Теория космических полётов


§ 1. Особенности 1раекторий полета человека
§ 2. Прямой полет Земля - Луна - Земля (первый вариант лунной экспедиции)
§ 3. Встреча в космосе и монтаж корабля (второй вариант лунной экспедиции)
§ 4. Разъединение и сближение на окололунной орбите (третий вариант лунной экспедиции)
§ 5. Экспедиции по программе «Аполлон»
§ 6. Лунная транспортная космическая система
§ 7. Лунные грузовые корабли с малой тягой
§ 8. Окололунная орбитальная станция
§ 9. Перспективы использования Луны
Часть четвертая
МЕЖПЛАНЕТНЫЕ ПОЛЕТЫ
  • Глава 13. Межпланетные полеты с большой тягой
    § 1. Главные особенности межпланетного полета
    § 2. Движение внутри сферы действия Земли
    § 3. Гелиоцентрическое движение вне сферы действия Земли
    § 4. Гомановские и параболические перелеты
    § 5. Движение внутри сферы действия планеты-цели
    § 6. Межпланетный пертурбационный маневр
    § 7. Искусственные спутники планет
    § 8. Возмущения межпланетных траекторий
    § 9. Коррекция межпланетных траекторий
  • Глава 14. Межпланетные полеты с малой тягой
    § 1. Траектории достижения планет
    § 2. Перелеты на орбиты искусственных спутников планет
    § 3. Солнечный парус
    § 4. Разработки космических аппаратов с двигателями малой тяги
  • Глава 15. Зондирование межпланетного пространства
    § 1. Одноимпульсные орбиты искусственных планет
    § 2. Полеты вне плоскости эклиптики
    § 3. Поворот плоскости орбиты с помощью солнечной ЭРДУ
    § 4. Двухимпульсные орбиты искусственных планет
    § 5. Переход через бесконечность
    § 6. Выведение искусственной планеты в точку либрации
    § 7. Научное значение искусственных планет
  • Глава 16. Полеты к Марсу
    § 1. Траектории в случае упрощенной модели планетных орбит
    § 2. Влияние эксцентриситета и наклона орбиты Марса
    § 3. Географические условия старта к Марсу
    § 4. Посадка на Марс
    § 5. Искусственные спутники Марса
    § 6. Полеты на спутники Марса - Фобос и Деймос
    § 7. Облет Марса с возвращением к Земле
    § 8. Автоматические станции исследуют Марс
    § 9. Результаты исследований Марса
  • Глава 17. Полеты к Венере
    § 1. Достижение Венеры
    § 2. Посадка и искусственный спутник Венеры
    § 3. Облет Венеры
    § 4. Автоматические станции исследуют Венеру
    § 5. Результаты исследований Венеры
  • Глава 18. Полеты к Меркурию
    § 1. Достижение Меркурия
    § 2. Посадка и искусственный спутник Меркурия
    § 3. Полет к Меркурию при попутном облете Венеры
    § 4. Полет с солнечно-электрическим двигателем
    § 5. Результаты исследований Меркурия
  • Глава 19. Полеты к юпитерианским планетам
    § 1. Планеты, совсем не похожие на нашу
    § 2. Прямые перелеты
    § 3. Полеты к Юпитеру и Сатурну через планеты земной группы
    § 4. Пертурбационные маневры в сферах действия планет группы Юпитера
    § 5. Через Юпитер - к Солнцу и подальше от плоскости эклиптики
    § 6. Искусственный спутник Юпитера
    § 7. Искусственные спутники других планет группы Юпитера
    § 8. Посадки на естественные спутники
    § 9. Зондирование атмосфер юпитерианских планет. Посадка на Плутон
    § 10. Полеты с малой тягой
    § 11. Исследования Юпитера и Сатурна
    § 12. Результаты исследований в системах Юпитера и Сатурна
  • Глава 20. Полеты к астероидам
    § 1. Пролет астероида
    § 2. Встреча с астероидом
    § 3. Выход на орбиту вокруг астероида
    § 4. Посадка на астероид и возвращение на Землю
  • Глава 21. Полеты к кометам
    § 1. Импульсные полеты
    § 2. Полеты с малой тягой
    § 3. Операции вблизи ядра кометы
  • Глава 22. Межпланетные экспедиции
    § 1. Они только отложены
    § 2. Особенности межпланетных экспедиций
    § 3. Спуск на Землю при возвращении из экспедиции
    § 4. Безостановочные пилотируемые облеты планет
    § 5. Экспедиции с остановками при прямых симметричных перелетах
    § 6. Экспедиции с траекториями возвращения, несимметричными траекториям прибытия
    § 7. Операции на околопланетных орбитах, пролетных траекториях и поверхностях
    § 8. Экспедиции на астероиды
    § 9. Использование кораблей с малой тягой
    § 10. Немного о будущем
  • § 1. Космодинамика - теория космических полетов

    Буквальный смысл слова «космонавтика» (представляющего собой сочетание двух греческих слов) - «плавание во Вселенной». В обычном употреблении это слово означает совокупность различных отраслей науки и техники, обеспечивающих исследование и освоение космического пространства и небесных тел с помощью космических летательных аппаратов - искусственных спутников, автоматических станций различного назначения, пилотируемых космических кораблей.

    Теория космических полетов, представлявших давнюю мечту человечества, превратилась в науку в результате основополагающих трудов великого русского ученого Константина Эдуардовича Циолковского. В течение продолжительного времени, до того момента, когда идеи, формулы и чертежи энтузиастов и ученых стали в конструкторских бюро и в цехах заводов превращаться в объекты, изготовленные «в металле», теоретический фундамент космонавтики покоился на трех китах: 1) теории движения космических аппаратов; 2) ракетной технике; 3) совокупности астрономических знаний о Вселенной.

