Теорема о пересечении прямых содержащих высоты треугольника. Конспект урока "теорема о пересечении высот треугольника". Что и требовалось доказать

E A → ⋅ B C → + E B → ⋅ C A → + E C → ⋅ A B → = 0 {\displaystyle {\overrightarrow {EA}}\cdot {\overrightarrow {BC}}+{\overrightarrow {EB}}\cdot {\overrightarrow {CA}}+{\overrightarrow {EC}}\cdot {\overrightarrow {AB}}=0}

(Для доказательства тождества следует воспользоваться формулами

A B → = E B → − E A → , B C → = E C → − E B → , C A → = E A → − E C → {\displaystyle {\overrightarrow {AB}}={\overrightarrow {EB}}-{\overrightarrow {EA}},\,{\overrightarrow {BC}}={\overrightarrow {EC}}-{\overrightarrow {EB}},\,{\overrightarrow {CA}}={\overrightarrow {EA}}-{\overrightarrow {EC}}}

В качестве точки E следует взять пересечение двух высот треугольника.)

  • Ортоцентр изогонально сопряжен центру описанной окружности .
  • Ортоцентр лежит на одной прямой с центроидом , центром описанной окружности и центром окружности девяти точек (см. прямая Эйлера).
  • Ортоцентр остроугольного треугольника является центром окружности, вписанной в его ортотреугольник .
  • Центр описанной ортоцентром треугольника с вершинами в серединах сторон данного треугольника. Последний треугольник называют дополнительным треугольником по отношению к первому треугольнику.
  • Последнее свойство можно сформулировать так: Центр описанной около треугольника окружности служит ортоцентром дополнительного треугольника .
  • Точки, симметричные ортоцентру треугольника относительно его сторон, лежат на описанной окружности.
  • Точки, симметричные ортоцентру треугольника относительно середин сторон, также лежат на описанной окружности и совпадают с точками, диаметрально противоположными соответствующим вершинам.
  • Если О - центр описанной окружности ΔABC, то O H → = O A → + O B → + O C → {\displaystyle {\overrightarrow {OH}}={\overrightarrow {OA}}+{\overrightarrow {OB}}+{\overrightarrow {OC}}} ,
  • Расстояние от вершины треугольника до ортоцентра вдвое больше, чем расстояние от центра описанной окружности до противоположной стороны.
  • Любой отрезок, проведенный из ортоцентра до пересечения с описанной окружностью всегда делится окружностью Эйлера пополам. Ортоцентр есть центр гомотетии этих двух окружностей.
  • Теорема Гамильтона . Три отрезка прямых, соединяющих ортоцентр с вершинами остроугольного треугольника, разбивают его на три треугольника, имеющих ту же самую окружность Эйлера (окружность девяти точек), что и исходный остроугольный треугольник.
  • Следствия теоремы Гамильтона :
    • Три отрезка прямых, соединяющих ортоцентр с вершинами остроугольного треугольника, разбивают его на три треугольника Гамильтона , имеющих равные радиусы описанных окружностей.
    • Радиусы описанных окружностей трёх треугольников Гамильтона равны радиусу окружности, описанной около исходного остроугольного треугольника.
  • В остроугольном треугольнике ортоцентр лежит внутри треугольника; в тупоугольном - вне треугольника; в прямоугольном - в вершине прямого угла.

Свойства высот равнобедренного треугольника

  • Если в треугольнике две высоты равны, то треугольник - равнобедренный (теорема Штейнера - Лемуса), и третья высота одновременно является медианой и биссектрисой того угла, из которого она выходит.
  • Верно и обратное: в равнобедренном треугольнике две высоты равны, а третья высота одновременно является медианой и биссектрисой.
  • У равностороннего треугольника все три высоты равны.

