Значение нитрифицирующие бактерии в современном толковом словаре, бсэ. Бактерии нитрифицирующие. Значение нитрифицирующих бактерий Азотный цикл, нитрификация

  • Автофото трофы - энергию для синтеза органических веществ получают из света (фотосинтез). К фототрофам относятся растения и фотосинтезирующие бактерии.
  • Автохемо трофы - энергию для синтеза органических веществ получают при окислении неорганических веществ (хемосинтез). Например,
    • серобактерии окисляют сероводород до серы,
    • железобактерии окисляют двухвалентное железо до трехвалентного,
    • нитрифицирующие бактерии окисляют аммиак до азотной кислоты.

Сходство и различие фотосинтеза и хемосинтеза

  • Сходства: все это пластический обмен, из неорганических веществ делаются органические (из углекислого газа и воды - глюкоза).
  • Различие: энергия для синтеза при фотосинтезе берется из света, а при хемосинтезе - из окислительно-восстановительных реакций.


ВНИМАНИЕ! Разница между авто- и гетеротрофами состоит в способе получения органических веществ («получают готовые» или «делают сами»). Энергию для жизнедеятельности и авто-, и гетеротрофы получают путем дыхания.

Сравнение дыхания и фотосинтеза

Тесты и задания

АВТОТРОФЫ
Выберите три варианта. К автотрофам относят

1) споровые растения
2) плесневые грибы
3) одноклеточные водоросли
4) хемотрофные бактерии
5) вирусы
6) большинство простейших

Ответ


1. Определите два организма, «выпадающих» из списка автотрофных организмов, и запишите цифры, под которыми они указаны.
1) Амеба обыкновенная
2) Венерина мухоловка
3) Пинуллярия зеленая
4) Инфузория туфелька
5) Спирогира

Ответ


2. Все приведённые ниже организмы, кроме двух, по типу питания относят к автотрофам. Определите два организма, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) хламидомонада
2) хвощ полевой
3) подосиновик
4) кукушкин лён
5) дрожжи

Ответ


3. Все приведённые ниже организмы, кроме двух, по типу питания относят к автотрофам. Определите два организма, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) серобактерия
2) спирогира
3) мухомор
4) сфагнум
5) бактериофаг

Ответ


4. Все приведённые ниже организмы, кроме двух, по типу питания относят к автотрофам. Определите два организма, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) цианобактерия
2) амёба
3) ламинария
4) сфагнум
5) пеницилл

Ответ


Ответ


Выберите один, наиболее правильный вариант. По способу питания подавляющее большинство бактерий
1) автотрофы
2) сапротрофы
3) хемотрофы
4) симбионты

Ответ


Выберите один, наиболее правильный вариант. Какой организм по способу питания относят к гетеротрофам?
1) хламидомонаду
2) ламинарию
3) пеницилл
4) хлореллу

Ответ


Выберите один, наиболее правильный вариант. Бактерии гниения являются по способу питания организмами
1) хемотрофными
2) автотрофными
3) гетеротрофными
4) симбиотическими

Ответ


АВТОТРОФЫ - ГЕТЕРОТРОФЫ
1. Установите соответствие между особенностью обмена веществ и группой организмов, для которых она характерна: 1) автотрофы, 2) гетеротрофы

А) выделение кислорода в атмосферу
Б) использование энергии, заключенной в пище, для синтеза АТФ
В) использование готовых органических веществ
Г) синтез органических веществ из неорганических
Д) использование углекислого газа для питания

Ответ


2. Установите соответствие между характеристикой и способом питании организмов: 1) автотрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в правильном порядке.
А) источником углерода служит углекислый газ
Б) сопровождается фотолизом воды
В) используется энергия окисления органических веществ
Г) используется энергия окисления неорганических веществ
Д) поступление пищи путем фагоцитоза

Ответ


3. Установите соответствие между особенностью питания организма и группой организмов: 1) автотрофы, 2) гетеротрофы. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) захватывают пищу путём фагоцитоза
Б) используют энергию, освобождающуюся при окислении неорганических веществ
В) получают пищу путём фильтрации воды
Г) синтезируют органические вещества из неорганических
Д) используют энергию солнечного света
Е) используют энергию, заключённую в пище

Ответ


АВТОТРОФЫ - ГЕТЕРОТРОФЫ ПРИМЕРЫ
1. Установите соответствие между примером и способом питания: 1) автотрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в правильном порядке.

А) цианобактерии
Б) ламинария
В) бычий цепень
Г) одуванчик
Д) лисица

Ответ


2. Установите соответствие между организмом и типом питания: 1) автотрофное, 2) гетеротрофное. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) сосна сибирская
Б) кишечная палочка
В) амебa человеческая
Г) пеницилл
Д) хвощ полевой
Е) хлорелла

Ответ


3. Установите соответствие между одноклеточным организмов и типом питания, который для него характерен: 1) автотрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) холерный вибрион
Б) железобактерия
В) малярийный плазмодий
Г) хламидомонада
Д) цианобактерия
Е) дизентерийная амёба

Ответ


4. Установите соответствие между примерами и способами питания: 1) автотрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) спирогира
Б) бычий цепень
В) хвощ полевой
Г) серобактерия
Д) зеленый кузнечик

Ответ


5. Установите соответствие между примерами и способами питания: 1) автотрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) хлорелла
Б) лягушка
В) шампиньон
Г) папоротник
Д) ламинария

Ответ


СОБИРАЕМ 6:
А) мукор
Б) нитрифицирующие бактерии
В) трутовик

ХЕМОТРОФЫ
Выберите один, наиболее правильный вариант. Какие организмы преобразуют энергию окисления неорганических веществ в макроэргические связи АТФ?

1) фототрофы
2) хемотрофы
3) гетеротрофы
4) сапротрофы

Ответ


Хемосинтезирующие бактерии способны получать энергию из соединений всех элементов, кроме двух. Определите два элемента, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) Азот
2) Хлор
3) Железо
4) Магний
5) Сера

Ответ


ФОТОТРОФЫ - ХЕМОТРОФЫ
Установите соответствие между характеристикой организмов и способом их питания: 1) фототрофный, 2) хемотрофный. Запишите цифры 1 и 2 в правильном порядке.

А) используется энергия света
Б) происходит окисление неорганических веществ
В) реакции протекают в тилакоидах
Г) сопровождается выделением кислорода
Д) присущ водородным и нитрифицирующим бактериям
Е) требует наличия хлорофилла

Ответ


Выберите один, наиболее правильный вариант. Сходство хемосинтеза и фотосинтеза состоит в том, что в обоих процессах
1) на образование органических веществ используется солнечная энергия
2) на образование органических веществ используется энергия, освобождаемая при окислении неорганических веществ
3) в качестве источника углерода используется углекислый газ
4) в атмосферу выделяется конечный продукт - кислород

Ответ


ФОТОТРОФЫ - ХЕМОТРОФЫ ПРИМЕРЫ
1. Установите соответствие между группой организмов и процессом превращения веществ, который для нее характерен: 1) фотосинтез, 2) хемосинтез

А) папоротникообразные
Б) железобактерии
В) бурые водоросли
Г) цианобактерии
Д) зеленые водоросли
Е) нитрифицирующие бактерии

Ответ


2. Установите соответствие между примерами и способами питания живых организмов: 1) фототрофный, 2) хемотрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) спирогира
Б) нитрифицирующая бактерия
В) хлорелла
Г) серобактерии
Д) железобактерии
Е) хлорококк

Ответ


ФОТОТРОФЫ - ХЕМОТРОФЫ - ГЕТЕРОТРОФЫ
1. Установите соответствие между организмом и способом его питания: 1) фототрофный, 2) гетеротрофный, 3) хемотрофный. Запишите цифры 1, 2 и 3 в правильном порядке.

