Школьная энциклопедия. Электромагнетизм. основные положения

Первый закон электромагнетизма описывает поток электрического поля:

где ε 0 — некоторая постоянная (читается эпсилон-нуль). Если внутри поверхности нет зарядов, а вне ее (даже совсем рядом) есть, то все равно средняя нормальная компонента Е равна нулю, так что никакого потока через поверхность нет. Чтобы показать пользу от такого типа утверждений, мы докажем, что уравнение (1.6) совпадает с законом Кулона, если только учесть, что поле отдельного заряда обязано быть сферически симметричным. Проведем вокруг точечного заряда сферу. Тогда средняя нормальная компонента в точности равна значению Е в любой точке, потому что поле должно быть направлено по радиусу и иметь одну и ту же величину во всех точках сферы. Тогда наше правило утверждает, что поле на поверхности сферы, умноженное на площадь сферы (т. е. вытекающий из сферы поток), пропорционально заряду внутри нее. Если увеличивать радиус сферы, то ее площадь растет, как квадрат радиуса. Произведение средней нормальной компоненты электрического поля на эту площадь должно по-прежнему быть равно внутреннему заряду, значит, поле должно убывать, как квадрат расстояния; так получается поле «обратных квадратов».

Если взять в пространстве произвольную кривую и измерить циркуляцию электрического поля вдоль этой кривой, то окажется, что она в общем случае не равна нулю (хотя в кулоновом поле это так). Вместо этого для электричества справедлив второй закон, утверждающий, что

И, наконец, формулировка законов электромагнитного поля будет закончена, если написать два соответствующих уравнения для магнитного поля В:

А дляповерхности S , ограниченной кривой С:

Появившаяся в уравнении (1.9) постоянная с 2 — это квадрат скорости света. Ее появление оправдано тем, что магнетизм по существу есть релятивистское проявление электричества. А константа ε 0 поставлена для того, чтобы возникли привычные единицы силы электрического тока.

Уравнения (1.6) — (1.9), а также уравнение (1.1) — это все законы электродинамики. Как вы помните, законы Ньютона написать было очень просто, но из них зато вытекало множество сложных следствий, так что понадобилось немало времени, чтобы изучить их все. Законы электромагнетизма написать несравненно трудней, и мы должны ожидать, что следствия из них будут намного более запутаны, и теперь нам придется очень долго в них разбираться.

Мы можем проиллюстрировать некоторые законы электродинамики серией несложных опытов, которые смогут нам показать хотя бы качественно взаимоотношения электрического и магнитного полей. С первым членом в уравнении (1.1) вы знакомитесь, расчесывая себе волосы, так что о нем мы говорить не будем. Второй член в уравнении (1.1) можно продемонстрировать, пропустив ток по проволоке, висящей над магнитным бруском, как показано на фиг. 1.6. При включении тока проволока сдвигается из-за того, что на нее действует сила F = qvXB . Когда по проводу идет ток, заряды внутри него движутся, т. е. имеют скорость v, и на них действует магнитное поле магнита, в результате чего провод отходит в сторону.

Когда провод сдвигается влево, можно ожидать, что сам магнит испытает толчок вправо. (Иначе все это устройство можно было бы водрузить на платформу и получить реактивную систему, в которой импульс не сохранялся бы!) Хотя сила чересчур мала, чтобы можно было заметить движение магнитной палочки, однако движение более чувствительного устройства, скажем стрелки компаса, вполне заметно.

Каким же образом ток в проводе толкает магнит? Ток, текущий по проводу, создает вокруг него свое собственное магнитное поле, которое и действует на магнит. В соответствии с последним членом в уравнении (1.9) ток должен приводить к цир куляции вектора В; в нашем случае линии поля В замкнуты вокруг провода, как показано на фиг. 1.7. Именно это поле В и ответственно за силу, действующую на магнит.

Уравнение (1.9) сообщает нам, что при данной величине тока, текущего по проводу, циркуляция поля В одинакова для любой кривой, окружающей провод. У тех кривых (окружностей, например), которые лежат далеко от провода, длина оказывается больше, так что касательная компонента В должна убывать. Вы видите, что следует ожидать линейного убывания В с удалением от длинного прямого провода.