Свойства оснований высот треугольника

  • Основания высот образуют так называемый ортотреугольник , обладающий собственными свойствами.
  • Описанная около ортотреугольника окружность - окружность Эйлера . На этой окружности также лежат три середины сторон треугольника и три середины трёх отрезков, соединяющих ортоцентр с вершинами треугольника.
  • Другая формулировка последнего свойства:
    • Теорема Эйлера для окружности девяти точек . Основания трёх высот произвольного треугольника, середины трёх его сторон (основания его внутренних медиан) и середины трёх отрезков, соединяющих его вершины с ортоцентром , все лежат на одной окружности (на окружности девяти точек ).
  • Теорема . В любом треугольнике отрезок, соединяющий основания двух высот треугольника, отсекает треугольник подобный данному.
  • Теорема . В треугольнике отрезок, соединяющий основания двух высот треугольника, лежащие на двух сторонах, антипараллелен третьей стороне, с которой он не имеет общих точек. Через два его конца, а также через две вершины третьей упомянутой стороны всегда можно провести окружность.

Другие свойства высот треугольника

Свойства минимальной из высот треугольника

Минимальная из высот треугольника обладает многими экстремальными свойствами. Например:

  • Минимальная ортогональная проекция треугольника на прямые, лежащие в плоскости треугольника, имеет длину, равную наименьшей из его высот.
  • Минимальный прямолинейный разрез в плоскости, через который можно протащить несгибаемую треугольную пластину, должен иметь длину, равную наименьшей из высот этой пластины.
  • При непрерывном движении двух точек по периметру треугольника друг навстречу другу, максимальное расстояние между ними за время движения от первой встречи до второй, не может быть меньше длины наименьшей из высот треугольника.
  • Минимальная высота в треугольнике всегда проходит внутри этого треугольника.

Основные соотношения

  • h a = b sin ⁡ γ = c sin ⁡ β , {\displaystyle h_{a}=b\sin \gamma =c\sin \beta ,}
  • h a = 2 S a , {\displaystyle h_{a}={\frac {2S}{a}},} где S {\displaystyle S} - площадь треугольника, a {\displaystyle a} - длина стороны треугольника, на которую опущена высота .
  • h a 2 = 1 2 (b 2 + c 2 − 1 2 (a 2 + (b 2 − c 2) 2 a 2)) {\displaystyle h_{a}^{2}={\frac {1}{2}}(b^{2}+c^{2}-{\frac {1}{2}}(a^{2}+{\frac {(b^{2}-c^{2})^{2}}{a^{2}}}))}
  • h a = b c 2 R , {\displaystyle h_{a}={\frac {bc}{2R}},} где b c {\displaystyle bc} - произведение боковых сторон, R − {\displaystyle R-} радиус описанной окружности
  • h a: h b: h c = 1 a: 1 b: 1 c = b c: a c: a b {\displaystyle h_{a}:h_{b}:h_{c}={\frac {1}{a}}:{\frac {1}{b}}:{\frac {1}{c}}=bc:ac:ab}
  • 1 h a + 1 h b + 1 h c = 1 r {\displaystyle {\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}={\frac {1}{r}}} , где r {\displaystyle r} - радиус вписанной окружности .
  • S = 1 (1 h a + 1 h b + 1 h c) ⋅ (1 h a + 1 h b − 1 h c) ⋅ (1 h a + 1 h c − 1 h b) ⋅ (1 h b + 1 h c − 1 h a) {\displaystyle S={\frac {1}{\sqrt {({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}-{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{b}}}){\cdot }({\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{a}}})}}}} , где S {\displaystyle S} - площадь треугольника.
  • a = 2 h a ⋅ (1 h a + 1 h b + 1 h c) ⋅ (1 h a + 1 h b − 1 h c) ⋅ (1 h a + 1 h c − 1 h b) ⋅ (1 h b + 1 h c − 1 h a) {\displaystyle a={\frac {2}{h_{a}{\cdot }{\sqrt {({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}-{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{b}}}){\cdot }({\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{a}}})}}}}} , a {\displaystyle a} - сторона треугольника к которой опускается высота h a {\displaystyle h_{a}} .
  • Высота равнобедренного треугольника , опущенная на основание: h c = 1 2 4 a 2 − c 2 , {\displaystyle h_{c}={\frac {1}{2}}{\sqrt {4a^{2}-c^{2}}},}
где c {\displaystyle c} - основание, a {\displaystyle a} - боковая сторона.