А) спирогира
Б) пеницилл
В) серобактерия
Г) цианобактерия
Д) дождевой червь

Ответ


2. Установите соответствие между организмами и типами их питания: 1) фототрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) лямблия
Б) гриб спорынья
В) хламидомонада
Г) цианобактерия
Д) сфагнум

Ответ


ФОТОСИНТЕЗ - ДЫХАНИЕ
1. Установите соответствие между характеристикой и процессом: 1) фотосинтез, 2) гликолиз. Запишите цифры 1 и 2 в правильном порядке.

А) происходит в хлоропластах
Б) синтезируется глюкоза
В) является этапом энергетического обмена
Г) происходит в цитоплазме
Д) происходит фотолиз воды

Ответ


2. Установите соответствие между характеристикой и процессом жизнедеятельности растения, к которому её относят: 1-фотосинтез, 2-дыхание
1) синтезируется глюкоза
2) окисляются органические вещества
3) выделяется кислород
4) образуется углекислый газ
5) происходит в митохондриях
6) сопровождается поглощением энергии

Ответ


3. Установите соответствие между процессом и видом обмена веществ в клетке: 1) фотосинтез, 2) энергетический обмен
А) образование пировиноградной кислоты (ПВК)
Б) происходит в митохондриях
В) фотолиз молекул воды
Г) синтез молекул АТФ за счет энергии света
Д) происходит в хлоропластах
Е) синтез 38 молекул АТФ при расщеплении молекулы глюкозы

Ответ


4. Установите соответствие между признаком жизнедеятельности растений и процессом дыхания или фотосинтеза: 1) дыхание, 2) фотосинтез
А) осуществляется в клетках с хлоропластами
Б) происходит во всех клетках
В) поглощается кислород
Г) усваивается углекислый газ
Д) образуются органические вещества из неорганических на свету
Е) окисляются органические вещества

Ответ


5. Установите соответствие особенностями и между процессами: 1) фотосинтез, 2) дыхание. Запишите цифры 1 и 2 в правильном порядке.
А) АТФ образуется в хлоропластах
Б) происходит во всех живых клетках
В) АТФ образуется в митохондриях
Г) конечные продукты – органические вещества и кислород
Д) исходные вещества – углекислый газ и вода
Е) энергия высвобождается

Ответ


6. Установите соответствие между процессами и их особенностями: 1) дыхание, 2) фотосинтез. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) кислород поглощается, а углекислый газ и вода выделяются
Б) органические вещества образуются
В) происходит в хлоропластах на свету
Г) углекислый газ и вода поглощаются, а кислород выделяется
Д) происходит в митохондриях на свету и в темноте
Е) органические вещества расщепляются

Ответ


Установите соответствие между процессом, протекающим в клетке, и органоидом, в котором он происходит: 1) митохондрия, 2) хлоропласт. Запишите цифры 1 и 2 в правильной последовательности.
А) восстановление углекислого газа до глюкозы
Б) синтез АТФ в процессе дыхания
В) первичный синтез органических веществ
Г) превращение световой энергии в химическую
Д) расщепление органических веществ до углекислого газа и воды

Ответ


Установите соответствие между признаками органоида и органоидом, для которого эти признаки характерны: 1) Хлоропласт, 2) Митохондрия. Запишите цифры 1 и 2 в правильном порядке.
А) Содержит зелёный пигмент
Б) Состоит из двойной мембраны, тилакоидов и гран
В) Преобразует энергию света в химическую энергию
Г) Состоит из двойной мембраны и крист
Д) Обеспечивает окончательное окисление питательных веществ
Е) Запасает энергию в виде 38 моль АТФ при расщеплении 1 моль глюкозы

Ответ


ДЫХАНИЕ РАСТЕНИЙ
Выберите один, наиболее правильный вариант. В процессе дыхания растения обеспечиваются

1) энергией
2) водой
3) органическими веществами
4) минеральными веществами

Ответ


Выберите один, наиболее правильный вариант. Культурные растения плохо растут на заболоченной почве, так как в ней
1) недостаточное содержание кислорода
2) происходит образование метана
3) избыточное содержание органических веществ
4) содержится много торфа

Ответ


Выберите один, наиболее правильный вариант. Растения в процессе дыхания используют кислород, который поступает в клетки и обеспечивает
1) окисление неорганических веществ до углекислого газа и воды
2) окисление органических веществ с освобождением энергии
3) синтез органических веществ из неорганических
4) синтез белка из аминокислот

Ответ


Выберите один, наиболее правильный вариант. Растения в процессе дыхания
1) выделяют кислород и поглощают углекислый газ
2) поглощают кислород и выделяют углекислый газ
3) накапливают энергию в образующихся органических веществах
4) синтезируют органические вещества из неорганических

Ответ


Выберите один, наиболее правильный вариант. Чтобы обеспечить доступ кислорода воздуха к корням растений, почву надо
1) удобрять солями калия
2) рыхлить до полива и во время полива
3) удобрять азотными солями
4) рыхлить после полива

Ответ


Проанализируйте текст «Дыхание растений». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка. Процесс дыхания растений протекает постоянно. В ходе этого процесса организм растения потребляет ________ (А), а выделяет ________ (Б). Ненужные газообразные вещества удаляются из растения путём диффузии. В листе они удаляются через особые образования - ________ (В), расположенные в кожице. При дыхании освобождается энергия органических веществ, запасённая в ходе ________ (Г), происходящего в зелёных частях растения на свету.
1) вода
2) испарение
3) кислород
4) транспирация
5) углекислый газ
6) устьица
7) фотосинтез
8) чечевичка

Ответ


© Д.В.Поздняков, 2009-2019

22 апреля 2016

По типу питания все известные живые организмы делятся на два больших вида: гетеро- и автотрофы. Отличительной особенностью последних является их способность к самостоятельному построению новых элементов из углекислоты и других неорганических веществ.

Источники энергии, поддерживающие их жизнедеятельность, обусловливают их деление на фотоафтотрофы (источник - свет) и хемоавтотрофы (источник - минеральные вещества). А в зависимости от названия субстрата, который окисляют хемоавтортофы, они разделяются на водородные и нитрифицирующие бактерии, а также на серо- и железобактерии.

Данная статья будет посвящена наиболее распространенной среди них группе - нитрофицирующим бактериям.

История открытия

Еще в середине 19 века немецкими учеными было доказано, что процесс нитрификации является биологическим. Опытным путем они показали, что при добавлении к канализационным водам хлороформа останавливалось окисление аммиака. Но объяснить, почему так происходит, они не смогли.