Мы сказали, что ток, текущий по проводу, образует вокруг него магнитное поле и что если имеется магнитное поле, то оно действует с некоторой силой на провод, по которому идет ток. Значит, следует думать, что если магнитное поле будет создано током, текущим в одном проводе, то оно будет действовать с некоторой силой и на другой провод, по которому тоже идет ток. Это можно показать, применив два свободно подвешенных провода (фиг. 1.8). Когда направление токов одинаково, провода притягиваются, а когда направления противоположны — отталкиваются.

Короче говоря, электрические токи, как и магниты, создают магнитные поля. Но тогда что же такое магнит? Раз магнитные поля создаются движущимися зарядами, то не может ли оказаться, что магнитное поле, созданное куском железа, на самом деле есть результат действия токов? Видимо, так оно и есть. В наших опытах можно заменить магнитную палочку катушкой с навитой проволокой, как показано на фиг. 1.9. Когда ток проходит по катушке (как и по прямому проводу над нею), наблюдается точно такое же движение проводника, как и прежде, когда вместо катушки стоял магнит. Все выглядит так, как если бы внутри куска железа непрерывно циркулировал ток. Действительно, свойства магнитов можно понять как непрерывный ток внутри атомов железа. Сила, действующая на магнит на фиг. 1.7, объясняется вторым членом в уравнении (1.1).

Откуда же берутся эти токи? Один источник — это движение электронов по атомным орбитам. У железа это не так, но у некоторых материалов происхождение магнетизма именно таково. Кроме вращения вокруг ядра атома, электрон вращается еще вокруг своей собственной оси (что-то похожее на вращение Земли); вот от этого-то вращения и возникает ток, создающий магнитное поле железа. (Мы сказали «что-то похожее на вращение Земли», потому что на самом деле в квантовой механике вопрос столь глубок, что не укладывается достаточно хорошо в классические представления.) В большинстве веществ часть электронов вертится в одну сторону, другая — в другую, так что магнетизм исчезает, а в железе (по таинственной причине, о которой мы поговорим позже) многие электроны вращаются так, что их оси смотрят в одну сторону и это служит источником магнетизма.

Поскольку поля магнитов порождаются токами, то в уравнения (1.8) и (1.9) нет нужды вставлять добавочные члены, учитывающие существование магнитов. В этих уравнениях речь идет о всех токах, включая круговые токи от вращающихся электронов, и закон оказывается правильным. Надо еще отметить, что, согласно уравнению (1.8), магнитных зарядов, подобных электрическим зарядам, стоящим в правой части уравнения (1.6), не существует. Они никогда не были обнаружены.

Первый член в правой части уравнения (1.9) был открыт Максвеллом теоретически; он очень важен. Он говорит, что изменение электрических полей вызывает магнитные явления. На самом деле без этого члена уравнение утеряло бы смысл, ведь без него исчезли бы токи в незамкнутых контурах. А на деле такие токи существуют; об этом говорит следующий пример. Представьте конденсатор, составленный из двух плоских пластин. Он заряжается током, притекающим к одной из пластин и оттекающим от другой, как показано на фиг. 1.10. Проведем вокруг одного из проводов кривую С и натянем на нее поверхность (поверхность S 1), которая пересечет провод. В соответствии с уравнением (1.9) циркуляция поля В по кривой С дается величиной тока в проводе (умноженной на с 2). Но что будет, если мы натянем на кривую другую поверхность S 2 в форме чашки, донышко которой расположено между пластинами конденсатора и не касается провода? Через такую поверхность никакой ток, конечно, не проходит. Но ведь простое изменение положения и формы воображаемой поверхности не должно изменять реального магнитного поля! Циркуляция поля В должна остаться прежней. И действительно, первый член в правой части уравнения (1.9) так комбинируется со вторым членом, что для обеих поверхностей S 1 и S 2 возникает одинаковый эффект. Для S 2 циркуляция вектора В выражается через степень изменения потока вектора Е от одной пластины к другой. И получается, что изменение Е связано с током как раз так, что уравнение (1.9) оказывается выполненным. Максвелл видел необходимость этого и был первым, кто написал полное уравнение.