Теорема о высоте прямоугольного треугольника

Если высота в прямоугольном треугольнике A B C {\displaystyle ABC} длиной h {\displaystyle h} , проведённая из вершины прямого угла, делит гипотенузу длиной c {\displaystyle c} на отрезки m {\displaystyle m} и n {\displaystyle n} , соответствующие катетам b {\displaystyle b} и a {\displaystyle a} , то верны следующие равенства.

Теорема о высоте прямоугольного треугольника

Если высота в прямоугольном треугольнике ABC длиной , проведённая из вершины прямого угла, делит гипотенузу длиной на отрезки и , соответствующие катетам и , то верны следующие равенства:

·

·

Свойства оснований высот треугольника

· Основания высот образуют так называемый ортотреугольник, обладающий собственными свойствами.

· Описанная около ортотреугольника окружность - окружность Эйлера. На этой окружности также лежат три середины сторон треугольника и три середины трёх отрезков, соединяющих ортоцентр с вершинами треугольника.

Другая формулировка последнего свойства:

· Теорема Эйлера для окружности девяти точек .

Основания трёх высот произвольного треугольника, середины трёх его сторон (основания его внутренних медиан) и середины трёх отрезков, соединяющих его вершины с ортоцентром, все лежат на одной окружности (на окружности девяти точек ).

· Теорема . В любом треугольнике отрезок, соединяющий основания двух высот треугольника, отсекает треугольник подобный данному.

· Теорема . В треугольнике отрезок, соединяющий основания двух высот треугольника, лежащие на двух сторонах, антипараллелен третьей стороне, с которой он не имеет общих точек. Через два его конца, а также через две вершины третьей упомянутой стороны всегда можно провести окружность.



Другие свойства высот треугольника

· Если треугольник разносторонний (неравносторонний ), то его внутренняя биссектриса, проведённая из любой вершины, лежит между внутренними медианой и высотой, проведёнными из той же вершины.

· Высота треугольника изогонально сопряжена диаметру (радиусу) описанной окружности , проведенному из той же самой вершины.

· В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.

· В прямоугольном треугольнике высота , проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.

Свойства минимальной из высот треугольника

Минимальная из высот треугольника обладает многими экстремальными свойствами. Например:

· Минимальная ортогональная проекция треугольника на прямые, лежащие в плоскости треугольника, имеет длину, равную наименьшей из его высот.

· Минимальный прямолинейный разрез в плоскости, через который можно протащить несгибаемую треугольную пластину, должен иметь длину, равную наименьшей из высот этой пластины.

· При непрерывном движении двух точек по периметру треугольника друг навстречу другу, максимальное расстояние между ними за время движения от первой встречи до второй, не может быть меньше длины наименьшей из высот треугольника.

· Минимальная высота в треугольнике всегда проходит внутри этого треугольника.

Основные соотношения

· где - площадь треугольника, - длина стороны треугольника, на которую опущена высота.

· где - произведение боковых сторон, радиус описанной окружности

· ,

где - радиус вписанной окружности.

Где - площадь треугольника.

где - сторона треугольника, к которой опускается высота .

· Высота равнобедренного треугольника, опущенная на основание:

где - основание.

· - высота в равностороннем треугольнике.

Медианы и высоты в равностороннем треугольнике

Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника. А в равносторонних треугольниках медианы и высоты - одно и то же.