Это удалось сделать несколькими годами позже русскому ученому Виноградскому. Он выделил две группы бактерий, которые поэтапно брали участие в процессе нитрификации. Так, одна группа обеспечивала окисление аммония до кислоты азотистой, а уже вторая группа бактерий отвечала за ее превращение в азотную. Все задействованные в этом процессе нитрифицирующие бактерии являются грамотрицательными.

Особенности процесса окисления

Процесс образования нитритов путем окисления аммония имеет несколько этапов, в ходе которых образуются азотсодержащие соединения с различной степенью окисленности группы NH.

Первым продуктом окисления аммония является гидроксиламин. Вероятней всего, он образуется из-за включения молекулярного кислорода в группу NH 4 , хотя окончательно этот процесс не доказан и остается дискутабельным.

Далее гидроксиламин превращается в нитрит. Предположительно, процесс осуществляется через образование NOH (гипонитрита) с выделением закиси азота. В этом случае ученые считают продукцию закиси азота всего лишь побочным продуктом синтеза, из-за восстановления нитрита.

Кроме продукции химических элементов, в ходе денитрофикации выделяется большое количество энергии. Подобно происходящему у гетеротрофных аэробных организмов, в данном случае синтез молекул АТФ связан с окислительно-восстановительными процессами, в результате которых на кислород передаются электроны.

При окислении нитрита большую роль играет процесс обратного транспорта электронов. Включение его электронов в цепь происходит непосредственно в цитохромах (С-типа и/или А-типа), а для этого требуется достаточно большие затраты энергии. Как результат, хемоавтотрофные нитрифицирующие бактерии полностью обеспечены нужным запасом энергии, которая используется для процессов построения и усвоения углекислоты.

Виды нитрифицирующих бактерий

В первой фазе нитрификации берут участие четыре рода нитробактерий:

  • нитросомонас;
  • нитроцистис;
  • нитросолюбус;
  • нитрососпира.

Кстати, на предложенном изображении вы можете видеть нитрифицирующие бактерии (фото под микроскопом).

Экспериментальным путем среди них достаточно сложно, а зачастую и вовсе невозможно выделить одну из культур, поэтому их рассмотрение преимущественно комплексное. Все из перечисленных микроорганизмов имеют размер до 2-2,5 мкм и преимущественно овальную или округлую форму (за исключением нитроспиры, которые имеют вид палочки). Они способны к бинарному делению и направленному движению за счет жгутиков.

Во второй фазе нитрификации принимают участие:

  • род нитробактер;
  • род нитроспина;
  • нитрококус.

Наиболее изучен штамм бактерий рода нитрбактер, имеющий название в честь своего первооткрывателя Виноградского. Эти бактерии нитрифицирующие имеют грушевидную форму клеток, размножаются почкованием, с образованием подвижной (за счет жгутика) дочерней клетки.

Строение бактерий

Исследованные нитрифицируюшие бактерии имеют схожее клеточное строение с другими грамотрицательными микроорганизмами. Некоторые из них имеют достаточно развитую систему внутренних мембран, образующих стопку в центре клетки, тогда как у других они располагаются больше по периферии или образуют структуру в виде чаши, состоящую из нескольких листков. По всей видимости, именно с этими образованиями связаны ферменты, которые участвуют в процессе окисления нитрификаторами специфических субстратов.

Тип питания нитрифицирующих бактерий

Нитробактерии относятся к облигатным автотрофам, поскольку не способны использовать экзогенные органические вещества. Однако экспериментальным путем все же показана способность некоторых штаммов нитрифицирующих бактерий использовать некоторые органические соединения.

Было выявлено, что субстрат, содержащий дрожжевые автолизаты, серин и глутамат в низких концентрациях, стимулирующим образом воздействовал на рост нитробактерий. Это происходит как при наличии нитрита, так и при его отсутствии в питательной среде, хотя процесс протекает гораздо медленнее. И наоборот, при наличии нитрита процесс окисления ацетата подавляется, но значительно увеличивается включение его углерода в белок, различные аминокислоты и другие клеточные компоненты.

В результате множественных экспериментов были получены данные о том, что бактерии нитрифицирующие все же могут переключаться на гетеротрофное питание, но насколько продуктивно и как долго они могут существовать в таких условиях, еще предстоит выяснить. Пока данные достаточно противоречивы, чтобы делать окончательные умозаключения по этому поводу.

Среда обитания и значение нитрифицирующих бактерий

Нитрифицирующие бактерии относятся к хемоавтотрофам и имеют широкое распространение в природе. Они встречаются повсеместно: в почве, различных субстратах, а также водоемах. Процесс их жизнедеятельности вносит большой вклад в общий круговорот азота в природе и в действительности может достигать огромных масштабов.

Например, такой микроорганизм, как нитроцистис океанус, выделенный из Атлантического океана, относится к облигатным галофилам. Он может существовать только в морской воде или субстратах, содержащих ее. Для таких микроорганизмов важна не только среда обитания, но и такие константы, как рН и температура.

Все известные нитрифицирующие бактерии относят к облигатным аэробам. Для того чтобы окислить аммоний в азотистую кислоту, а азотистую кислоту в азотную, им нужен кислород.

Условия обитания

Еще одним важным моментом, который выявили ученые, стало то, что место, где живут нитрифицирующие бактерии, не должно содержать органических веществ. Была выдвинута теория, что эти микроорганизмы в принципе не могут использовать органические соединения из вне. Их даже назвали облигатными автотрофами.

В последующем неоднократно было доказано пагубное влияние глюкозы, мочевины, пептона, глицерина и другой органики на бактерии нитрифицирующие, но эксперименты не останавливаются.

Значение нитрифицирующих бактерий для почвы

До недавнего времени считалось, что нитрификаторы благоприятно влияют на почву, увеличивая ее плодородность путем расщепления аммония до нитратов. Последние не только хорошо абсорбируются растениями, но и сами по себе повышают растворимость некоторых минеральных веществ.

Однако, в последние годы научные взгляды претерпевают изменения. Выявлено отрицательное действие описываемых микроорганизмов на плодородность почвы. Бактерии нитрифицирующие, образуя нитраты, подкисляют среду, что не всегда является положительным моментом, а также в большей степени провоцируют насыщение почвой ионов аммония, чем нитратов. Более того, нитраты имеют способность восстанавливаться до N 2 (в процессе денитрифакации), что в свою очередь ведет к обеднению почвы азотом.

В чем опасность нитрифицирующих бактерий?

Некоторые штаммы нитробактерий в присутствии органического субстрата могут окислять аммоний, образовывая гидроксиламин, а в последующем нитриты и нитраты. Также в результате таких реакций могут возникать гидроксамовые кислоты. Более того, ряд бактерий осуществляет процесс нитрификации различных соединений, в состав которых входит азот (оксимы, амины, амиды, гидроксаматы и другие нитросоединения).

Масштабы гетеротрофной нитрификации при определенных условиях могут быть не только огромными, но и весьма пагубными. Опасность заключается в том, что в ходе таких превращений происходит образование токсических веществ, мутагенов и канцерогенов. Поэтому ученые пристально работают над изучением данной темы.

