Зависимость силы тяготения от высоты. Человек на пути прогресса. Сила всемирного тяготения

Между любыми телами в природе существует сила взаимного притяжения, называемая силой всемирного тяготения (или силами гравитации). был открыт Исааком Ньютоном в 1682 году. Когда еще ему было 23 года он высказал предположение, что силы, удерживающие Луну на ее орбите, той же природы, что и силы, заставляющие яблоко падать на Землю.

Сила тяжести (mg ) направлена вертикально строго к центру Земли ; в зависимости от расстояния до поверхности земного шара ускорение свободного падения различно. У поверхности Земли в средних широтах значение его составляет около 9,8 м/с 2 . по мере удаления от поверхности Земли g уменьшается.

Вес тела (сила веса) это сила, с которой тело действует на горизонтальную опору или растягивает подвес. При этом предполагается, что тело неподвижно относительно опоры или подвеса. Пусть тело лежит на неподвижном относительно Земли горизонтальном столе. Обозначается буквой Р .

Вес тела и сила тяжести отличаются по своей природе: вес тела является проявлением действия межмолекулярных сил, а сила тяжести имеет гравитационную природу.

Если ускорение а = 0 , то вес равен силе, с которой тело притягивается к Земле, а именно . [P] = Н .

Если другое состояние, то вес меняется:

  • если ускорение а не равно 0 , то вес Р = mg — ma (вниз) или Р = mg + ma (вверх);
  • если тело падает свободно или движется с ускорением свободного падения, т.е. а = g (рис.2), то вес тела равен 0 (Р=0 ). Состояние тела, в котором его вес равен нулю, называется невесомостью .

В невесомости находятся и космонавты. В невесомости на мгновение оказываетесь и вы, когда подпрыгиваете во время игры в баскетбол или танца.

Домашний эксперимент: Пластиковая бутылка с отверстием у дна наполняется водой. Выпускаем из рук с некоторой высоты. Пока бутылка падает, вода из отверстия не вытекает.