Рассмотрим произвольный треугольник ABC. Обозначим буквой O точку пересечения его медиан AA1 и BB1 и проведем среднюю линию A1B1 этого треугольника Медианы треугольника пересекаются в одной точке Отрезок A1B1 параллелен стороне AB, поэтому углы 1 и 2, а также углы 3 и 4 равны как накрест лежащие углы при пересечении параллельных прямых AB и A1B1 секущими AA1 и BB1. Следовательно, треугольники AOB и A1OB1 подобны по двум углам, и, значит их стороны пропорциональны: AOA1O=BOB1O=ABA1B1 . Но AB=2⋅A1B1, поэтому AO=2⋅A1O и BO=2⋅B1O. Таким образом, точка O пересечения медиан AA1 и BB1 делит каждую из них в отношении 2:1, считая от вершины. Аналогично доказывается, что точка пересечения медиан BB1 и CC1 делит каждую из них в отношении 2:1 считая от вершины, и, следовательно, совпадает с точкой O. Итак, все три медианы треугольника ABC пересекаются в точке O и делятся ею в отношении 2:1, считая от вершины.

Теорема доказана.

Представим что в вершинах угла m₁=1, тогда в точках A₁,B₁,C₁, m₂=2, так как они являются серединами сторон. И тут можно заметить, что отрезки AA₁,BB₁,CC₁, которые пересекаются в одной точке и похожи на рычаги с точкой опоры О, где AO-l₁, a OA₁-l₂(плечи). И по физической формуле F₁/F₂=l₁/l₂, где F=m*g, где g-const, и она соответственно сокращается, получается m₁/m₂=l₁/l₂ т.е. ½=1/2.

Теорема доказана.


Ортотреугольник

Свойства:

· Три вы­со­ты тре­уголь­ни­ка пе­ре­се­ка­ют­ся в одной точке, эта точка носит на­зва­ние ор­то­цен­тра

· Две смежные стороны ортотреугольника образуют равные углы с соответствующей стороной исходного треугольника

· Высоты треугольника являются биссектрисами ортотреугольника

· Ортотреугольник-это треугольник с наименьшим периметром, который можно вписать в данный треугольник (задача Фаньяно)

· Периметр ортотреугольника равен удвоенному произведению высоты треугольника на синус угла из которого он исходит.

· Если точки A 1 , B 1 и C 1 на сторонах соответственно BC, AC и AB остроугольного треугольника ABC таковы, что

то - ортотреугольник треугольника ABC.

Ортотреугольник отсекает треугольники, подобные данному

Теорема о свойстве биссектрис ортотреугольника

B₁C₁C=∟B₁BC=∟CAA₁=∟CC₁A

CC₁-биссектриса ∟B₁C₁A

AA₁-биссектриса ∟B₁A₁C₁

BB₁-биссектриса ∟A₁B₁C₁

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Треугольники.

Основные понятия.

Треугольник - это фигура, состоящая из трех отрезков и трех точек, не лежащих на одной прямой.

Отрезки называются сторонами , а точки - вершинами .

Сумма углов треугольника равна 180 º .

Высота треугольника.

Высота треугольника - это перпендикуляр, проведенный из вершины к противолежащей стороне.

В остроугольном треугольнике высота содержится внутри треугольника (рис.1).

В прямоугольном треугольнике катеты являются высотами треугольника (рис.2).

В тупоугольном треугольнике высота проходит вне треугольника (рис.3).

Свойства высоты треугольника:

Биссектриса треугольника.

Биссектриса треугольника - это отрезок, который делит угол вершины пополам и соединяет вершину с точкой на противолежащей стороне (рис.5).

Свойства биссектрисы:


Медиана треугольника.

Медиана треугольника - это отрезок, соединяющий вершину с серединой противолежащей стороны (рис.9а).


Длину медианы можно вычислить по формуле:

2b 2 + 2c 2 - a 2
m a 2 = ——————
4

где m a - медиана, проведенная к стороне а .

В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы:

c
m c = —
2

где m c - медиана, проведенная к гипотенузе c (рис.9в)

Медианы треугольника пересекаются в одной точке (в центре масс треугольника) и делятся этой точкой в соотношении 2:1, отсчитывая от вершины. То есть отрезок от вершины к центру в два раза больше отрезка от центра к стороне треугольника (рис.9с).

Три медианы треугольника делят его на шесть равновеликих треугольников.

Средняя линия треугольника.

Средняя линия треугольника - это отрезок, соединяющий середины двух его сторон (рис.10).