    Впоследствии в недрах космонавтики зародился широкий цикл новых научно-технических дисциплин, таких, как теория систем управления космическими объектами, космическая навигация, теория космических систем связи и передачи информации, космическая биология и медицина и т. д. Сейчас, когда нам трудно представить себе космонавтику без этих дисциплин, полезно вспомнить о том, что теоретические основы космонавтики закладывались К. Э. Циолковским в то время, когда производились лишь первые опыты над использованием радиоволн и радио не могло считаться

    средством связи в космосе. В течение многих лет в качестве средства связи всерьез рассматривалась сигнализация с помощью лучей солнечного света, отражаемых в сторону Земли зеркалами, находящимися на борту межпланетного корабля. Сейчас, когда мы привыкли не удивляться ни прямому телевизионному репортажу с поверхности Луны, ни полученным по радио фотографиям, сделанным вблизи Юпитера или на поверхности Венеры, в это трудно поверить. Поэтому можно утверждать, что теория космической связи, несмотря на всю свою важность, не является все же главным звеном в цепи космических дисциплин.

    Таким главным звеном служит теория движения космических объектов. Именно ее можно считать теорией космических полетов. Специалисты, занимающиеся этой наукой, сами называют ее по-разному: прикладная небесная механика, небесная баллистика, космическая баллистика, космодинамика механика космического полета, теория движения искусственных небесных тел.

    Все эти названия имеют один и тот же смысл, точно выражаемый последним термином. Космодинамика, таким образом, является частью небесной механики - науки, изучающей движение любых небесных тел - как естественных (звезды, Солнце, планеты, их спутники, кометы, метеорные тела, космическая пыль), так и искусственных (автоматические космические аппараты и пилотируемые корабли). Но есть нечто, выделяющее космодинамику из небесной механики. Родившаяся в лоне небесной механики космодинамика пользуется ее методами, но не умещается в ее традиционных рамках.

    Существенное отличие прикладной небесной механики от классической заключается в том, что вторая не занимается и не может заниматься выбором орбит небесных тел, в то время как первая занимается отбором из огромного числа возможных траекторий достижения того или иного небесного тела определенной траектории, которая учитывает многочисленные, зачастую противоречивые, требования. Главное требование - минимальность скорости, до которой разгоняется космический аппарат на начальном активном участке полета и соответственно минимальность массы ракеты-носителя или орбитального разгонного блока (при старте с околоземной орбиты). Это обеспечивает максимальную полезную нагрузку и, следовательно, наибольшую научную эффективность полета. Учитываются также требования простоты управления, условий радиосвязи (например, в момент захода станции за планету при ее облете),

    условий научных исследований (посадка на дневной или ночной стороне планеты) и т. п.

    Космодинамика предоставляет в распоряжение проектировщиков космической операции методы оптимального перехода с одной орбиты на другую, способы исправления траектории. В поле ее зрения находится неведомое классической небесной механике орбитальное маневр ирование.

    Космодинамика представляет собой фундамент общей теории космического полета (подобно тому как аэродинамика представляет собой фундамент теории полета в атмосфере самолетов, вертолетов, дирижаблей и других летательных аппаратов). Эту свою роль космодинамика делит с ракетодинамикой - наукой о движении ракет. Обе науки, тесно переплетаясь, лежат в основе космической техники. Обе они являются разделами теоретической механики, которая сама представляет собой обособившийся раздел физики.

    Будучи точной наукой, космодинамика использует математические методы исследования и требует логически стройной системы изложения. Недаром основы небесной механики были разработаны после великих открытий Коперника, Галилея и Кеплера именно теми учеными, которые внесли величайший вклад в развитие математики и механики. Это были Ньютон, Эйлер, Клеро, Даламбер, Лагранж, Лаплас. И в настоящее время математика помогает решению задач небесной баллистики и в свою очередь получает толчок в своем развитии благодаря тем задачам, которые космодинамика перед ней ставит.

    Классическая небесная механика была чисто теоретической наукой. Ее выводы находили неизменное подтверждение в данных астрономических наблюдений. Космодинамика привнесла в небесную механику эксперимент, и небесная механика впервые превратилась в экспериментальную науку, подобную в этом отношении, скажем, такому разделу механики, как аэродинамика. На смену поневоле пассивному характеру классической небесной механики пришел активный, наступательный дух небесной баллистики. Каждое новое достижение космонавтики - это вместе с тем свидетельство эффективности и точности методов космодинамики.

    Космодинамика делится на две части: теорию движения центра масс космического аппарата (теорию космических траекторий) и теорию движения космического аппарата относительно центра масс (теорию «вращательного движения»). Как уже говорилось в предисловии, в книге будет рассказываться главным образом о траекториях, и космический аппарат в большинстве случаев будет рассматриваться как материальная точка.

    Название : Механика космического полета в элементарном изложении.

    В книге в доступной форме, без применения сложного математического аппарата, но вместе с тем вполне строго излагаются основы космодинамики - науки о движении космических летательных аппаратов. В первой части рассматриваются общие вопросы, двигательные системы для космических полетов, пассивный и активный полеты в поле тяготения. Следующие части посвящены последовательно околоземным полетам, полетам к Луне, к телам Солнечной системы (к планетам, их спутникам, астероидам, кометам) и за пределы планетной системы. Особо рассматриваются проблемы пилотируемых орбитальных станций и космических кораблей. Дается представление о методах исследования и проектирования космических траекторий и различных операций: встречи на орбитах, посадки, маневры в атмосферах, в гравитационных полях планет (многопланетные полеты и т. п.), полеты с малой тягой и солнечным парусом и т. д. Приводятся элементарные формулы, позволяющие читателю самостоятельно оценить начальные массы ракет-носителей и аппаратов, стартующих с околоземной орбиты, определить благоприятные сезоны для межпланетных полетов и др. Книга содержит большой справочный числовой и исторический материал.