Вес тела движущегося с ускорением (в лифте) Тело в лифте испытывает перегрузки


В этом параграфе мы расскажем об удивительной догадке Ньютона, приведшей к открытию закона всемирного тяготения.
Почему выпущенный из рук камень падает на Землю? Потому что его притягивает Земля, скажет каждый из вас. В самом деле, камень падает на Землю с ускорением свободного падения. Следовательно, на камень со стороны Земли действует сила, направленная к Земле. Согласно третьему закону Ньютона и камень действует на Землю с такой же по модулю силой, на-правленной к камню. Иными словами, между Землей и камнем действуют силы взаимного притяжения.
Догадка Ньютона
Ньютон был первым, кто сначала догадался, а потом и строго доказал, что причина, вызывающая падение камня на Землю, движение Луны вокруг Земли и планет вокруг Солнца, одна и та же. Это сила тяготения, действующая между любыми телами Вселенной. Вот ход его рассуждений, приведенных в главном труде Ньютона «Математические начала натуральной философии»: «Брошенный горизонтально камень отклонится
, \\
1
/ /
У
Рис. 3.2
под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадет наконец на Землю. Если его бросить с большей скоростью, ! то он упадет дальше» (рис. 3.2). Про- J должая эти рассуждения, Ньютон \ приходит к выводу, что если бы не сопротивление воздуха, то траектория камня, брошенного с высокой горы с определенной скоростью, могла бы стать такой, что он вообще никогда не достиг бы поверхности Земли, а двигался вокруг нее «подобно тому, как планеты описывают в небесном пространстве свои орбиты».
Сейчас нам стало настолько привычным движение спутников вокруг Земли, что разъяснять мысль Ньютона подробнее нет необходимости.
Итак, по мнению Ньютона, движение Луны вокруг Земли или планет вокруг Солнца - это тоже свободное падение, но только падение, которое длится, не прекращаясь, миллиарды лет. Причиной такого «падения» (идет ли речь действительно о падении обычного камня на Землю или о движении планет по их орбитам) является сила всемирного тяготения. От чего же эта сила зависит?
Зависимость силы тяготения от массы тел
В § 1.23 говорилось о свободном падении тел. Упоминались опыты Галилея, доказавшие, что Земля сообщает всем телам в данном месте одно и то же ускорение независимо от их массы. Это возможно лишь в том случае, если сила притяжения к Земле прямо пропорциональна массе тела. Именно в этом случае ускорение свободного падения, равное отношению силы земного притяжения к массе тела, является постоянной величиной.
Действительно, в этом случае увеличение массы т, например, вдвое приведет к увеличению модуля силы F тоже вдвое, а уско-
F
рение, которое равно отношению - , останется неизменным.
Обобщая этот вывод для сил тяготения между любыми телами, заключаем, что сила всемирного тяготения прямо пропорциональна массе тела, на которое эта сила действует. Но во взаимном притяжении участвуют по меньшей мере два тела. На каждое из них, согласно третьему закону Ньютона, действуют одинаковые по модулю силы тяготения. Поэтому каждая из этих сил должна быть пропорциональна как массе одного тела, так и массе другого тела.
Поэтому сила всемирного тяготения между двумя телами прямо пропорциональна произведению их масс:
F - тут2. (3.2.1)
От чего еще зависит сила тяготения, действующая на данное тело со стороны другого тела?
Зависимость силы тяготения от расстояния между телами
Можно предположить, что сила тяготения должна зависеть от расстояния между телами. Чтобы проверить правильность этого предположения и найти зависимость силы тяготения от расстояния между телами, Ньютон обратился к движению спутника Земли - Луны. Ее движение было в те времена изучено гораздо точнее, чем движение планет.
Обращение Луны вокруг Земли происходит под действием силы тяготения между ними. Приближенно орбиту Луны можно считать окружностью. Следовательно, Земля сообщает Луне центростремительное ускорение. Оно вычисляется по формуле
л 2
а = - Тг
где В - радиус лунной орбиты, равный примерно 60 радиусам Земли, Т = 27 сут 7 ч 43 мин = 2,4 106 с - период обращения Луны вокруг Земли. Учитывая, что радиус Земли R3 = 6,4 106 м, получим, что центростремительное ускорение Луны равно:
2 6 4к 60 ¦ 6,4 ¦ 10
М „ „„„. , о
а = 2 ~ 0,0027 м/с*.
(2,4 ¦ 106 с)
Найденное значение ускорения меньше ускорения свободного падения тел у поверхности Земли (9,8 м/с2) приблизительно в 3600 = 602 раз.
Таким образом, увеличение расстояния между телом и Землей в 60 раз привело к уменьшению ускорения, сообщаемого земным притяжением, а следовательно, и самой силы притяжения в 602 раз.
Отсюда вытекает важный вывод: ускорение, которое сообщает телам сила притяжения к Земле, убывает обратно пропорционально квадрату расстояния до центра Земли:
ci
а = -к, (3.2.2)
R
где Сj - постоянный коэффициент, одинаковый для всех тел.
Законы Кеплера
Исследование движения планет показало, что это движение вызвано силой притяжения к Солнцу. Используя тщательные многолетние наблюдения датского астронома Тихо Браге, не-мецкий ученый Иоганн Кеплер в начале XVII в. установил ки-нематические законы движения планет - так называемые законы Кеплера.
Первый закон Кеплера
Все планеты движутся по эллипсам, в одном из фокусов которых находится Солнце.
Эллипсом (рис. 3.3) называется плоская замкнутая кривая, сумма расстояний от любой точки которой до двух фиксированных точек, называемых фокусами, постоянна. Эта сумма расстояний равна длине большой оси АВ эллипса, т. е.
FгР + F2P = 2b,
где Fl и F2 - фокусы эллипса, a b = ^^ - его большая полуось; О - центр эллипса. Ближайшая к Солнцу точка орбиты называется перигелием, а самая далекая от него точка - р

В
Рис. 3.4
«2
В А А афелием. Если Солнце находится в фокусе Fr (см. рис. 3.3), то точка А - перигелий, а точка В - афелий.
Второй закон Кеплера
Радиус-вектор планеты за одинаковые промежутки времени описывает равные площади. Так, если заштрихованные секторы (рис. 3.4) имеют одинаковые площади, то пути si> s2> s3 будут пройдены планетой за равные промежутки времени. Из рисунка видно, что Sj > s2. Следовательно, линейная скорость движения планеты в различных точках ее орбиты неодинакова. В перигелии скорость планеты наибольшая, в афе-лии - наименьшая.
Третий закон Кеплера
Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей их орбит. Обозначив большую полуось орбиты и период обращения одной из планет через Ьх и Tv а другой - через Ь2 и Т2, третий закон Кеплера можно записать так:

Из этой формулы видно, что чем дальше планета от Солнца, тем больше ее период обращения вокруг Солнца.
На основании законов Кеплера можно сделать определенные выводы об ускорениях, сообщаемых планетам Солнцем. Мы для простоты будем считать орбиты не эллиптическими, а круговыми. Для планет Солнечной системы эта замена не является слишком грубым приближением.
Тогда сила притяжения со стороны Солнца в этом приближе-нии должна быть направлена для всех планет к центру Солнца.
Если через Т обозначить периоды обращения планет, а через R - радиусы их орбит, то, согласно третьему закону Кеплера, для двух планет можно записать
т\ Л? Т2 R2
Нормальное ускорение при движении по окружности а = со2R. Поэтому отношение ускорений планет
Q-i ГлД.
7Г=-2~- (3-2-5)
2 t:r0
Используя уравнение (3.2.4), получим
Т2
Так как третий закон Кеплера справедлив для всех планет, .то ускорение каждой планеты обратно пропорционально квадрату расстояния ее до Солнца:
О о
а = -|. (3.2.6)
ВТ
Постоянная С2 одинакова для всех планет, но не совпадает с постоянной С2 в формуле для ускорения, сообщаемого телам земным шаром.
Выражения (3.2.2) и (3.2.6) показывают, что сила тяготения в обоих случаях (притяжение к Земле и притяжение к Солнцу) сообщает всем телам ускорение, не зависящее от их массы и убывающее обратно пропорционально квадрату расстояния между ними:
F~a~-2. (3.2.7)
R
Закон всемирного тяготения
Существование зависимостей (3.2.1) и (3.2.7) означает, что сила всемирного тяготения 12
ТП.Л Ш
F ~
R2? ТТЬ-і ТПп
F = G
В 1667 г. Ньютон окончательно сформулировал закон все-мирного тяготения:
(3.2.8) R
Сила взаимного притяжения двух тел прямо пропорци-ональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними. Коэффициент про-порциональности G называется гравитационной постоянной.
Взаимодействие точечных и протяженных тел
Закон всемирного тяготения (3.2.8) справедлив только для таких тел, размеры которых пренебрежимо малы по сравнению с расстоянием между ними. Иначе говоря, он справедлив только для материальных точек. При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис. 3.5). Подобного рода силы называются центральными.
Для нахождения силы тяготения, действующей на данное тело со стороны другого, в случае, когда размерами тел пренебречь нельзя, поступают следующим образом. Оба тела мысленно раз-деляют на столь малые элементы, чтобы каждый из них можно было считать точечным. Складывая силы тяготения, действующие на каждый элемент данного тела со стороны всех элементов другого тела, получают силу, действующую на этот элемент (рис. 3.6). Проделав такую операцию для каждого элемента данного тела и сложив полученные силы, находят полную силу тяготения, действующую на это тело. Задача эта сложная.
Есть, однако, один практически важный случай, когда формула (3.2.8) применима к протяженным телам. Можно дока-
m^
Fi Рис. 3.5 Рис. 3.6
зать, что сферические тела, плот-ность которых зависит только от расстояний до их центров, при рас-стояниях между ними, больших суммы их радиусов, притягиваются с силами, модули которых определяются формулой (3.2.8). В этом слу-чае R - это расстояние между центрами шаров.
И наконец, так как размеры падающих на Землю тел много меньше размеров Земли, то эти тела можно рассматривать как точечные. Тогда под R в формуле (3.2.8) следует понимать расстояние от данного тела до центра Земли.
Между всеми телами действуют силы взаимного притяжения, зависящие от самих тел (их масс) и от расстояния между ними.
? 1. Расстояние от Марса до Солнца на 52% больше расстояния от Земли до Солнца. Какова продолжительность года на Марсе? 2. Как изменится сила притяжения между шарами, если алюминиевые шары (рис. 3.7) заменить стальными шарами той же массы? " того же объема?

ОПРЕДЕЛЕНИЕ

Закон всемирного тяготения открыл И. Ньютоном:

Два тела притягиваются друг к другу с , прямо пропорциональной произведению их и обратно пропорциональной квадрату расстояния между ними:

Описание закона всемирного тяготения

Коэффициент — это гравитационная постоянная. В системе СИ гравитационная постоянная имеет значение:

Эта постоянная, как видно, очень мала, поэтому силы тяготения между телами, имеющими небольшие массы, тоже малы и практически не ощущаются. Однако движение космических тел полностью определяется гравитацией. Наличие всемирного тяготения или, другими словами, гравитационного взаимодействия объясняет, на чем «держатся» Земля и планеты, и почему они двигаются вокруг Солнца по определенным траекториям, а не улетают от него прочь. Закон всемирного тяготения позволяет определить многие характеристики небесных тел – массы планет, звезд, галактик и даже черных дыр. Этот закон позволяет с большой точностью рассчитать орбиты планет и создать математическую модель Вселенной.