С помощью устройства, изображенного на фиг. 1.6, можно продемонстрировать другой закон электромагнетизма. Отсоединим концы висящей проволочки от батарейки и присоединим их к гальванометру — прибору, регистрирующему прохождение тока по проводу. Стоит лишь в поле магнита качнуть проволоку, как по ней сразу пойдет ток. Это новое следствие уравнения (1.1): электроны в проводе почувствуют действие силы F=qv X B. Скорость их сейчас направлена в сторону, потому что они отклоняются вместе с проволочкой. Это v вместе с вертикально направленным полем В магнита приводит к силе, действующей на электроны вдоль провода, и электроны отправляются к гальванометру.

Положим, однако, что мы оставили проволочку в покое и принялись перемещать магнит. Мы чувствуем, что никакой разницы быть не должно, ведь относительное движение то же самое, и впрямь ток по гальванометру идет. Но как же магнитное поле действует на покоящиеся заряды? В соответствии с уравнением (1.1) должно возникнуть электрическое поле. Движущийся магнит должен создавать электрическое поле. На вопрос — как это происходит, отвечает количественно уравнение (1.7). Это уравнение описывает множество практически очень важных явлений, происходящих в электрических генераторах и трансформаторах.

Наиболее замечательное следствие наших уравнений — это то, что, сочетая уравнения (1.7) и (1.9), можно понять, отчего электромагнитные явления распространяются на дальние расстояния. Причина этого, грубо говоря, примерно такова: предположим, что где-то имеется магнитное поле, которое возрастает по величине, скажем, оттого, что внезапно пустили ток по проводу. Тогда из уравнения (1.7) следует, что должна возникнуть циркуляция электрического поля. Когда электрическое поле начинает постепенно возрастать для возникновения циркуляции, тогда, согласно уравнению (1.9), должна возникать и магнитная циркуляция. Но возрастание этого магнитного поля создаст новую циркуляцию электрического поля и т. д. Таким способом поля распространяются сквозь пространство, не нуждаясь ни в зарядах, ни в токах нигде, кроме источника полей. Именно таким способом мы видим друг друга! Все это спрятано в уравнениях электромагнитного поля.

Министерство образования и науки Российской Федерации Федеральное агентство по образованию

Пермский государственный технический университет

В.В. Бурдин

ФИЗИКА Часть II

ОСНОВЫ ЭЛЕКТРОМАГНЕТИЗМА

Под общей редакцией доктора технических наук профессора А.И. Цаплина

Утверждено Редакционно-издательским Советом университета в качестве учебного пособия для студентов заочного отделения всех специальностей

Пермь 2007

УДК 53(0758) ББК 22.3

Рецензенты:

кандидат физико-математических наук, доцентА.В. Перминов , (Пермский государственный технический университет); доктор физико-математических наук, профессорЕ.Л. Тарунин

(Пермский государственный университет).

Бурдин В.В.

В 25 Физика: Учеб. пособие. Часть II. Основы электромагнетизма / Под общ. ред. профессора А.И. Цаплина; Перм. гос. техн. ун-т. – Пермь, 2007. – 188 с.

Приведен теоретический материал для самостоятельного изучения физики, включающий в себя основные сведения из теории и вопросы для самоконтроля. Предназначено для студентов заочного отделения всех специальностей.

УДК 53(0758) ББК 22.3

© Пермский государственный технический университет, 2007

Введение………………………………………………………………….. 5

1. Электростатика……….…………………………………………………… 7

1.1. Закон Кулона………………………………………...……………….. 7

1.2. Электрическое поле и его характеристики …………….................... 8

1.3. Связь напряженности электрического поля и потенциала………... 11

1.4. Электрическое поле точечного заряда. Принцип суперпозиции… 13

1.5. Графическое изображение электрических полей. Силовые линии

и эквипотенциальные поверхности………………………………. 16

1.6. Теорема Гаусса для электрического поля в вакууме……………… 18

1.7. Проводники в электрическом поле…………………………………. 27

1.8. Электрическое поле в диэлектриках………………………………... 31

1.9. Теорема Гаусса для электрического поля в диэлектриках………... 34

1.10. Конденсаторы……………………………………………………….. 38

1.11. Энергия электрического поля……………………………………… 41

1.12. Потенциальность электрического поля. Теорема о циркуляции... 44 Вопросы для самоконтроля……………………………………….. 45

