измерениями пепельного света, они покрывают более широкий диапазон (0.3-5.0 µm). Анализ данных CERES показывает отсутствие долгосрочного тренда альбедо с марта 2000 по июнь 2005 года. Сравнение с тремя независимыми наборами данных (MODIS, MISR и SeaWiFS) демонстрирует "замечательное соответствие" всех 4-х результатов (Loeb 2007a).


Рис. 4 Месячные изменения средних значений CERES SW TOA flux and MODIS cloud fraction ().

Альбедо воздействовало на глобальные температуры - в основном в сторону похолодания в долгосрочной тенденции. Что касается недавних трендов, данные пепельного света показывают рост альбедо с 1999 по 2003 год с незначительным изменениями после 2003 года. Спутники показывают незначительные изменения с 2000 года. Радиационное воздействие от изменений альбедо в последние годы минимальное.

Суммарная солнечная радиация, приходя­щая на земную поверхность, частично от нее отражается и теряется ею - это отражен­ная радиация (R k), она составляет около 3 % от всей солнечной радиации. Оставшаяся ра­диация поглощается верхним слоем почвы или воды и называется поглощенной радиацией (47 %). Она служит источником энергии всех движений и процессов в атмосфере. Величи­на отражения и соответственно поглощения солнечной радиации зависит от отражательной способности поверхности, или альбедо. Аль­бедо поверхности - это отношение отра­женной радиации к суммарной радиации, вы­раженное в долях от единицы или в процен­тах: А=R k /Q∙100 % .Отраженная радиация выражается формулой R k =Q∙A, оставшаяся поглощенная -Q–R k или (Q·(1–А), где 1– А – коэффициент поглощения, причем А рассчитывается в долях от единицы.


Альбедо земной поверхности зависит от ее свойств и состояния (цвета, влажности, ше­роховатости и т. д.) и изменяется в больших пределах, особенно в умеренных и субполяр­ных широтах в связи со сменой сезонов года. Наиболее высокое альбедо у свежевыпавше­го снега - 80-90 %, у сухого светлого пес­ка - 40 %, у растительности - 10-25 %, у влажного чернозема - 5 %. В полярных об­ластях высокое альбедо снега сводит на нет преимущество больших величин суммарной ра­диации, получаемых в летнее полугодие. Аль­бедо водных поверхностей в среднем меньше, чем суши, так как в воде лучи глубже прони­кают в верхние слои, чем в почвогрунтах, рас­сеиваются там и поглощаются. При этом на альбедо воды большое влияние оказывает угол падения солнечных лучей: чем он меньше, тем больше отражательная способность. При от­весном падении лучей альбедо воды составля-

ет 2- 5 %, при малых углах - до 70 %. В целом альбедо поверхности Мирового оке­ана составляет менее 20 %, так что вода по­глощает до 80 % суммарной солнечной ради­ации, являясь мощным аккумулятором тепла на Земле.

Интересно также распределение альбедо на различных широтах земного шара и в разные сезоны.

Альбедо в целом увеличивается от низких широт к высоким, что связано с возрастаю­щей облачностью над ними, снежной и ледя­ной поверхностью полярных областей и умень­шением угла падения солнечных лучей. При этом видны локальный максимум альбедо в экваториальных широтах вследствие большой


облачности и минимумы в тропических широ­тах с их минимальной облачностью.

Сезонные вариации альбедо в северном (материковом) полушарии значительнее, не­жели в южном, что обусловлено более ост­рой реакцией его на сезонные изменения при­роды. Это особенно заметно в умеренных и субполярных широтах, где летом альбедо по­нижено из-за зеленой растительности, а зи­мой повышено за счет снежного покрова.

Планетарное альбедо Земли - отношение уходящей в Космос «неиспользованной» ко­ротковолновой радиации (всей отраженной и части рассеянной) к общему количеству сол­нечной радиации, поступающей на Землю. Оно оценивается в 30 %.