    За годы, прошедшие после выхода в свет второго издания этой книги, космонавтика достигла новых замечательных успехов. Все большее применение находят искусственные спутники Земли для развития народного хозяйства. Резко возросло число советских космонавтов, побывавших на околоземных орбитах. Работа экипажей (в том числе интернациональных) на советской орбитальной станции «Салют» стала обыденным явлением. Продолжается успешное изучение Венеры и Марса. Стал привычным пролет Юпитера, достигнут Сатурн, впереди Уран.
    Наряду с практическими достижениями опубликован ряд теоретических работ и предложено немало тем для новых разработок, интересных именно с точки зрения механики космического полета. Достаточно, например, сказать, что солнечный парус стал рассматриваться как конкурент электро-ракетных двигательных установок. Конкретизируются проекты использования космических аппаратов в так называемых точках либрации, и уже началось их осуществление. Придумано, как использовать Землю для разгона на пути к Юпитеру и Сатурну

    ОГЛАВЛЕНИЕ
    Предисловие к третьему изданию 8
    Из предисловия ко второму изданию 10
    Введение 15
    § 1. Космодинамика - теория космических полетов 15
    § 2. Основные законы механики 18
    § 3. О единицах силы и массы 20
    § 4. О системах отсчета 21
    Часть первая
    ОСНОВЫ РАКЕТО- И КОСМОДИНАМИКИ 22
    Глава 1. Двигательные системы для космических полетов 22
    § 1. Законы ракетного движения 22
    § 2. Структура ракеты 27
    § 3. Составная ракета 29
    § 4. Термохимические ракетные двигатели 34
    § 5. Ядерные тепловые двигатели 38
    § 6. Тепловые двигатели с внешним источником энергии 41
    § 7. Электрические ракетные двигатели (ЭРД) 42
    § 8. Парусные системы 46
    § 9. Фотонный (квантовый) ракетный двигатель 48
    § 10. Классификации двигательных систем 48
    Глава 2. Свободный полет в полях тяготения 54
    § 1. Силы, действующие на космический аппарат в полете 54
    § 2. Задача п тел и метод численного интегрирования 55
    § 3. Невесомость 57
    § 4. Центральное поле тяготения 59
    § 5. Траектории в центральном поле тяготения 61
    § 6. Неограниченная задача двух тел 66
    § 7. Сфера действия и приближенный метод расчета траекторий... 68
    Глава 3. Активное движение космического аппарата 73
    § 1. Выход на траекторию свободного полета 73
    § 2. Активное движение в космическом пространстве 78
    § 3. Перегрузка 80
    § 4. Управление движением космического аппарата 82
    § 5. Движение космического аппарата относительно центра масс и управление им 84
    Часть вторая
    ОКОЛОЗЕМНЫЕ ПОЛЕТЫ 89
    Глава 4. Движение искусственных спутников Земли 89
    § 1. Параметры орбиты 89
    § 2. Возмущенное движение спутника 91
    § 3. Влияние несферичности Земли 92
    § 4. Эволюция орбиты в земной атмосфере. . . ." 95
    § 5. Влияние притяжений Луны и Солнца 98
    § 6. Спутники в точках либрации 102
    § 7. Влияние давления солнечного света 106
    § 8. Движение спутника относительно земной поверхности 107
    Глава 5. Активное движение в околоземном пространстве 111
    § 1. Выведение спутника на орбиту с низким перигеем 111
    § 2. Многоимпульсное выведение 113
    § 3. Изменение плоскости орбиты 117
    § 4. Спуск с орбиты 119
    § 5. Относительное движение в окрестности спутника 123
    § 6. Встреча на орбите 129
    § 7. Конечное сближение и стыковка 133
    § 8. Разгон с малой тягой до параболической скорости 136
    § 9. Изменения орбит и их коррекция с помощью малых тяг 140
    § 10. Разгон с помощью солнечного паруса 143
    § 11. Ориентация и стабилизация спутников 146
    Глава 6. Использование искусственных спутников Земли "150
    § 1. Космические объекты в околоземном пространстве 150
    § 2. Исследовательские спутники 152
    § 3. Метеорологические спутники и спутники для исследования природных ресурсов Земли 159
    § 4. Спутники связи 164
    § 5. Навигационные и геодезические спутники 167
    § 6. Орбитальные энергостанции 168
    Глава 7. Пилотируемые орбитальные объекты 170
    § 1. Корабли-спутники и орбитальные станции 170
    § 2. Роль орбитальных станций 176
    § 3. Искусственная тяжесть 177
    § 4. Многоразовый транспортный космический корабль (МТКК) . . 180
    § 5. Межорбитальный транспортный аппарат 185
    § 6. Эксплуатация многоразовых транспортных аппаратов 186
    Часть третья
    ПОЛЕТЫ К ЛУНЕ 191
    Глава 8. Достижение Луны 191
    § 1. Плоская задача достижения Луны 191
    § 2. Пространственная задача достижения Луны 196
    § 3. Учет эллиптичности лунной орбиты, притяжения Луны и ее размеров 202
    § 4. Влияние гравитационных возмущений от сжатия Земли и от Солнца 205
    § 5. Точность наведения 206
    § 6. Коррекция траектории 209
    § 7. Посадка на Луну 210
    § 8. Научное значение автоматических лунных станций 217
    Глава 9. Пролетные операции 221
    § 1. Пролетная траектория 221
    § 2. Сближение с возвращением к Земле 225
    § 3. Периодический облет Луны 230
    § 4. Разгонные траектории 234
    § 5. Маневрирование на пролетных траекториях 236
    § 6. Научное значение пролетных операций 237
    Глава 10. Искусственный ыгутник Луны 239
    § 1. О возможности захвата Луной космического аппарата 239
    § 2. Запуск искусственного спутника Луны 241
    § 3. Орбиты спутников Луны и их эволюция 245
    § 4. Движение спутника относительно лунной поверхности.... 250
    § 5. Маневрирование спутников Луны 251
    § 6. Научное значение спутников Луны 253
    Глава 11. Возвращение на Землю 256
    § 1. Траектории возвращения 256
    § 2. Вход в земную атмосферу и спуск 258
    § 3. Возвращение на Землю космических аппаратов, облетевших Луну 262
    § 4. Возвращение на Землю станций, совершивших посадки на Луне 265
    Глава 12. Экспедиция на Луну 268
    § 1. Особенности 1раекторий полета человека 268