С помощью закона всемирного тяготения также можно рассчитать космические скорости. Например, минимальная скорость, при которой тело, движущееся горизонтально над поверхностью Земли, не упадёт на неё, а будет двигаться по круговой орбите – 7,9 км/с (первая космическая скорость). Для того, чтобы покинуть Землю, т.е. преодолеть ее гравитационное притяжение, тело должно иметь скорость 11,2 км/с, (вторая космическая скорость).

Гравитация является одним из самых удивительных феноменов природы. В отсутствии сил гравитации существование Вселенной было бы невозможно, Вселенная не могла бы даже возникнуть. Гравитация ответственна за многие процессы во Вселенной – ее рождение, существование порядка вместо хаоса. Природа гравитации до сих пор до конца неразгаданна. До настоящего времени никто не смог разработать достойный механизм и модель гравитационного взаимодействия.

Сила тяжести

Частным случаем проявления гравитационных сил является сила тяжести.

Сила тяжести всегда направлена вертикально вниз (по направлению к центру Земли).

Если на тело действует сила тяжести, то тело совершает . Вид движения зависит от направления и модуля начальной скорости.

С действием силы тяжести мы сталкиваемся каждый день. , через некоторое время оказывается на земле. Книга, выпущенная из рук, падает вниз. Подпрыгнув, человек не улетает в открытый космос, а опускается вниз, на землю.

Рассматривая свободное падение тела вблизи поверхности Земли как результат гравитационного взаимодействия этого тела с Землей, можно записать:

откуда ускорение свободного падения:

Ускорение свободного падения не зависит от массы тела, а зависит от высоты тела над Землей. Земной шар немного сплюснут у полюсов, поэтому тела, находящиеся около полюсов, расположены немного ближе к центру Земли. В связи с этим ускорение свободного падения зависит от широты местности: на полюсе оно немного больше, чем на экваторе и других широтах (на экваторе м/с , на Северном полюсе экваторе м/с .

Эта же формула позволяет найти ускорение свободного падения на поверхности любой планеты массой и радиусом .

Примеры решения задач

ПРИМЕР 1 (задача о «взвешивании» Земли)

Задание Радиус Земли км, ускорение свободного падения на поверхности планеты м/с . Используя эти данные, оценить приближенно массу Земли.
Решение Ускорение свободного падения у поверхности Земли:

откуда масса Земли:

В системе Си радиус Земли м.

Подставив в формулу численные значения физических величин, оценим массу Земли:

Ответ Масса Земли кг.

ПРИМЕР 2

Задание Спутник Земли движется по круговой орбите на высоте 1000 км от поверхности Земли. С какой скоростью движется спутник? За какое время спутник совершит один полный оборот вокруг Земли?
Решение По , сила, действующая на спутник со стороны Земли, равна произведению массы спутника на ускорение, с которым он движется:

Со стороны земли на спутник действует сила гравитационного притяжения, которая по закону всемирного тяготения равна:

где и массы спутника и Земли соответственно.

Так как спутник находится на некоторой высоте над поверхностью Земли, расстояние от него до центра Земли:

где радиус Земли.

Человеку давно уже известна сила, заставляющая все тела падать на Землю. Но до XVII в. считалось, что только Земля обладает особым свойством притягивать к себе тела, находящиеся вблизи ее поверхности. В 1667 г. Ньютон высказал предположение, что вообще между всеми телами действуют силы взаимного притяжения. Он назвал эти силы силами всемирного тяготения.

Ньютон открыл законы движения тел. Согласно этим законам движение с ускорением возможно только под действием силы. Так как падающие тела движутся с ускорением, то на них должна действовать сила, направленная вниз, к Земле.

Почему же мы не замечаем взаимного притяжения между окружающими нас телами? Может быть, это объясняется тем, что силы притяжения между ними слишком малы?

Ньютону удалось показать, что сила притяжения между телами зависит от масс обоих тел и, как оказалось, достигает заметной величины только тогда, когда взаимодействующие тела (или хотя бы одно из них) обладают достаточно большой массой.

Ускорение свободного падения отличается той любопытной особенностью, что оно в данном месте одинаково для всех тел, для тел любой массы. На первый взгляд это очень странное свойство. Ведь из формулы, выражающей второй закон Ньютона,

следует, что ускорение тела должно быть тем больше, чем меньше его масса. Тела с малой массой должны падать с большим ускорением, чем тела, у которых масса велика. Опыт же показал (см. § 20), что ускорения свободно падающих тел не зависят от их масс. Единственное объяснение, которое можно найти этому удивительному

факту, заключается в том, что сама сила с которой Земля притягивает тело, пропорциональна его массе т.