Биологический фильтр, который всегда под рукой

Нитрифицирующие бактерии - это не абстрактное понятие, а весьма распространенная форма жизни. Более того, они часто используются человеком.

Например, в состав биологических фильтров для аквариумов входят именно эти бактерии. Данный вид очистки менее затратный и не такой трудоемкий, как механическая очистка, но в тоже время требует соблюдения определенных условий, чтобы обеспечить рост и жизнедеятельность нитрифицирующим бактериям.

Наиболее благоприятным микроклиматом для них является температура окружающей среды (в данном случае воды) порядка 25-26 градусов Цельсия, постоянный приток кислорода и наличие водных растений.

Нитрифицирующие бактерии в сельском хозяйстве

Для того чтобы повысить урожайность, аграрии используют различные удобрения, содержащие нитрифицирующие бактерии.

Питание почвы в таком случае обеспечивается нитробактериями и азотобактериями. Эти бактерии извлекают из почвы и воды необходимые вещества, которые в процессе окисления образуют достаточно большое количество энергии. Это так называемый процесс хемосинтеза, когда полученная энергия идет на образование сложных молекул органического происхождения из углекислого газа и воды.

Для этих микроорганизмов не обязательно поступление питательных веществ с окружающей их среды - они могут продуцировать их самостоятельно. Так, если зеленым растениями, которые также являются автотрофами, необходим солнечный свет, то для нитрифицирующих бактерий он не обязателен.

Самоочистка почвы

Почва - это идеальный субстрат для роста и размножения не только растений, но и множества живых организмов. Поэтому крайне важно ее нормальное состояние и сбалансированный состав.

Следует помнить, что биологическую очистку почвы обеспечивают в том числе и нитрифицирующие бактерии. Они, находясь в почве, водоемах или перегное, превращают аммиак, который выделяют другие микроорганизмы и отходные органические материалы, в нитраты (если быть более точными, то в соли азотной кислоты). Весь процесс состоит из двух этапов:

  1. Окисление аммиака до нитрита.
  2. Окисление нитрита до нитрата.

При этом каждый этап обеспечивается отдельными видами микроорганизмов.

Так называемый замкнутый круг

Кругооборот энергии и поддержание жизни на Земле возможно благодаря соблюдению определенных закономерностей существования всего живого. На первый взгляд трудно понять, о чем идет речь, но на самом деле все достаточно просто.

Давайте представим следующую картинку из школьного учебника:

  1. Неорганические вещества перерабатываются микроорганизмами и тем самым создают благоприятные условия в почве для роста и питания растений.
  2. Они, в свою очередь, являются незаменимым источником энергии для большинства травоядных животных.
  3. Следующей цепочкой этого жизненного звена являются хищники, энергией для которых являются, соответственно, их травоядные собратья.
  4. Люди, как известно, относятся к высшим хищникам, а это значит, что мы можем получать энергию как от растительного мира, так и от животного.
  5. А уже наши собственные остатки жизнедеятельности, а также тех самых растений и животных, служат питательным субстратом для микроорганизмов.

Таким образом, получается замкнутый круг, непрерывно функционирующий и обеспечивающий жизнь всего живого на Земле. Зная эти принципы, не сложно представить, насколько многогранна и на самом деле безгранична сила природы и всего живого.

Заключение

В данной статье мы попытались дать ответ на вопрос, что такое нитрифицирующие бактерии в биологии. Как видите, несмотря на неопровержимые доказательства жизнедеятельности, функционирования и влияния этих микроорганизмов, существует еще множество спорных вопросов, требующих дальнейших экспериментальных исследований.

Нитрифицирующие бактерии относят к хемотрофам. Источником энергии для них служат различные минеральные вещества. Несмотря на свои микроскопические размеры, эти живые организмы оказывают огромное влияние на окружающий их мир.

Как известно, хемотрофы не могут усваивать органические соединения, которые находятся в субстрате (почвенном или водном). Они, наоборот, продуцируют строительный материал для создания живой и функционирующей клетки.

Все живые существа нуждаются в питании. Для одних источником энергии является солнечный свет, другие используют для этой цели химические реакции, третьи получают питание за счет двух первых групп. В первую группу входят все растения, представители второй – нитрифицирующие бактерии, в третьей группе находятся все животные, в том числе и мы с вами.

Все зеленые растения и многие бактерии могут сами вырабатывать питательные органические вещества из неорганических (вода, углекислый газ и др.). Эта группа живых организмов получила название автотрофы (от лат. «самопитающиеся»), или продуценты, и является первым звеном пищевой цепи.

Организмы, получающие энергию от солнечного света в процессе фотосинтеза, носят название фототрофы. Нитрифицирующие бактерии относят к группе микроорганизмов, которые используют в качестве источника питания энергию химических реакций окисления. Такие организмы называют хемотрофами.

Нитрифицирующие бактерии (хемотрофы) не усваивают органику, содержащуюся в почве или воде. Они, напротив, синтезируют строительный материал для создания живой клетки.


Вещества, получаемые нитрифицирующей бактерией из почвы и воды, окисляются, а образующаяся при этом энергия идет на синтез сложных органических молекул из воды и углекислого газа. Это так называемый процесс хемосинтеза.

Хемосинтезирующие организмы, как и все автотрофы, обходятся без поступления извне необходимых питательных веществ, они вырабатывают их самостоятельно. Однако в отличие от зеленых растений нитрифицирующие бактерии не нуждаются даже в солнечном свете для процесса питания.

Есть организмы, использующие для получения энергии электричество. Недавно группа японских ученых опубликовала результаты исследования бактерий, живущих около глубоководных горячих источников. При трении водного потока о каменные выступы на дне образуется слабый заряд электричества, который и использовали изучаемые бактерии для получения пищи.

Что нужно для питания растений?

Обитающие в почве нитрифицирующие бактерии способом окисления разлагают аммиак, который образуется от гниения органики, до азотистой кислоты. Другие бактерии окисляют (добавляют кислород с выделением энергии) азотистую кислоту до азотной. В свою очередь обе эти кислоты с помощью минеральных веществ из почвы создают соли и фосфаты для питания растений.

Кроме этого, для питания необходим азот, содержащийся в окружающей среде. Однако самостоятельно добывать его растения не способны. На помощь приходят азотфиксирующие бактерии. Они усваивают азот, находящийся в воздухе, и переводят его в доступную для растительности форму – соединения аммония. Азотфиксирующие нитрифицирующие бактерии могут свободно жить в почве (азотобактер, клостридиум) или находиться в симбиозе с высшими растениями (клубеньковые).

Следующее звено в пищевой цепочке

Например, употребляя пищу растительного происхождения, мы напрямую используем продукт, синтезированный за счет энергии солнечного света. С животной пищей мы получаем готовые органические вещества, которые были получены животными из растений.

Однако полностью разложить получаемую органическую пищу гетеротрофы не могут. Всегда остаются отходы жизнедеятельности, которыми, в свою очередь, занимается отдельная группа микроорганизмов.

Кто занимается утилизацией отходов в природе

Бактерии и грибы, использующие отмершие остатки живых организмов, называют редуцентами (от лат. «восстановление»). Они разлагают органические остатки способом окисления до неорганики и простейших органических соединений. От прочих живых существ редуценты отличаются тем, что не имеют твердых непереваренных остатков.