Средняя линия треугольника параллельна третьей стороне и равна ее половине

Внешний угол треугольника.

Внешний угол треугольника равен сумме двух несмежных внутренних углов (рис.11).

Внешний угол треугольника больше любого несмежного угла.

Прямоугольный треугольник.

Прямоугольный треугольник - это треугольник, у которого есть прямой угол (рис.12).

Сторона прямоугольного треугольника, противолежащая прямому углу, называется гипотенузой .

Две другие стороны называются катетами .


Пропорциональные отрезки в прямоугольном треугольнике.

1) В прямоугольном треугольнике высота, проведенная из прямого угла, образует три подобных треугольника: ABC, ACH и HCB (рис.14а). Соответственно, углы, образуемые высотой, равны углам А и В.

Рис.14а

Равнобедренный треугольник.

Равнобедренный треугольник - это треугольник, у которого две стороны равны (рис.13).

Эти равные стороны называются боковыми сторонами , а третья - основанием треугольника.

В равнобедренном треугольнике углы при основании равны. (В нашем треугольнике угол А равен углу C).

В равнобедренном треугольнике медиана, проведенная к основанию, является одновременно и биссектрисой, и высотой треугольника.

Равносторонний треугольник.

Равносторонний треугольник - это треугольник, у которого все стороны равны (рис.14).

Свойства равностороннего треугольника:

Замечательные свойства треугольников.

У треугольников есть оригинальные свойства, которые помогут вам успешно решать задачи, связанные с этими фигурами. Некоторые из этих свойств изложены выше. Но повторяем их еще раз, добавив к ним несколько других замечательных особенностей:

1) В прямоугольном треугольнике с углами 90º, 30º и 60º катет b , лежащий напротив угла в 30º, равен половине гипотенузы. А катет a больше катета b в √3 раз (рис.15а ). К примеру, если катет b равен 5, то гипотенуза c обязательно равна 10, а катет а равен 5√3.

2) В прямоугольном равнобедренном треугольнике с углами 90º, 45º и 45º гипотенуза в √2 раз больше катета (рис.15b ). К примеру, если катеты равны 5, то гипотенуза равна 5√2.

3) Средняя линия треугольника равна половине параллельной стороны (рис.15с ). К примеру, если сторона треугольника равна 10, то параллельная ей средняя линия равна 5.

4) В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы (рис.9в): m c = с/2.

5) Медианы треугольника, пересекаясь в одной точке, делятся этой точкой в соотношении 2:1. То есть отрезок от вершины к точке пересечения медиан в два раза больше отрезка от точки пересечения медиан к стороне треугольника (рис.9c)

6) В прямоугольном треугольнике середина гипотенузы является центром описанной окружности (рис.15d ).


Признаки равенства треугольников .

Первый признак равенства : если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Второй признак равенства : если сторона и прилежащие к ней углы одного треугольника равны стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.

Третий признак равенства : если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны.

Неравенство треугольника.

В любом треугольнике каждая сторона меньше суммы двух других сторон.

Теорема Пифагора.

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов:

c 2 = a 2 + b 2 .

Площадь треугольника.

1) Площадь треугольника равна половине произведения его стороны на высоту, проведенную к этой стороне:

ah
S = ——
2

2) Площадь треугольника равна половине произведения двух любых его сторон на синус угла между ними:

1
S = — AB · AC · sin A
2

Треугольник, описанный около окружности.

Окружность называется вписанной в треугольник, если она касается всех его сторон (рис.16а ).


Треугольник, вписанный в окружность.

Треугольник называется вписанным в окружность, если он касается ее всеми вершинами (рис.17a ).

Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника (рис.18).

Синус острого угла x противолежащего катета к гипотенузе.
Обозначается так: sin x .

Косинус острого угла x прямоугольного треугольника - это отношение прилежащего катета к гипотенузе.
Обозначается так: cos x .

Тангенс острого угла x - это отношение противолежащего катета к прилежащему катету.
Обозначается так: tg x .

Котангенс острого угла x - это отношение прилежащего катета к противолежащему.
Обозначается так: ctg x .