Действительно, в этом случае увеличение массы например, вдвое приведет и к увеличению силы тоже вдвое, а ускорение, которое равно отношению останется неизменным. Ньютон и сделал этот единственно правильный вывод: сила всемирного тяготения пропорциональна массе того тела, на которое она действует. Но ведь тела притягиваются взаимно. А по третьему закону Ньютона на оба притягивающихся тела действуют одинаковые по абсолютному значению силы. Значит, сила взаимного притяжения должна быть пропорциональна массам каждого из притягивающихся тел. Тогда оба тела будут получать ускорения, которые не зависят от их масс.

Если сила пропорциональна массам каждого из взаимодействующих тел, то это означает, что она пропорциональна произведению масс обоих тел.

От чего еще зависит сила взаимного притяжения двух тел? Ньютон предположил, что она должна зависеть от расстояния между телами. Из опыта хорошо известно, что вблизи Земли ускорение свободного падения равно и оно одинаково для тел, падающих с высоты 1, 10 или 100 м. Но отсюда еще нельзя заключить, что ускорение не зависит от расстояния до Земли. Ньютон считал, что отсчитывать расстояния надо не от поверхности Земли, а от ее центра. Но радиус Земли равен 6400 км. Понятно поэтому, что несколько десятков или сотен метров над поверхностью Земли не могут заметно изменить ускорение свободного падения.

Чтобы выяснить, как влияет расстояние между телами на силу их взаимного притяжения, нужно знать, с каким ускорением движутся тела, удаленные от поверхности Земли на большие расстояния.

Ясно, что измерить ускорение свободного падения по вертикали тел, находящихся на высоте в несколько тысяч километров над поверхностью Земли, трудно. Удобнее измерить центростремительное ускорение тела, движущегося вокруг Земли по окружности под действием силы притяжения к Земле. Вспомним, что таким же приемом мы пользовались при изучении силы упругости. Мы измеряли центростремительное ускорение цилиндра, движущегося по окружности под действием этой силы.

В изучении силы всемирного тяготения сама природа пришла на помощь физикам и дала возможность определить ускорение тела, движущегося по окружности вокруг Земли. Таким телом является естественный спутник Земли - Луна. Ведь если верно предположение Ньютона, то надо считать, что центростремительное ускорение Луне при ее движении по окружности вокруг Земли сообщает сила ее притяжения к Земле. Если бы сила тяготения между Луной и Землей не зависела от расстояния между ними, то центростремительное ускорение Луны было бы таким же, как ускорение

свободного падения тел вблизи поверхности Земли. В действительности центростремительное ускорение, с которым движется Луна по орбите, равно, как мы уже знаем (см. упр. 16, задачу 9), . А это приблизительно в 3600 раз меньше, чем ускорение падающих тел вблизи Земли. В то же время известно, что расстояние от центра Земли до центра Луны равно 384 000 км. Это в 60 раз больше радиуса Земли, т. е. расстояния от центра Земли до ее поверхности. Таким образом, увеличение расстояния между притягивающимися телами в 60 раз приводит к уменьшению ускорения в 602 раз. Отсюда можно заключить, что ускорение, сообщаемое телам силой всемирного тяготения, а значит, и сама эта сила обратно пропорциональны квадрату расстояния между взаимодействующими телами.

К такому заключению и пришел Ньютон.

Можно, следовательно, написать, что два тела массами притягиваются друг к другу с силой абсолютное значение которой выражается формулой

где - расстояние между телами, у - коэффициент пропорциональности, одинаковый для всех тел в природе. Называется этот коэффициент постоянной всемирного тяготения или гравитационной постоянной.

Приведенная формула выражает закон всемирного тяготения, открытый Ньютоном:

Все тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Под действием силы всемирного тяготения движутся и планеты вокруг Солнца, и искусственные спутники вокруг Земли.

Но что надо понимать под расстоянием между взаимодействующими телами? Возьмем два тела произвольной формы (рис. 109). Сразу возникает вопрос: какое расстояние нужно подставлять в формулу закона всемирного тяготения? Расстояние между

самыми дальними точками поверхности обоих тел или же, наоборот, расстояние между ближайшими точками? А может быть, расстояние между какими-нибудь другими точками тела?

Оказывается, формула (1), выражающая закон всемирного тяготения, справедлива, когда расстояние между телами настолько велико по сравнению с их размерами, что тела можно считать материальными точками. Материальными точками при вычислении силы тяготения между ними можно считать Землю и Луну, планеты и Солнце.

Если тела имеют форму шаров, то даже в том случае, когда их размеры сравнимы с расстоянием между ними, они притягиваются между собой как материальные точки, расположенные в центрах шаров (рис. 110). В этом случае - это расстояние между центрами шаров.