    § 2. Прямой полет Земля - Луна - Земля (первый вариант лунной экспедиции) 271
    § 3. Встреча в космосе и монтаж корабля (второй вариант лунной экспедиции) 275
    § 4. Разъединение и сближение на окололунной орбите (третий вариант лунной экспедиции) 277
    § 5. Экспедиции по программе «Аполлон» 278
    § 6. Лунная транспортная космическая система 290
    § 7. Лунные грузовые корабли с малой тягой 291
    § 8. Окололунная орбитальная станция 293
    § 9. Перспективы использования Луны 298
    Часть четвертая
    МЕЖПЛАНЕТНЫЕ ПОЛЕТЫ 302
    Глава 13. Межпланетные полеты с большой тягой 302
    § 1. Главные особенности межпланетного полета 302
    § 2. Движение внутри сферы действия Земли 306
    § 3. Гелиоцентрическое движение вне сферы действия Земли.... 312
    § 4. Гомановские и параболические перелеты 315
    § 5. Движение внутри сферы действия планеты-цели 321
    § 6. Межпланетный пертурбационный маневр 325
    § 7. Искусственные спутники планет 329
    § 8. Возмущения межпланетных траекторий 335
    § 9. Коррекция межпланетных траекторий 337
    Глава 14. Межпланетные полеты с малой тягой 341
    § 1. Траектории достижения планет 341
    § 2. Перелеты на орбиты искусственных спутников планет 343
    § 3. Солнечный парус 346
    § 4. Разработки космических аппаратов с двигателями малой тяги. 348
    Глава 15, Зондирование межпланетного пространства 350
    § 1. Одноимпульсные орбиты искусственных планет 350
    § 2. Полеты вне плоскости эклиптики 353
    § 3. Поворот плоскости орбиты с помощью солнечной ЭРДУ.... 355
    § 4. Двухимпульсные орбиты искусственных планет 356
    § 5. Переход через бесконечность 359
    § 6. Выведение искусственной планеты в точку либрации 360
    § 7. Научное значение искусственных планет 361
    Глава 16. Полеты к Марсу 363
    § 1. Траектории в случае упрощенной модели планетных орбит. . . 363
    § 2. Влияние эксцентриситета и наклона орбиты Марса 367
    § 3. Географические условия старта к Марсу 370
    § 4. Посадка на Марс 371
    § 5. Искусственные спутники Марса 374
    § 6. Полеты на спутники Марса - Фобос и Деймос 375
    § 7. Облет Марса с возвращением к Земле 377
    § 8. Автоматические станции исследуют Марс 378
    § 9. Результаты исследований Марса 381
    Глава 17. Полеты к Венере 386
    § 1. Достижение Венеры 386
    § 2. Посадка и искусственный спутник Венеры 387
    § 3. Облет Венеры 387
    § 4. Автоматические станции исследуют Венеру 389
    § 5. Результаты исследований Венеры 394
    Глава 18. Полеты к Меркурию 396
    § 1. Достижение Маркурия 396
    § 2. Посадка и искусственный спутник Меркурия 396
    § 3. Полет к Меркурию при попутном облете Венеры 398
    § 4. Полет с солнечно-электрическим двигателем 399
    § 5. Результаты исследований Меркурия 400
    Глава 19. Полеты к юпитерианским планетам 402
    § 1. Планеты, совсем не похожие на нашу 402
    § 2. Прямые перелеты 403
    § 3. Полеты к Юпитеру и Сатурну через планеты земной группы. . 405
    § 4. Пертурбационные маневры в сферах действия планет группы Юпитера 407
    § 5. Через Юпитер - к Солнцу и подальше от плоскости эклиптики 410
    § 6. Искусственный спутник Юпитера 412
    § 7. Искусственные спутники других планет группы Юпитера... 416
    § 8. Посадки на естественные спутники 417
    § 9. Зондирование атмосфер юпитерианских планет. Посадка на Плутон 418
    § 10. Полеты с малой тягой 419
    § 11. Исследования Юпитера и Сатурна 420
    § 12. Результаты исследований в системах Юпитера и Сатурна. . . 424
    Глава 20. Полеты к астероидам 429
    § 1. Пролет астероида 429
    § 2. Встреча с астероидом 430
    § 3. Выход на орбиту вокруг астероида 431
    § 4. Посадка на астероид и возвращение на Землю 432
    Глава 21. Полеты к кометам 434
    § 1. Импульсные полеты 434
    § 2. Полеты с малой тягой 437
    § 3. Операции вблизи ядра кометы 439
    Глава 22. Межпланетные экспедиции 440
    § 1. Они только отложены 440
    § 2. Особенности межпланетных экспедиций 441
    § 3. Спуск на Землю при возвращении из экспедиции 444
    § 4. Безостановочные пилотируемые облеты планет 447
    § 5. Экспедиции с остановками при прямых симметричных перелетах 448
    § 6. Экспедиции с траекториями возвращения, несимметричными траекториям прибытия 453
    § 7. Операции на околопланетных орбитах, пролетных траекториях и поверхностях 455
    § 8. Экспедиции на астероиды 458
    § 9. Использование кораблей с малой тягой 460
    § 10. Немного о будущем 465
    Часть пятая
    ПОЛЕТЫ ЗА ПРЕДЕЛЫ СОЛНЕЧНОЙ СИСТЕМЫ 467
    Глава 23. Преддверие полета к звездам 467
    § 1. Заплутонное пространство 467
    § 2. Полеты с большой тягой 468
    § 3. Полеты с малой тягой 469
    Глава 24. Межзвездные полеты 470
    § 1 Астронавтика - составная часть космонавтики 470
    § 2. Фотонная ракета - средство осуществления межзвездных полетов 471
    § 3. Обобщенная формула Циолковского 472
    § 4. Продолжительности полетов 474
    § 5. О «собственных» скоростях звездолета 477
    § 6. Мечта или реальность? 478
    Послесловие 481
    Дополнение при корректуре. Космический лифт 484
    Приложение I. Перечень таблиц в тексте книги 487
    Приложение II. К вычислению начальных масс ракетных систем 487
    Литература 490
    Указатель имен и библиографических ссылок 503
    Предметный указатель 506
    Указатель наименований космических летательных аппаратов и проектов 509

    Академик М.В. Келдыш.
    Механика космического полета

    Академик Т.М. Энеев
    Зам. директора ИПМ им. М.В. Келдыша, профессор Э.Л. Аким

    Пятьдесят лет назад, 4 октября 1957 года человечество впервые вывело в космос устройство, которое длительное время летало по околоземной орбите, подавая сигналы о функционировании его бортовых приборов. С помощью ракеты Р-7 был запущен первый искусственный спутник Земли.