В процессе биологической очистки принимают активное участие гетеротрофные и автотрофные нитрифицирующие бактерии, обитающие в почве, иле, гниющих остатках, водоемах. Они превращают аммиак, выделяемый другими живыми организмами вместе с отходами жизнедеятельности, в соли азотной кислоты (нитраты). Процесс нитрификации происходит в два этапа. Сначала аммиак окисляется до нитрита, затем следующая группа бактерий окисляет нитрит до нитрата.

Эта группа бактерий возвращает в почву и воду минеральные соли, которые вновь используются продуцентами-автотрофами. Таким способом замыкается оборот минеральных составляющих в природе.

Живые биологические фильтры

На практике свойства нитрифицирующих бактерий широко используют в создании биологических фильтров для аквариумов.

Аквариум с чистыми стенками и прозрачной водой, в которой плавают разноцветные рыбки, – украшение для любого помещения и предмет законной гордости владельца. Добиться чистоты в аквариуме не так-то просто. Остатки корма, экскременты рыб, частички отмерших водорослей не делают воду чище.

Довольно долгое время любители аквариумов использовали только способы механической очистки. В отличие от механики биологический фильтр - это не прибор, а некая совокупность процессов, в результате которых из воды удаляются токсичные соединения:

  1. Содержащийся в мочевине аммоний, который при повышении рН воды превращается в более опасный аммиак. Соотношение температуры и рН воды в аквариуме напрямую связано с количеством токсичного аммиака. При 20⁰С и рН 7 содержание аммиака 0,5%, а при 25⁰С и рН 8,4 – уже 10%.
  2. Следующая опасность – нитрит, получаемый при окислении аммиака.
  3. Окисление нитрита дает нитрат, который тоже токсичен.

Первый способ трудозатратен (кому захочется бегать с ведрами?), а второй требует определенных условий – бактериям нужна пища, комфортная температура и место для жизни.

В биологическом фильтре для аквариумов участвуют две группы бактерий – нитрифицирующие (Nitrosomonas) и нитробактерии (Nitrobacter). Нитрифицирующие бактерии делают из аммиака нитриты, а нитробактерии – из нитрита нитрат. Результат последней реакции частично используется водорослями, но основное количество нитрата можно удалить, только сменив воду в аквариуме. От необходимости бегать с ведрами не смогут освободить никакие бактерии.

Для комфортного проживания бактерий в аквариуме нужна температура 26 -27⁰С, наличие кислорода (аэрация) и фотосинтез (водные растения). Пищей их обеспечат обитатели аквариума, а домом послужит аквариумная почва.

Итак, микроорганизмы обрабатывают неорганические вещества, находящиеся в окружающей среде, и создают в почве условия для питания растений. Источником энергии для животных служат, в свою очередь, растения. На следующем этапе животные-хищники забирают энергию у своих травоядных собратьев. Человек, как все высшие хищники, может получать питание и от растений, и от животных. Остатки жизнедеятельности животных и растений служат пищей для микроорганизмов, поставляющих неорганические вещества. Круг замкнулся.

Поддержание жизни и получение энергии возможно в совершенно разных природных условиях. Возможность зарождения новой жизни в непредставимых, на первый взгляд, условиях доказывает, насколько многогранна и пока мало изучена наша среда обитания.

Аммиак, образующийся в почве, навозе и воде при разложении органических веществ, довольно быстро окисляется до азотистой, а затем азотной кислоты. Такой процесс называют нитрификацией.

До середины XIX в., точнее, до работ Л. Пастера явление образования нитратов объясняли как химическую реакцию окисления аммиака атмосферным кислородом, причем предполагалось, что почва в этом процессе играет роль катализатора. Л. Пастер предположил, что образование нитратов - микробиологический процесс. Первые экспериментальные доказательства его гипотезы были получены Т. Шлезингом и А. Мюнцем в 1879 г. Исследователи пропускапи сточные воды через длинную колонку с песком и СаС0 3 . При фильтрации аммиак постепенно исчезал и появлялись нитраты. Нагревание колонки или внесение антисептиков прекращало окисление аммиака.

Однако выделить культуры возбудителей нитрификации не удалось ни упомянутым исследователям, ни микробиологам, продолжавшим изучение нитрификации. Лишь в 1890-1892 гг. С. Н. Виноградский, применив особую методику, изолировал чистые культуры нитрификаторов. Ученый предположил, что нитрифицирующие бактерии не растут на обычных питательных средах, содержащих органические вещества, это объяснило неудачи его предшественников.

Действительно, нитрификаторы оказались хемолитоавтотро- фами, т. е. бактериями, использующими энергию окисления аммиака или азотистой кислоты для синтеза органических веществ из С0 2 (хемосинтез). Поэтому их клетки очень чувствительны к присутствию в среде органических соединений. Нитрифицирующие бактерии удалось выделить на минеральных питательных средах.

С. Н. Виноградский установил, что существуют две группы ни- трификаторов: одна осуществляет окисление аммиака до азотистой кислоты (NHJ-? N0 2) - первая фаза нитрификации, другая - окисление азотистой кислоты до азотной (NOj-? NOj) -

вторая фаза нитрификации.

Представителей обеих групп относят к семейству Nitrobacte- riaceae. Это одноклеточные грамотринательные бактерии. Среди нитрифицирующих бактерий есть палочковидные клетки, эллиптические, сферические, извитые и дольчатые, плеоморфные. Размеры клеток колеблются от 0,3 до 1 мкм в ширину и от 1 до 3 мкм в длину. Существуют подвижные и неподвижные формы с полярным, субполярным и перитрихальным жгутикованием.

Размножаются бактерии-нитрификаторы в основном делением, за исключением Nitrobacter, для которого характерно почкование. Почти у всех нитрификаторов хорошо развита система внутри цитоплазматических мембран, значительно различающихся по форме и расположению в клетках отдельных видов. Мембраны цитоплазмы подобны мембранам фотосинтезирующих пурпурных бактерий.

Бактерии первой фазы нитрификации представлены родами: Nitrosomonas, Nitrosococcus, Nitrosospira, Nitrosolobus и Nitroso- vibrio. Наиболее детально к настоящему времени изучен Nitrosomonas еигораеа (рис. 42, А). Он представляет собой короткие овальные палочки размером 0,8-1 х 1-2 мкм. В жидкой культуре клетки Nitrosomonas проходят ряд стадий развития. Две основные из них представлены подвижной формой и неподвижными зооглеями. Подвижная форма обладает субполярным жгутиком или пучком жгутиков.

Описаны представители и других родов бактерий, вызывающих первую фазу нитрификации.

Вторую фазу нитрификации осуществляют представители родов Nitrobacter, Nitrospira и Nitrococcus. Наибольшее число исследований проведено с Nitrobacter winogradskyi (рис. 42, />), однако описаны и другие виды (например, Nitrobacter agilis). Клетки нитро- бактера имеют удлиненную, клиновидную или грушевидную форму, более узкий конец часто загнут в клювик, размеры клеток - 0,6-0,8 х 1-2 мкм. При почковании дочерняя клетка обычно подвижна, так как имеет один полярный жгутик. Известно чередование в цикле развития подвижной и неподвижной стадий.