Формулой (1) можно также пользоваться при вычислении силы притяжения между шаром большого радиуса и телом произвольной формы небольших размеров, находящимся близко к поверхности шара (рис. 111). Тогда размерами тела можно пренебречь по сравнению с радиусом шара. Именно так мы поступаем, когда рассматриваем притяжение различных тел к земному шару.

Сила тяготения - это еще один пример силы, которая зависит от положения (координат) того тела, на которое эта сила действует, относительно того тела, которое оказывает действие. Ведь сила тяготения зависит от расстояния между телами.

Почему выпущенный из рук камень падает на Землю? Потому что его притягивает Земля, скажет каждый из вас. В самом деле, камень падает на Землю с ускорением свободного падения. Следовательно, на камень со сто-роны Земли действует сила, направленная к Земле. Согласно третьему закону Ньютона и камень действует на Землю с такой же по модулю силой, направленной к камню. Иными словами, между Землей и камнем действуют силы взаимного притяжения.

Ньютон был первым, кто сначала догадался, а потом и строго доказал, что причина, вызывающая падение камня на Землю, движение Луны вокруг Земли и планет вокруг Солнца, одна и та же. Это сила тяготения, действующая между любыми телами Вселенной. Вот ход его рассуждений, приведенных в главном труде Ньютона «Математические начала натуральной философии»:

«Брошенный горизонтально камень отклонится под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадет наконец на Землю. Если его бросить с большей скоростью, то он упадет дальше» (рис. 1).

Продолжая эти рассуждения, Ньютон приходит к выводу, что если бы не сопротивление воздуха, то траектория камня, брошенного с высокой горы с определенной скоростью, могла бы стать такой, что он вообще никогда не достиг бы поверхности Земли, а двигался вокруг нее «подобно тому, как планеты описывают в небесном пространстве свои орбиты».

Сейчас нам стало настолько привычным движение спутников вокруг Земли, что разъяснять мысль Ньютона подробнее нет необходимости.

Итак, по мнению Ньютона, движение Луны вокруг Земли или планет вокруг Солнца – это тоже свободное падение, но только падение, которое длится, не прекращаясь, миллиарды лет. Причиной такого «падения» (идет ли речь действительно о падении обычного камня на Землю или о движении планет по их орбитам) является сила всемирного тяготения. От чего же эта сила зависит?

Зависимость силы тяготения от массы тел

Галилей доказал, что при свободном падении Земля сообщает всем телам в данном месте одно и то же ускорение независимо от их массы. Но ускорение по второму закону Ньютона обратно пропорционально массе\. Как же объяснить, что ускорение, сообщаемое телу силой притяжения Земли, одинаково для всех тел? Это возможно лишь в том случае, если сила притяжения к Земле прямо пропорциональна массе тела. В этом случае увеличение массы т, например, вдвое приведет к увеличению модуля силы F тоже вдвое, а ускорение, которое равно \(a = \frac {F}{m}\), останется неизменным. Обобщая этот вывод для сил тяготения между любыми телами, заключаем, что сила всемирного тяготения прямо пропорциональна массе тела, на которое эта сила действует.

Но во взаимном притяжении участвуют по меньшей мере два тела. На каждое из них, согласно третьему закону Ньютона, действуют одинаковые по модулю силы тяготения. Поэтому каждая из этих сил должна быть пропорциональна как массе одного тела, так и массе другого тела. Поэтому сила всемирного тяготения между двумя телами прямо пропорциональна произведению их масс:

\(F \sim m_1 \cdot m_2\)

Зависимость силы тяготения от расстояния между телами

Из опыта хорошо известно, что ускорение свободного падения равно 9,8 м/с 2 и оно одинаково для тел, падающих с высоты 1, 10 и 100 м, т. е. не зависит от расстояния между телом и Землей. Это как будто бы означает, что и сила от расстояния не зависит. Но Ньютон считал, что отсчитывать расстояния надо не от поверхности, а от центра Земли. Но радиус Земли 6400 км. Понятно, что несколько десятков, сотен или даже тысяч метров над поверхностью Земли не могут заметно изменить значение ускорения свободного падения.

Чтобы выяснить, как влияет расстояние между телами на силу их вза-имного притяжения, нужно было бы узнать, каково ускорение тел, удаленных от Земли на достаточно большие расстояния. Однако наблюдать и изучать свободное падение тела с высоты в тысячи километров над Землей трудно. Но сама природа пришла здесь на помощь и дала возможность определить ускорение тела, движущегося по окружности вокруг Земли и обладающего поэтому центростремительным ускорением, вызванным, разумеется, той же силой притяжения к Земле. Таким телом является естественный спутник Земли – Луна. Если бы сила притяжения между Землей и Луной не зависела от расстояния между ними, то центростремительное ускорение Луны было бы таким же, как ускорение тела, свободно падающего близ поверхности Земли. В действительности же центростремительное ускорение Луны равно 0,0027 м/с 2 .