    Запуск этого спутника имел длительную и сложную предысторию. О космических полетах люди мечтали с давних пор. Впервые эта мечта приобрела реальную базу после пионерской работы Циолковского, показавшего, что такие полеты осуществимы с помощью ракетной техники. Им была выведена знаменитая формула, по которой можно рассчитать запас топлива, необходимый для приобретения нужной скорости ракеты, разработаны начала теории составных ракет.

    Однако реальная работа по реализации идеи космического полета началась уже после войны благодаря крайней необходимости в развитии ракетной техники для военных целей. Чтобы противостоять возникшей тогда угрозе ядерного нападения на Советский Союз, потребовалось создать межконтинентальную составную баллистическую ракету. В конструкторском бюро блестящего инженера и конструктора Сергея Павловича Королева такая ракета — знаменитая Р-7 — была создана. Разумеется, королевское КБ работало в кооперации с другими организациями, создававшими двигатели, систему управления, стартовое устройство и т. п. Здесь следует упомянуть главных конструкторов В.П. Глушко, Н.Н. Пилюгина, М.С. Рязанского, В.И. Кузнецова, В.П. Бармина. Нельзя не вспомнить и о прекрасных помощниках Сергея Павловича Королева, его заместителях В.П. Мишине, В.А. Воскресенском, К.Д. Бушуеве, Б.Е. Чертоке.

    Но уже в период напряженной работы по созданию ракет некоторые ее активные участники думали о космическом полете. Наиболее серьезные исследования проводились двумя коллективами — группой М.К. Тихонравова в одном из военно-технических институтов и группой М.В. Келдыша в Математическом институте имени В.А. Стеклова. Эти исследования горячо поддерживал Королев, который с самого начала работ по созданию больших ракет предвидел их космическое применение. В 1950 г. он поразил ученых стекловского института, обсуждавших с ним вопросы проектирования Р-7, брошенной вскользь фразой: "Облетим мы все-таки вокруг земного шарика!"

    Конечно, главной фигурой в реализации первых советских космических полетов был Королев. Однако наряду с ним следует упомянуть еще одного человека, внесшего сравнимый вклад в развитие нашей ракетной и космической техники, — Мстислава Всеволодовича Келдыша.

    Рис. 1. Мстислав Всеволодович Келдыш

    В 1946 г. в тридцатипятилетнем возрасте, только что избранный действительным членом Академии наук СССР, М.В. Келдыш был назначен начальником Реактивного научно-исследовательского института (РНИИ) — ныне Исследовательский центр им. М.В. Келдыша. С 1948 г. он начал работы по ракетодинамике и прикладной небесной механике в руководимом им отделе механики Математического института им. В.А. Стеклова АН СССР.

    Следует отметить, что первоначально основное внимание Мстислава Всеволодовича, естественно, было сосредоточено на военных аспектах применения ракетной техники. Однако есть все основания полагать, что он, также как и С.П. Королев, уже на ранних этапах исследовательских работ думал и об их "космическом" будущем. Во всяком случае, в самом начале пятидесятых годов в ответ на вопрос одного из сотрудников отдела механики МИАН о возможности развивать в отделе теорию космического полета он не только горячо поддержал эту идею, но и предложил начать работу, не откладывая на будущее.

    С 1948 г. М.В. Келдышем сначала в МИАНе, а затем в Институте прикладной математики АН СССР в отделе, возглавляемом академиком Д.Е. Охоцимским, был развернут широкий фронт работ по ракетодинамике и механике космического полета. Уже в первый период этих работ, еще до запуска первого искусственного спутника Земли, коллективом, руководимым М.В. Келдышем, был получен ряд принципиально важных результатов, оказавших серьезное влияние на развитие ракетной и космической техники. Отметим некоторые, наиболее важные из них.

    В 1949-1951 гг. выполнен цикл работ, посвященный анализу и определению оптимальных схем и характеристик составных ракет. Эти работы помогли С.П. Королеву сделать окончательный выбор схемы составной ракеты Р-7. В этот период выполнены работы по определению оптимального программного управления. Результаты этих работ помогли серьезно улучшить летные характеристики ракеты Р-7 и межконтинентальных крылатых ракет, а впоследствии послужили теоретической основой для многих дальнейших исследований. В этот же период были решены трудные задачи движения ракеты около центра масс, в которых учитывалась подвижность жидкости, имевшей свободную поверхность в баках ракеты.

    В ходе летных испытаний баллистических ракет сотрудниками Института были выполнены на первой универсальной ЭВМ "Стрела-1" прогнозы точек падения головных частей ракет. Эти оперативные определения проводились по данным траекторных измерений, поступавшим в Институт от наземных средств слежения по телеграфным каналам связи. В машинном зале "Стрелы-1" стоял связной аппарат, который связывал Институт с измерительно-управляющими пунктами МО. Это был обычный полевой аппарат, на крышке которого было написано "осторожно, враг подслушивает". По этому аппарату поисковой группе передавали прогнозируемые координаты точки падения головной части ракеты. Позже получали информацию о достоверности переданного прогноза.