Рис. 42.

А - Nitrosomonas euro раса ; Б - Nitrobacter winogradskyi

Описаны и другие виды бактерий, вызывающие вторую фазу нитрификации.

Нитрифицирующие бактерии культивируют на простых минеральных средах, содержащих аммиак или нитриты (окисляемые субстраты) и диоксид углерода (основной источник углерода). Источником азота для этих организмов служат аммиак, гидроксилам и н и нитриты.

Нитрифицирующие бактерии развиваются при pH 6,0- 8,6, оптимум реакции среды составляет pH 7,5-8,0. При значениях ниже pH 6 и выше pH 9,2 бактерии не развиваются. Оптимальная температура для развития нитрификаторов 25-30 °С. Изучение отношения различных штаммов Nitrosomonas еигораеа к температуре показало, что некоторые из них имеют оптимум развития при 26 °С или около 40 °С, другие способны довольно быстро расти при 4 °С.

Нитрификаторы - облигатные аэробы . Используя кислород воздуха, они окисляют аммиак до азотистой кислоты (первая фаза нитрификации):

Следовательно, аммиак - продукт жизнедеятельности аммонифицирующих бактерий - использует для получения энергии Nitrosomonas, а нитриты, образующиеся в процессе жизнедеятельности последних, служат источником энергии для Nitrobacter.

Согласно современным представлениям, процесс нитрификации осуществляется на цитоплазматической и внутри цитоплазматических мембранах и проходит в несколько этапов. Первым продуктом окисления аммиака становится гидроксиламин, затем превращающийся в нитроксил (NOH) или пероксонитрит (ONOOH), последний, в свою очередь, преобразуется в дальнейшем в нитрит, а нитрит в нитрат. Весь процесс нитрификации иллюстрирует следующая схема:


Нитроксил, как и гидроксиламин, по-видимому, может димеризоваться в гипонитрит или превращаться в закись азота N 2 0 - побочный продукт нитрификации. Кроме первой реакции (образования гидроксиламина из аммония), все последующие превращения сопровождаются синтезом макроэргических связей в виде АТФ.

Нитрификаторы осуществляют фиксацию С0 2 через восстановительный пентозофосфагный цикл (цикл Кальвина). В результате последующих реакций образуются не только углеводы, но и другие важные для бактерий соединения - белки, нуклеиновые кислоты, жиры и т. д.

Долгое время нитрифицирующих бактерий относили к облигатным хемолитоавтотрофам. Позднее были получены данные о способности этих бактерий использовать некоторые органические вещества. Так, отмечено стимулирующее действие на рост Nitrobacter нитрита, дрожжевого автолизата, пиридоксина, глутаминовой кислоты и серина. Предполагают, что некоторые нитрифицирующие бактерии обладают способностью переключаться с автотрофного на гетеротрофное питание. Однако нитрификаторы нс растут на обычных питательных средах, так как большое количество легкоусвояемых органических веществ, содержащихся в таких средах, задерживает их развитие. Однако в природе такие бактерии хорошо развиваются в черноземах, навозе, компостах, т. с. в местах, где содержится много органического вещества.

Указанное противоречие оказывается несущественным, если сравнивать количество легкоокисляемого углерода в почве с теми концентрациями органического вещества, которые нитрификаторы должны выдерживать в культурах. Так, органическое вещество почв представлено главным образом гуминовыми веществами, на которые приходится в черноземе 71-91% общего углерода, а легко усвояемые водорастворимые органические вещества составляют не более 0,1% общего углерода. Следовательно, нитрификаторы не встречают в почве больших количеств легкоусвояемого органического вещества.

Накопление нитратов происходит с неодинаковой интенсивностью на разных почвах. Чем богаче почва, тем больше соединений азотной кислоты она может накапливать. Существует метод определения доступного растениям азота в почве по показаниям се нитрификационной способности. Следовательно, интенсивность нитрификации можно использовать для характеристики агрономических свойств почвы.

Вместе с тем при нитрификации происходит лишь перевод одного питательного для растений вещества - аммиака в другую форму - азотную кислоту. Нитраты, однако, обладают некоторыми нежелательными свойствами. В то время как ион аммония поглощается почвой, соли азотной кислоты легко вымываются из нее. Кроме того, нитраты восстанавливаются в результате денитрификации до N 2 , что также обедняет азотный запас почвы. Все перечисленное существенно снижает коэффициент использования нитратов растениями.

В растительном организме соли азотной кислоты перед включением в синтез должны быть восстановлены, на что тратится энергия. Аммоний же используется непосредственно. В связи с этим ученые поставили вопрос о возможности искусственного снижения интенсивности нитрификации при помощи специфических ингибиторов, подавляющих активность бактсрий-нитрификаторов и безвредных для других организмов. Уже предложены многочисленные промышленные препараты ингибиторов нитрификации (2-хлор-6- (трихлорметил)-пиридин, нитропирин и др.), синтезированные на пиридиновой основе. Ингибиторы нитрификации подавляют только первую фазу нитрификации и не действуют на вторую, а также на гетеротрофную нитрификацию. При применении ингибиторов нитрификации (нитропирин) эффективность азотных удобрений повышается с 50 до 80%.

««sb Гетеротрофная нитрификация. Способны осуществлять нитрификацию и некоторые гетеротрофные микроорганизмы. К ним относятся бактерии из родов Pseudomonas, Arthrobacter, Corynebacteri- ит, Nocardia и отдельные виды грибов из родов Fusarium, Aspergillus, Penici/lium, Cladosporium. Установлено, что Arthrobacter sp. в присутствии органических субстратов вызывает окисление аммиака с образованием гидроксиламина, а затем нитрита и нитрата. Некоторые бактерии вызывают нитрификацию таких азотсодержащих органических веществ, как амиды, амины, гидроксамовые кислоты, нитросоединения (алифатические и ароматические), оксимы и др. Однако считают, что гетеротрофная нитрификация не служит источником энергии для перечисленных организмов.

Гетеротрофная нитрификация встречается в естественных условиях (почвах, водоемах и других субстратах). Она может приобретать главенствующее значение, особенно в атипичных условиях (например, при высоком содержании органических С- и N-соединений в щелочной почве и т. п.). Гетеротрофные микроорганизмы не только способствуют окислению азота в таких условиях, но и вызывают образование и накопление токсичных веществ, соединений канцерогенного и мутагенного, а также химиотерапевтического действия. В связи с тем что некоторые из перечисленных соединений вредны для человека и животных даже в относительно низких концентрациях, тщательно изучают возможность их образования в природе.