Докажем это . Обращение Луны вокруг Земли происходит под действием силы тяготения между ними. Приближенно орбиту Луны можно считать окружностью. Следовательно, Земля сообщает Луне центростремительное ускорение. Оно вычисляется по формуле \(a = \frac {4 \pi^2 \cdot R}{T^2}\), где R – радиус лунной орбиты, равный примерно 60 радиусам Земли, Т ≈ 27 сут 7 ч 43 мин ≈ 2,4∙10 6 с – период обращения Луны вокруг Земли. Учитывая, что радиус Земли R з ≈ 6,4∙10 6 м, получим, что центростремительное ускорение Луны равно:

\(a = \frac {4 \pi^2 \cdot 60 \cdot 6,4 \cdot 10^6}{(2,4 \cdot 10^6)^2} \approx 0,0027\) м/с 2 .

Найденное значение ускорения меньше ускорения свободного падения тел у поверхности Земли (9,8 м/с 2) приблизительно в 3600 = 60 2 раз.

Таким образом, увеличение расстояния между телом и Землей в 60 раз привело к уменьшению ускорения, сообщаемого земным притяжением, а следовательно, и самой силы притяжения в 60 2 раз.

Отсюда вытекает важный вывод: ускорение, которое сообщает телам сила притяжения к Земле, убывает обратно пропорционально квадрату расстояния до центра Земли

\(F \sim \frac {1}{R^2}\).

Закон всемирного тяготения

В 1667 г. Ньютон окончательно сформулировал закон всемирного тяготения:

\(F = G \cdot \frac {m_1 \cdot m_2}{R^2}.\quad (1)\)

Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними .

Коэффициент пропорциональности G называется гравитационной постоянной .

Закон всемирного тяготения справедлив только для таких тел, размеры которых пренебрежимо малы по сравнению с расстоянием между ними. Иначе говоря, он справедлив только для материальных точек . При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис. 2). Подобного рода силы называются центральными.

Для нахождения силы тяготения, действующей на данное тело со сто-роны другого, в случае, когда размерами тел пренебречь нельзя, поступают следующим образом. Оба тела мысленно разделяют на столь малые элементы, чтобы каждый из них можно было считать точечным. Складывая силы тяготения, действующие на каждый элемент данного тела со стороны всех элементов другого тела, получают силу, действующую на этот элемент (рис. 3). Проделав такую операцию для каждого элемента данного тела и сложив полученные силы, находят полную силу тяготения, действующую на это тело. Задача эта сложная.

Есть, однако, один практически важный случай, когда формула (1) применима к протяженным телам. Можно доказать, что сферические тела, плотность которых зависит только от расстояний до их центров, при расстояниях между ними, больших суммы их радиусов, притягиваются с силами, модули которых определяются формулой (1). В этом случае R – это расстояние между центрами шаров.

И наконец, так как размеры падающих на Землю тел много меньше размеров Земли, то эти тела можно рассматривать как точечные. Тогда под R в формуле (1) следует понимать расстояние от данного тела до центра Земли.

Между всеми телами действуют силы взаимного притяжения, зависящие от самих тел (их масс) и от расстояния между ними.

Физический смысл гравитационной постоянной

Из формулы (1) находим

\(G = F \cdot \frac {R^2}{m_1 \cdot m_2}\).

Отсюда следует, что если расстояние между телами численно равно единице (R = 1 м) и массы взаимодействующих тел тоже равны единице (m 1 = m 2 = 1 кг), то гравитационная постоянная численно равна модулю силы F . Таким образом (физический смысл ),

гравитационная постоянная численно равна модулю силы тяготения, действующей на тело массой 1 кг со стороны другого тела такой же массы при расстоянии между телами, равном 1 м .

В СИ гравитационная постоянная выражается в

.

Опыт Кавендиша

Значение гравитационной постоянной G может быть найдено только опытным путем. Для этого надо измерить модуль силы тяготения F , действующей на тело массой m 1 со стороны тела массой m 2 при известном расстоянии R между телами.

Первые измерения гравитационной постоянной были осуществлены в середине XVIII в. Оценить, правда весьма грубо, значение G в то время удалось в результате рассмотрения притяжения маятника к горе, масса которой была определена геологическими методами.