Правила:

Катет, противолежащий углу x , равен произведению гипотенузы на sin x :

b = c · sin x

Катет, прилежащий к углу x , равен произведению гипотенузы на cos x :

a = c · cos x

Катет, противоположный углу x , равен произведению второго катета на tg x :

b = a · tg x

Катет, прилежащий к углу x , равен произведению второго катета на ctg x :

a = b · ctg x .


Для любого острого угла x :

sin (90° - x ) = cos x

cos (90° - x ) = sin x


Треугольник – многоугольник с тремя сторонами, или замкнутая ломаная линия с тремя звеньями, или фигура, образованная тремя отрезками, соединяющими три точки, не лежащие на одной прямой (см. рис. 1).

Основные элементы треугольника abc

Вершины – точки A, B, и C;

Стороны – отрезки a = BC, b = AC и c = AB, соединяющие вершины;

Углы – α , β, γ образованные тремя парами сторон. Углы часто обозначают так же, как и вершины, – буквами A, B и C.

Угол, образованный сторонами треугольника и лежащий в его внутренней области, называется внутренним углом, а смежный к нему является смежным углом треугольника (2, стр. 534).

Высоты, медианы, биссектрисы и средние линии треугольника

Кроме основных элементов в треугольнике рассматривают и другие отрезки, обладающие интересными свойствами: высоты, медианы, биссектрисы исредние линии.

Высота

Высоты треугольника – это перпендикуляры, опущенные из вершин треугольника на противоположные стороны.

Для построения высоты необходимо выполнить следующие действия:

1) провести прямую, содержащую одну из сторон треугольника (в случае, если проводится высота из вершины острого угла в тупоугольном треугольнике);

2) из вершины, лежащей напротив проведенной прямой, провести отрезок из точки к этой прямой, составляющий с ней угол 90 градусов.

Точка пересечения высоты со стороной треугольника называется основанием высоты (см. рис. 2).

Свойства высот треугольника

    В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному треугольнику.

    В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.

    Если треугольник остроугольный, то все основания высот принадлежат сторонам треугольника, а у тупоугольного треугольника две высоты попадают на продолжение сторон.

    Три высоты в остроугольном треугольнике пересекаются в одной точке и эту точку называют ортоцентром треугольника.

Медиана

Медианы (от лат. mediana– «средняя») – это отрезки, соединяющие вершины треугольника с серединами противолежащих сторон (см. рис. 3).

Для построения медианы необходимо выполнить следующие действия:

1) найти середину стороны;

2)соединить точку, являющуюся серединой стороны треугольника, с противолежащей вершиной отрезком.

Свойства медиан треугольника

    Медиана разбивает треугольник на два треугольника одинаковой площади.

    Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника.

Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.

Биссектриса

Биссектрисами (от лат. bis – дважды» и seko – рассекаю) называют заключенные внутри треугольника отрезки прямых, которые делят пополам его углы (см. рис. 4).

Для построения биссектрисы необходимо выполнить следующие действия:

1) построить луч, выходящий из вершины угла и делящий его на две равные части (биссектрису угла);

2) найти точку пересечения биссектрисы угла треугольника с противоположной стороной;

3) выделить отрезок, соединяющий вершину треугольника с точкой пересечения на противоположной стороне.

Свойства биссектрис треугольника

    Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.

    Биссектрисы внутренних углов треугольника пересекаются в одной точке. Это точка называется центром вписанной окружности.

    Биссектрисы внутреннего и внешнего углов перпендикулярны.

    Если биссектриса внешнего угла треугольника пересекает продолжение противолежащей стороны, то ADBD=ACBC.

    Биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в одной точке. Эта точка - центр одной из трех вневписанных окружностей этого треугольника.

    Основания биссектрис двух внутренних и одного внешнего углов треугольника лежат на одной прямой, если биссектриса внешнего угла не параллельна противоположной стороне треугольника.

    Если биссектрисы внешних углов треугольника не параллельны противоположным сторонам, то их основания лежат на одной прямой.