    В 1953 г. в Институте был впервые предложен баллистический спуск космического аппарата с орбиты на Землю и показана возможность его использования при пилотируемых полетах. В результате применения этого метода космический полет Ю.А.Гагарина был завершен удачным приземлением. В 1954 г. сотрудниками Института разработан первый конкретный вариант системы гравитационной (пассивной) стабилизации искусственного спутника и построена теория такой стабилизации. Все упомянутые работы были выполнены впервые в мире.

    В 1954 г. М.В. Келдыш совместно с С.П. Королевым и М.К. Тихонравовым выдвинул предложение о создании искусственного спутника Земли и принял непосредственное участие в подготовке докладной записки для правительства на эту тему. В 1956 г. Мстислав Всеволодович был назначен председателем специальной комиссии Президиума АН СССР по ИСЗ (комиссия по объекту "Д"). В 1958 г. решением ЦК КПСС и СМ СССР М.В. Келдыш был назначен председателем Межведомственного совета по космическим исследованиям при Академии наук (МНТС по КИ). С этого момента и как руководитель комплексных научно-технических разработок, и как председатель МНТС по КИ М.В. Келдыш нес особую ответственность за ход выполнения космической программы СССР, даже в самый напряженный период его многосторонней деятельности, когда с 1961 г. по 1975 г. он был президентом Академии наук СССР.

    Став президентом АН СССР, Мстислав Всеволодович получил возможность на новом, более высоком уровне руководить разработкой и реализацией советской космической программы. Круг научных проблем, которые решались в эти годы, необычайно широк и разнообразен. С его непосредственным участием исследовались общие проблемы космонавтики, тенденции и перспективы ее развития. В поле его зрения постоянно находились механика космического полета, теория управления, навигация, ориентация.

    Творческий контакт и дружба Мстислава Всеволодовича Келдыша с Сергеем Павловичем Королевым имели историческое значение. Именно благодаря этому контакту и дружбе наша ракетная техника развивалась очень быстро, и особенно быстро — техника космического полета. Вообще, в плеяде перечисленных выше замечательных людей Мстислав Всеволодович играл особую роль. Благодаря именно его идеям и инициативе удавалось преодолеть очень трудные моменты в становлении нашей ракетной и космической техники, организовать систематическое проведение космических исследований в нашей стране.

    После запуска первого искусственного спутника Земли фронт руководимых М.В. Келдышем работ в ОПМ МИАН существенно расширился, и в последующие годы в механике космического полета практически не было более или менее серьезных вопросов, которые в той или иной мере не были затронуты М.В. Келдышем и его "командой". Так, сразу после запуска первого ИСЗ в ОПМ МИАНа были развернуты работы по обеспечению слежения за полетом спутников Земли и других космических аппаратов. Сотрудниками М.В. Келдыша разработана методика и впервые осуществлено определение орбиты с помощью ЭВМ. Позднее при ОПМ МИАН был создан Баллистический центр, который вошел в общую систему координационно-вычислительных центров СССР. В их задачу входили сбор и обработка траекторной информации с целью определения истинных орбит летящих объектов, а также выработка соответствующих управляющих команд. Центр стал неотъемлемой частью замкнутого контура управления полетом космических аппаратов и способствовал успешному выполнению космических программ.

    Были развернуты работы по комплексному баллистическому проектированию космических полетов к Луне, Марсу и Венере. М.В. Келдыш не только руководил этими проектными исследованиями. Огромное внимание он уделял реализации проектов.

    Первоначально главные усилия были направлены на решение задачи достижения Луны и исследования окололунного пространства. Соответствующие работы были проведены в сжатые сроки под общим руководством М.В. Келдыша. Блестящим примером работы из "лунного" цикла явился выбор траекторий облета и фотографирования невидимой с Земли стороны Луны для КА "Луна-3".

    Рис. 2. Схема полета КА "Луна-3"

    Здесь впервые в мировой практике был предложен и успешно реализован "гравитационный маневр" — целенаправленное изменение траектории КА в результате возмущения его движения небесным телом (Луной).

    Рис. 3. Первая фотография обратной стороны Луны, полученная КА "Луна-3"

    В Институте выполнены и реализованы в ЛКИ совместно с промышленностью проектные исследования, связанные с навигационным обеспечением полетов к Луне всех отечественных лунных КА. Перечень этих 24 КА представлен на следующем рисунке.

    Рис. 4. Перечень полетов к Луне

    Особо следует отметить первую мягкую посадку на поверхность Луны автоматической станции "Луна-9", первый искусственный спутник Луны "Луна-10" и станцию "Луна-16" (Проект "Е-8"), впервые осуществившую забор и доставку на Землю образцов лунного грунта.

    Рис. 5. "Луна 20". Контейнер с лунным грунтом

    В разгар работ по подготовке лунных экспедиций Мстислав Всеволодович Келдыш и Сергей Павлович Королев приняли совместное решение начать баллистическое проектирование беспилотных полетов к Марсу и Венере. В Институте были разработаны принципиальные технические решения, сыгравшие в дальнейшем большую роль в развитии космической техники: разработка метода разгона аппарата с промежуточным выведением на незамкнутую орбиту искусственного спутника Земли (рис. 6), который стал впоследствии универсальным способом разгона космических аппаратов; принципиальная схема управления полетом КА, которая легла в основу всех работ как по баллистическому проектированию, так и по практическому управлению полетами межпланетных КА.

    Рис. 6. Метод разгона аппарата с промежуточным выведением на незамкнутую орбиту искусственного спутника Земли

    Эта схема обеспечивала достижение как максимальной точности управления в ходе полета, так и минимальных массовых затрат, связанных с созданием самой системы управления. Под руководством М.В. Келдыша коллектив ОПМ участвовал во всех проектно-баллистических работах, а также работах по баллистико-навигационному обеспечению полетов космических аппаратов, предназначенных для исследования межпланетного космического пространства, планет и малых тел солнечной системы. Наиболее наглядными являются полеты наших 16 КА к Венере, представленные на рис. 7.