Точные измерения гравитационной постоянной впервые были проведены в 1798 г. английским физиком Г. Кавендишем с помощью прибора, называемого крутильными весами. Схематично крутильные весы показаны на рисунке 4.

Кавендиш закрепил два маленьких свинцовых шара (диаметром 5 см и массой m 1 = 775 г каждый) на противоположных концах двухметрового стержня. Стержень был подвешен на тонкой проволоке. Для этой проволоки предварительно определялись силы упругости, возникающие в ней при закручивании на различные углы. Два больших свинцовых шара (диаметром 20 см и массой m 2 = 49,5 кг) можно было близко подводить к маленьким шарам. Силы притяжения со стороны больших шаров заставляли маленькие шары перемещаться к ним, при этом натянутая проволока немного закручивалась. Степень закручивания была мерой силы, действующей между шарами. Угол закручивания проволоки (или поворота стержня с малыми шарами) оказался столь малым, что его пришлось измерять с помощью оптической трубы. Результат, полученный Кавендишем, только на 1% отличается от значения гравитационной постоянной, принятого сегодня:

G ≈ 6,67∙10 -11 (Н∙м 2)/кг 2

Таким образом, силы притяжения двух тел массой по 1 кг каждое, находящихся на расстоянии 1 м друг от друга, по модулям равны всего лишь 6,67∙10 -11 Н. Это очень малая сила. Только в том случае, когда взаимодействуют тела огромной массы (или по крайней мере масса одного из тел велика), сила тяготения становится большой. Например, Земля притягивает Луну с силой F ≈ 2∙10 20 Н.

Гравитационные силы – самые «слабые» из всех сил природы. Это связано с тем, что гравитационная постоянная мала. Но при больших массах космических тел силы всемирного тяготения становятся очень большими. Эти силы удерживают все планеты возле Солнца.

Значение закона всемирного тяготения

Закон всемирного тяготения лежит в основе небесной механики – науки о движении планет. С помощью этого закона с огромной точностью определяются положения небесных тел на небесном своде на многие десятки лет вперед и вычисляются их траектории. Закон всемирного тяготения применяется также в расчетах движения искусственных спутников Земли и межпланетных автоматических аппаратов.

Возмущения в движении планет . Планеты не движутся строго по законам Кеплера. Законы Кеплера точно соблюдались бы для движения данной планеты лишь в том случае, когда вокруг Солнца обращалась бы одна эта планета. Но в Солнечной системе планет много, все они притягиваются как Солнцем, так и друг другом. Поэтому возникают возмущения движения планет. В Солнечной системе возмущения невелики, потому что притяжение планеты Солнцем гораздо сильнее притяжения другими планетами. При вычислении видимого положения планет приходится учитывать возмущения. При запуске искусственных небесных тел и при расчете их траекторий пользуются приближенной теорией движения небесных тел – теорией возмущений.

Открытие Нептуна . Одним из ярких примеров триумфа закона все-мирного тяготения является открытие планеты Нептун. В 1781 г. английский астроном Вильям Гершель открыл планету Уран. Была вычислена ее орбита и составлена таблица положений этой планеты на много лет вперед. Однако проверка этой таблицы, проведенная в 1840 г., показала, что данные ее расходятся с действительностью.

Ученые предположили, что отклонение в движении Урана вызвано притяжением неизвестной планеты, находящейся от Солнца еще дальше, чем Уран. Зная отклонения от расчетной траектории (возмущения движения Урана), англичанин Адаме и француз Леверрье, пользуясь законом всемирного тяготения, вычислили положение этой планеты на небе. Адаме раньше закончил вычисления, но наблюдатели, которым он сообщил свои результаты, не торопились с проверкой. Тем временем Леверрье, закончив вычисления, указал немецкому астроному Галле место, где надо искать неизвестную планету. В первый же вечер, 28 сентября 1846 г., Галле, направив телескоп на указанное место, обнаружил новую планету. Ее назвали Нептуном.

Таким же образом 14 марта 1930 г. была открыта планета Плутон. Оба открытия, как говорят, были сделаны «на кончике пера».

При помощи закона всемирного тяготения можно вычислить массу планет и их спутников; объяснить такие явления, как приливы и отливы воды в океанах, и многое другое.

Силы всемирного тяготения – самые универсальные из всех сил природы. Они действуют между любыми телами, обладающими массой, а массу имеют все тела. Для сил тяготения не существует никаких преград. Они действуют сквозь любые тела.

Литература

  1. Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. шк. – М.: Просвещение, 1992. – 191 с.
  2. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. – М.: Дрофа, 2002. – 496 с.