  • В последние годы обнаружена способность бактерий к анаэробномуокислению аммиака. Этот процесс, получивший название «анаммокс» (Ап-аттох), играет важную роль при очистке сточных вод. Осуществляющие егобактерии относятся к группе планктомицстов. {Прим. ре

Еще в 1870 г. Шлезинг и Мюнц (Schloesing, Miintz) доказали, что нитрификация имеет биологическую природу. Для этого они добавляли к сточным водам хлороформ. В результате окисление аммиака прекращалось. Однако специфические микроорганизмы, вызывающие этот процесс, были выделены лишь Виноградским. Им же было показано, что хемоавтотрофные нитрификаторы могут быть подразделены на бактерий, осуществляющих первую фазу этого процесса, а именно окисление аммония до азотистой кислоты (NH4+->N02-), и бактерий второй фазы нитрификации, переводящих азотистую кислоту в азотную (N02-->-N03-). И те и другие микроорганизмы являются грамотрицательными. Их относят к семейству Nitrobacteriaceae.


Бактерии первой фазы нитрификации представлены четырьмя родами: Nitrosomonas, Nitrosocystis, Nitrosolobus и Nitrosospira. Из них наиболее изучен вид Nitrosomonas euroраеа, хотя получение чистых культур этих микроорганизмов, как и других нитрифицирующих хемоавтотрофов, до сих пор остается достаточно сложным. Клетки N. europaea обычно овальные (0,6 -1,0 X 0,9-2,0 мкм), размножаются бинарным делением. В процессе развития культур в жидкой среде наблюдаются подвижные формы, имеющие один или несколько жгутиков, и неподвижные зооглеи.


У Nitrosocystis oceanus клетки округлые, диаметром 1,8-2,2 мкм, но бывают и крупнее (до 10 мкм). Способны к движению благодаря наличию одного жгутика или пучка жгутиков. Образуют зооглеи и цисты.


Размеры Nitrosolobus multiformis составляют 1,0-1,5 X 1,0-2,5 мкм. Форма этих бактерий не совсем правильная, так как клетки разделены на отсеки, дольки (-lobus, отсюда и название Nitrosolobus), которые образуются в результате разрастания внутрь цитоплазматической мембраны.


У Nitrosospira briensis клетки палочковидные и извитые (0,8-1,0 X 1,5-2,5 мкм), имеют от одного до шести жгутиков.


Среди бактерий второй фазы нитрификации различают три рода: Nitrobacter, Nitrospina и Nitrococcus.


Большая часть исследований проведена с разными штаммами Nitrobacter, многие из которых могут быть отнесены- к Nitrobacter winogradskyi, хотя описаны и другие виды. Бактерии имеют преимущественно грушевидную форму клеток. Как показано Г. А. Заварзиным, размножение Nitrobacter происходит путем почкования, причем дочерняя клетка бывает обычно подвижна, так как снабжена одним латерально расположенным жгутиком. Отмечают также сходство Nitrobacter с почкующимися бактериями рода Hyphomicrobium по составу жирных кислот, входящих в липиды.


Данные относительно таких нитрифицирующих бактерий, как Nitrospina gracilis и Nitrococcus mobilis, пока весьма ограниченны. По имеющимся описаниям, клетки N. gracilis палочковидные (0,3-0,4 X 2,7-6,5 мкм), но обнаружены и сферические формы. Бактерии неподвижны. Напротив, N. mobilis обладает подвижностью. Клетки его округлые, диаметром около 1,5 мкм, с одним-двумя жгутиками.


По строению клеток исследованные нитрифицирующие бактерии похожи на другие грамотрицательные микроорганизмы. У некоторых видов обнаружены развитые системы внутренних мембран, которые образуют стопку в центре клетки (Nitrosocystis oceanus), или располагаются по периферии параллельно цитоплазматической мембране (Nitrosomonas europaea), или образуют чашеподобную структуру из нескольких слоев (Nitrobacter winogradskyi). Видимо, с этими образованиями связаны ферменты, участвующие в окислении нитрификаторами специфических субстратов.


Нитрифицирующие бактерии растут на простых минеральных средах, содержащих окисляемый субстрат в виде аммония или нитритов и углекислоту. Источником азота в конструктивных процессах могут быть, кроме аммония, гидроксиламин и нитриты.


Показано также, что Nitrobacter и Nitrosomonas europaea восстанавливают нитриты с образованием аммония.


Такой микроорганизм, как Nitrosocystis oceanus, выделенный из Атлантического океана, относится к облигатным галофилам и растет на среде, содержащей морскую воду. Область значений рН, при которой наблюдается рост разных видов и штаммов нитрифицирующих бактерий, приходится на 6,0-8,6, а оптимальное значение рН чаще всего 7,0-7,5. Среди Nitrosomonas europaea известны штаммы, имеющие температурный оптимум при 26 или около 40 °С, и штаммы, довольно быстро растущие при 4 °С.


Все известные нитрифицирующие бактерии являются облигатными аэробами. Кислород необходим им как для окисления аммония в азотистую кислоту:



так и для окисления азотистой кислоты в азотную:



Но весь процесс превращения аммония в нитраты происходит в несколько этапов с образованием соединений, где азот имеет разную степень окисленности.


Первым продуктом окисления аммония является гидроксиламин, который, возможно, образуется в результате непосредственного включения в NH+4 молекулярного кислорода:



Однако окончательно механизм окисления аммония до гидроксиламина не выяснен. Превращение гидроксиламина в нитрит:



как предполагают, идет через образование гипонитрита NOH, а также окись азота (NO). Что касается закиси азота (N2O), обнаруживаемой при окислении Nitrosomonas europaea аммония и гидроксиламина, то большинство исследователей считает ее побочным продуктом, образующимся в основном в результате восстановления нитрита.


Исследование окисления Nitrobacter нитрита с использованием в опытах тяжелого изотопа кислорода (18O) показало, что образующиеся нитраты содержат значительно больше 18O, когда меченой является вода, а не молекулярный кислород. Поэтому предполагают, что сначала происходит образование комплекса NO2-H2O, который далее окисляется до NO2-. При этом происходит передача электронов через промежуточные акцепторы на кислород. Весь процесс нитрификации можно представить в виде следующей схемы (рис. 137), отдельные этапы которой требуют, однако, уточнения.



Кроме первой реакции, а именно образования из аммония гидроксиламина, последующие стадии обеспечивают организмы энергией в виде аденозинтрифосфата (АТФ). Синтез АТФ сопряжен с функционированием окислительновосстановительных систем, передающих электроны на кислород, подобно тому как это имеет место у гетеротрофных аэробных организмов. Но поскольку окисляемые нитрификаторами субстраты имеют высокие окислительно-восстановительные потенциалы, они не могут взаимодействовать с никотинамидадениндинуклеотидами (НАД или НАДФ, E1/0 = -0,320 В), какэто бывает при окислении большинства органических соединений. Так, передача электронов в дыхательную цепь от гидроксиламина, видимо, происходит на уровне флавина:



Когда окисляется нитрит, то включение его электронов в цепь, вероятно, идет на уровне либо цитохрома типа с, либо цитохрома типа а. В связи с этой особенностью большое значение у нитрифицирующих бактерий имеет так называемый обратный, или обращенный, транспорт электронов, идущий с затратой энергии части АТФ или трансмембрапного потенциала, образуемых при передаче электронов на кислород (рис. 138).



Таким образом происходит обеспечение хемоавтотрофных нитрифицирующих бактерий не только АТФ, но и НАДН, необходимых для усвоения углекислоты и для других конструктивных процессов.