    Рис. 7. Перечень полетов к Венере

    Особо следует отметить "Венеру-4", осуществившую впервые передачу на Землю параметров атмосферы планеты; первые искусственные спутники Венеры "Венеру-9", "Венеру-10" и их посадочные аппараты (рис. 8), обеспечившие передачу на Землю первых панорам с поверхности этой загадочной планеты; ИСВ "Венера-15" и "Венера-16", позволившие с помощью уникального эксперимента по радиокартографированию Венеры (рис. 9) построить качественные изображения планеты и ее рельефа, создать первый атлас Венеры.

    Рис. 8. Районы посадки АМС "Венера-4" - "Венера-14"

    Рис. 9. Орбита космических аппаратов
    "Венера-15" - "Венера-16"

    Необходимо также отметить полеты наших КА "Вега-1 и 2" к комете Галлея (рис. 10), с доставкой в атмосферу Венеры аэростатных зондов и выведением к ядру кометы европейской межпланетной станции "Джотто" (Международный проект "Лоцман") (рис. 11).

    Рис. 10. АМС "Вега-1" и "Вега-2"

    Рис. 11. Схема полета АМС "Вега-1"

    Под руководством М.В. Келдыша в ИПМ АН были развернуты работы в новом направлении, имеющем важное естественнонаучное и прикладное значение для навигации и управления полетом космических аппаратов. Это — уточнение астрономических постоянных и построение высокоточных теорий движения небесных тел. Впервые в мировой практике были определены по данным траекторных измерений параметры нецентральности гравитационного поля Луны. Создана первая в нашей стране высокоточная теория движения Венеры. Уточнены гравитационные постоянные Земли и Луны, динамическое сжатие Венеры.

    Наконец, под руководством М.В. Келдыша проводились проектно-баллистические работы по созданию ряда уникальных искусственных спутников Земли, новых и перспективных систем управления и стабилизации спутников (пассивные системы стабилизации), а также работы по определению фактического движения вокруг центра масс свободнолетящих искусственных спутников Земли (например, "Протон").

    С начала интенсивных разработок в США проекта многоразовой космической системы Space Shuttle остро встал вопрос о целесообразности создания аналогичной системы в нашей стране. М.В. Келдыш неоднократно обсуждал круг задач, которые можно решать с помощью многоразовой космической системы, трудности ее создания и пути их преодоления. В результате сложилась концепция универсального транспортного средства, способного решать научные, народнохозяйственные и оборонные задачи. Принятое техническое решение рассматривалось в качестве промежуточного шага к созданию полностью многоразового аэрокосмического аппарата для полетов на любых высотах в атмосфере и даже за ее пределами. Вместе с тем, создание системы "Энергия"-"Буран" позволяло решить проблемы разработки тяжелой ракеты-носителя грузоподъемностью порядка 100 т и кислородно-водородных двигателей, конструирования аэрокосмического аппарата с весьма сложной и совершенной системой управления.

    Не без внутренних колебаний и сомнений приняв решение о необходимости создания ракетно-космической системы "Энергия-Буран", М.В. Келдыш много сил, таланта и организаторских способностей отдал реализации этого проекта.

    Рис. 12. С чего начинался Буран

    Рис. 13. "Энергия-Буран"

    Рис. 14. Посадка Бурана

    В Мстиславе Всеволодовиче прекрасно сочетались качества дерзновенного мечтателя, стремившегося к пределам возможного, и трезвого реалиста, знавшего, где эти пределы кончаются. Когда под впечатлением первых успехов космических полетов некоторые всерьез рассматривали проект пилотируемого полета к Марсу в 1964 году (в облетном варианте), Мстислав Всеволодович сразу указал на нереальность подобного рода проектов по целому ряду причин и отмечал, что беспилотные автоматические аппараты еще долгие годы будут основным средством исследования дальних планет. Это не мешало, однако, ему обсуждать пилотируемые полеты к дальним планетам и подробно рассматривать различные их проекты в обозримом будущем.

    По предложению С.П.Королева и М.В. Келдыша в Институте был создан Баллистический центр (БЦ ИПМ). На него возложены работы по баллистико-навигационному обеспечению (БНО) управления полетом пилотируемых кораблей и автоматических космических аппаратов научного и народно-хозяйственного назначения. Вместе с баллистическими центрами Минобороны и Роскосмоса он успешно обеспечивает полеты отечественных КА.

    М.В. Келдыш очень внимательно следил за работой нашего БЦ. Очень радовался успехам и расстраивался в случае неудач. Когда он приезжал на заседания Госкомиссии в НИИ-4 МО (где в первые годы проходили эти заседания), он ревниво анализировал текущие данные прогноза двух БЦ (ИПМ и НИИ-4), которые вывешивались в виде таблицы на стене зала заседания. Если обнаруживал большие рассогласования в прогнозах, то по возвращении в ИПМ задавал вопрос: "У кого точнее и почему?"

    М.В. Келдыш подчеркивал, что наш БЦ не должен быть просто мощным вычислительным центром, оперативно выполняющим необходимые расчеты. Он требовал, чтобы Центр принимал непосредственное участие во всех этапах работ по созданию и испытаниям нового КА.

    Более 40 лет БЦ ИПМ успешно решает сложные проблемы баллистико-навигационного обеспечения управления полетами пилотируемых кораблей "Восток", "Восход", "Союз", долговременных орбитальных станций "Салют" и "Мир", грузовых кораблей "Прогресс", многоразовой космической системы "Буран", автоматических КА "Луна", "Венера", "Марс", "Вега", "Фобос", "Астрон", "Гранат", "Интербол" и др. Эти работы БЦ проводит в тесном взаимодействии с организациями-разработчиками КА — РКК "Энергия", НПО им. С.А.Лавочкина, с ЦНИИМАШ и др.

    Следуя наказам и традициям М.В. Келдыша, ИПМ продолжает передовые исследования по механике космического полета. В последние годы в Институте совместно с НИИПМиЭ МАИ проведены исследования по баллистике и навигации КА, использующих электроракетную двигательную установку в качестве маршевого двигателя. Институтом совместно с НПО им.С.А.Лавочкина, НИИПМиЭ МАИ, ГЕОХИ и ИКИ РАН разработан проект доставки на Землю реликтового вещества Солнечной системы — образцов грунта малого небесного тела, естественного спутника Марса Фобоса (проект "Фобос-Грунт", старт к Марсу 2009 г.). Проект имеет фундаментальное научное и важное научно-техническое значения. В проекте ИПМ решал задачи баллистики, навигации и управления полетом КА на всех этапах полета (рис. 15).

    Рис. 15. Схема перелета КА "Фобос-Грунт"

    Проект имеет важное общественно-политическое значение. После 20-летнего перерыва в полетах наших КА к Луне и планетам успешное осуществление такого проекта позволит восстановить авторитет страны в планетных космических исследованиях.

    Подводя итог краткому обзору деятельности М.В. Келдыша в области механики космического полета, можно сказать, что он внес выдающийся вклад в развитие советской ракетной и космической науки и техники, дающий ему право занять в ее истории почетное место.

    работу выполнила ученица 7Б класса Власова Людмила.

    Теория космического полёта заключает в себе собрание переводов и изложений классических работ по этому вопросу, главным образом, иностранных авторов и некоторых русских. Изучение работ, посвященных проблеме межпланетных сообщений, показывает, что в разных странах разные лица пришли независимо один от другого к одному и тому же заключению, что межпланетные сообщения возможны, но практическое осуществление их пока встречает ряд технических и финансовых затруднений. Однако, эти затруднения в будущем должны быть преодолены, и человек пробьет, наконец, мешающие его полету панцири атмосферы и земного тяготения, унесется в загадочное и сулящее много новых впечатлений и открытий межпланетное пространство!

    Первое затруднение, с которым мы встречаемся, это то, что между звездами нет атмосферы, и поэтому для полета в мировом пространстве невозможно применить аэроплан, для которого она необходима, как опора. Затруднения физиологического порядка будут рассмотрены позже. Теперь же ограничим наши рассуждения разрешением вопроса, позволяют ли наши знания механики допустить возможность существования двигателя, который, исключая какую либо внешнюю опору, мог бы передвигать аппарат. Хотя это и покажется странным для того, кто не занимался этим вопросом, тем не менее сегодняшние познания ученых указывают, что такой двигатель существует уже давно - это ракета. Часто говорят, что ракета движется благодаря реакции „на воздух“. Первая часть этого утверждения верна, но вторая „на воздух“ - ложна. Ракета движется так же хорошо в пустоте и даже лучше, чем в воздухе.

    После израсходования горючего, начинается свободный полет ракеты в пространстве с некоторою скоростью v 1 слагающейся из собственной скорости v 1 ракеты и касательной скорости w , которую ракета получила благодаря вращению земли и ветру. Следует заметить, что пока ракета проходит в пределах земной атмосферы, сопротивление воздуха уменьшает скорость свободного полета ракеты, однако, это уменьшение незначительно на больших высотах, и, по вычислению ученого Герберта Оберта, при скорости v1 = 1000 м/с. равно всего 69 м/с, а при v1 = 10 000 м/с - всего лишь 2.2 м/с*, чем можно пренебречь В случае эллиптической орбиты, это уравнение имеет два корня, один для нас мнимый (внутри земли или под нею), другой - действительный, определяющий наивысшую точку подъема. Обратное падение ракеты не произойдет в точку взлета. Это происходит благодаря 1) влиянию ветра, 2) вращению земли и 3) условиям полета ракеты

    Цель аппарата: Исследование высоты, состава и температуры земной атмосферы, определение закона сопротивления воздуха при разных высотах и скоростях, а также исследование работы самой ракеты. Аппарат состоит из двух ракет: верхней, внутренней - водородной (Н. R.) и нижней, в то же время внешней - спиртовой (A. R.) Длина аппарата 5 метров, ширина 55.6 см, вес 544 кг, из коих 6.9 кг приходятся на Н. R. Кроме того предвидена еще вспомогательная ракета. Вопрос о материале ракеты окончательно не решен. Материал ее работает, благодаря внутреннему сверхдавлению, на растяжение

    1.Предварительные опыты Оберта должны заключаться в испытании работы дюзы и распылителя; в испытании истечения жидкостей из мелких отверстий и т. п.). 2. Вспомогательная ракета имеет назначением поднять вышеописанную составную ракету с высоты 5550 м до 7750 м и дать, по истощении своего горючего, главной (A. R.) ракете начальную скорость 500 м/с. Вес ее с горючим - 220 кг, продолжительность работы - 8 с; она сообщит A. R. ускорение 100 м/с2. Она своими прорезами (b) вставляется в стабилизаторы A. R., а ее баллон с кислородом (а) помещается в дюзе A. R. Для прочности, A. R. укрепляется снаружи кольцами, которые спадают одновременно со спадением вспомогательной ракеты. На фиг. 54 схематически показано взаимное расположение всех трех ракет: водородной (пунктир), спиртовой (сплошные линии) и вспомогательной (заштриховано). 3. Значение помп Р 1,2 будет тем больше, чем больше вся ракета.

    Вообще человек может выдержать больший эффект ускорения, направленный от головы к ногам, нежели обратно. Еще больший эффект он может выдержать в лежачем положении или по касательной. Неприятным бывает эффект ускорения при движении по кругу, еще более неприятным при слабых подниманиях и опусканиях. Наоборот, быстрые торможения влияют слабее. На основании этих и иных соображений Оберт считает вероятным, что человек может выдерживать эффект ускорения около 51.2 м/с2 в течение 200-400 секунд. Ослабленное же ускорение не имеет никакого физического вреда. А при полете ракеты с пассажирами Оберт предлагает отправлять ракету не вертикально, т. е. вдоль земного радиуса, а наклонно, по кривой, названной им „синергией“. При этом можно повысить ускорение при взлете, так как почти парализуется влияние земного ускорения, благодаря полету едва ли не параллельно поверхности Земли.