Согласно расчетам эффективность использования свободной энергии Nitrobacter может составлять 6,0-50,0%, a Nitrosomonas - и больше.


Ассимиляция углекислоты происходит в основном в результате функционирования пентоэофосфатного восстановительного цикла углерода, иначе называемого циклом Кальвина (см. рис. 134).



Итог его выражают следующим уравнением:



где (СН2О) означает образующиеся органические вещества, имеющие уровень восстановленности углеродов. Однако в действительности в результате ассимиляции углекислоты через цикл Кальвина и другие реакции, прежде всего путем карбоксилирования фосфоенолпирувата, образуются не только углеводы, но и все другие компоненты клеток - белки, нуклеиновые кислоты, липиды и т. д. Показано также, что Nitrococcus mobilis и Nitrobacter winogradskyi могут образовывать в качестве запасных продуктов поли-β-оксибутират и гликогеноподобный полисахарид. Такое же соединение обнаружено в клетках Nitrosolobus multiformis. Кроме углеродсодержащих запасных веществ, нитрифицирующие бактерии способны накапливать полифосфаты, входящие в состав метахроматиновых гранул.


Еще в первых работах с нитрификатором Виноградский отметил, что для их роста неблагоприятно присутствие в среде органических веществ, таких, как пептон, глюкоза, мочевина, глицерин и др. Отрицательное действие органических веществ на хемоавтотрофные нитрифицирующие бактерии неоднократно отмечалось и в дальнейшем. Сложилось даже мнение, что эти микроорганизмы вообще не способны использовать экзогенные органические соединения. Поэтому их стали называть «облигатными автотрофами». Однако в последнее время показано, что использовать некоторые органические соединения эти бактерии способны, но возможности их ограничены. Так, отмечено стимулирующее действие на рост Nitrobacter в присутствии нитрита дрожжевого автолизата, пиридоксина, глутамата и серина, если они в низкой концентрации вносятся в среду. Показано также включение в белки и другие компоненты клеток Nitrobacter 14С из пирувата, а-кетоглутарата, глутамата и аспартата. Известно, кроме того, что Nitrobacter медленно, но окисляет формиат. Включение 14С из ацетата, пирувата, сукцината и некоторых аминокислот, преимущественно в белковую фракцию, обнаружено при добавлении этих субстратов к суспензиям клеток Nitrosomonas europaea. Ограниченная ассимиляция глюкозы, пирувата, глутамата и аланина установлена для Nitrosocystis oceanus. Есть данные об использовании 14С-ацетата Nitrosolobus multiformis.


Недавно установлено также, что некоторые штаммы Nitrobacter растут на среде с ацетатом и дрожжевым автолизатом не только в присутствии, но и в отсутствие нитрита, хотя и медленно. При наличии нитрита окисление ацетата подавляется, но включение его углерода в разные аминокислоты, белок и другие компоненты клеток увеличивается. Имеются, наконец, данные, что возможен рост Nitrosomonas и Nitrobacter на среде с глюкозой в анализируемых условиях, которые обеспечивают удаление продуктов ее метаболизма, оказывающих ингибиторное действие на данные микроорганизмы. На основании этого делается вывод о способности нитрифицирующих бактерий переключаться на гетеротрофный образ жизни. Однако для окончательных выводов необходимо большее число экспериментов. Важно прежде всего выяснить, как долго нитрифицирующие бакте рии могут расти в гетеротрофных условиях при отсутствии специфических окисляемых субстратов.

Хемоавтотрофные нитрифицирующие бактерии имеют широкое распространение в природе и встречаются как в почве, так и в разных водоемах. Осуществляемые ими процессы могут происходить весьма в крупных масштабах и имеют существенное значение в круговороте азота в природе. Раньше считали, что деятельность нитрификаторов всегда способствует плодородию почвы, поскольку они переводят аммоний в нитраты, которые легко усваиваются растениями, а также повышают растворимость некоторых минералов. Сейчас, однако, взгляды на значение нитрификации несколько изменились. Во-первых, показано, что растения усваивают аммонийный азот и ионы аммония лучше удерживаются в почве, чем нитраты. Во-вторых, образование нитратов иногда приводит к нежелательному подкислению среды. В-третьих, нитраты могут восстанавливаться в результате денитрификации до N2, что приводит к обеднению почвы азотом.


Следует также отметить, что наряду с нитрифицирующими хемоавтотрофными бактериями известны гетеротрофные микроорганизмы, способные вести близкие процессы. К гетеротрофным нитрификаторам относятся некоторые грибы из рода Fusarium и бактерии таких родов, как Alcaligenes, Corynebacterium, Achromobacter, Pseudomonas, Arthrobacter, Nocardia.


Показано, что Arthrobacter sp. окисляет в присутствии органических субстратов аммоний с образованием гидроксиламина и далее нитритов и нитратов. Кроме того, может образовываться гидроксамовая кислота. У ряда бактерий выявлена способность осуществлять нитрификацию органических азотсодержащих соединений: амидов, аминов, оксимов, гидроксаматов, нитросоединений и др. Пути их превращения представляют следующим образом:



Размеры гетеротрофной нитрификации в некоторых случаях бывают довольно большие. Кроме того, при этом образуются некоторые продукты, обладающие токсичным, канцерогенным, мутагенным действием и соединения с химиотерапевтическим эффектом. Поэтому исследованию данного процесса и выяснению его значения для гетеротрофных микроорганизмов сейчас уделяют значительное внимание.

Жизнь растений: в 6-ти томах. - М.: Просвещение. Под редакцией А. Л. Тахтаджяна, главный редактор чл.-кор. АН СССР, проф. А.А. Федоров . 1974 .


    Превращают аммиак и аммонийные соли в соли азотной кислоты нитраты: нитрозобактерии, нитробактерии. Распространены в почвах и водоемах … Большой Энциклопедический словарь

    Превращают аммиак и аммонийные соли в соли азотной кислоты нитраты: нитрозобактерии, нитробактерии. Распространены в почвах и водоёмах. * * * НИТРИФИЦИРУЮЩИЕ БАКТЕРИИ НИТРИФИЦИРУЮЩИЕ БАКТЕРИИ, превращают аммиак и аммонийные соли в соли азотной… … Энциклопедический словарь

    нитрифицирующие бактерии - nitrifikatoriai statusas T sritis ekologija ir aplinkotyra apibrėžtis Nitritinės (Nitrosomonas genties) ir nitratinės (Nitrobacter genties) bakterijos, paverčiančios amonio druskas nitratais. atitikmenys: angl. nitrifiers; nitrifying bacteria vok … Ekologijos terminų aiškinamasis žodynas - проводят реакции окисления восстановленных соединений азота. Представители рода Nitrosomonas окисляют аммиак до нитритов, а бактерии рода Nitrobacter окисляют нитриты до нитратов. Относятся к автотрофным хемосинтезирутощим аэробным… … Геологическая энциклопедия

    По типу питания все организмы делятся на автотрофов и гетеротрофов. Автотрофы, что в переводе с греческого означает «самопитающиеся», могут строить все соединения своих клеток из углекислоты и других неорганических веществ. Источником… … Биологическая энциклопедия