2. Постоянный электрический ток…………………………………………. 47

2.1. Закон Ома для однородного участка цепи…………………………. 47

2.2. Работа и мощность электрического тока. Закон Джоуля-Ленца….. 49

2.3. Последовательное и параллельное соединение проводников…….. 51

2.4. Источники тока. Закон Ома для полной цепи……………………… 58

2.5. Химические источники тока. Элемент Вольта…………………….. 62

2.6. Закон Ома для неоднородного участка цепи………………………. 65

2.7. Правила Кирхгофа…………………………………………………… 67

2.8. Закон Ома в дифференциальной форме. Электронная теория проводимости………………………………………………………... 72

Вопросы для самоконтроля……………………………………….. 77

3. Магнетизм…………………………………………………………………. 79

3.1. Магнитное поле. Сила Лоренца……………………………………... 79

3.2. Движение заряженных частиц в электрических и магнитных полях…………………………………………………………………. 81

3.3. Сила Ампера………………………………………………………….. 85

3.4. Рамка с током в магнитном поле……………………………………. 87

3.5. Эффект Холла………………………………………………………… 90

3.6. Вычисление магнитной индукции. Закон Био-Савара-Лапласа…... 92

3.7. Циркуляция и поток вектора магнитной индукции……………….. 99

3.8. Работа по перемещению контура с током в магнитном поле.

Работа электродвигателя…………………………………………….. 104

3.9. Индуктивность………………………………………………………. 107

3.10. Закон электромагнитной индукции………………………………. 108

3.11. Правило Ленца……………………………………………………... 110

3.12. Явления при замыкании и размыкании тока. Энергия магнитного поля…………………………………………………. 115

3.13. Генераторы и электродвигатели………………………………….. 118

3.14. Трансформаторы…………………………………………………... 121

3.15. Природа электромагнитной индукции…………………………… 124

3.16. Магнитное поле в веществе………………………………………. 128

3.17. Теорема о циркуляции магнитного поля в веществе.

3.20. Природа магнетизма………………………………………………. 148

Вопросы для самоконтроля……………………………………….. 152

4. Электромагнитные колебания и волны…………………………………. 154

4.1. Колебательный контур……………………………………………… 154

4.4. Переменный ток в электрических цепях…………………………... 165

4.4.1. Активное, индуктивное и емкостное сопротивления…...…. 165

4.4.2. Закон Ома для переменного тока. Активное и реактивное сопротивления………………………………………………… 168

4.4.3. Метод векторных диаграмм………………………………….. 169

4.4.4. Эффективные напряжение и ток……………………………. 174

4.5.3. Энергия электромагнитных волн. Вектор Умова-Пойнтинга…………………………………………….. 185

Вопросы для самоконтроля……………………………………….. 186

Список литературы……………………………………………………… 188

ВВЕДЕНИЕ

Основной физической величиной, с которой мы будем иметь дело, изучая электричество и магнетизм, является электрический заряд. Попробуем ответить на вопросы – что значит зарядить тело, и что такое его заряд?

В настоящее время известно, что в основе всего разнообразия явлений природы лежат четыре фундаментальных взаимодействия между элементарными частицами - гравитационное, электромагнитное, слабое и сильное. Каждый вид взаимодействия обусловлен определенной характеристикой частицы. Например, гравитационное взаимодействие зависит от масс частиц, электромагнитное – от электрических зарядов. Таким образом, электрический заряд, так же как и масса, является важнейшей характеристикой частиц. Заряду присущи следующие фундаментальные свойства.

1. Электрический заряд может быть двух типов: положительный и отрицательный. Тела, имеющие электрические заряды одного знака, отталкиваются друг от друга, тела с зарядами противоположных знаков – притягиваются.

2. Носителями электрического заряда являются заряженные элементарные частицы – протон и электрон (а также их античастицы –

антипротон и позитрон – и некоторые нестабильные частицы: π -мезоны, μ - мезоны и т. д.). Все заряженные элементарные частицы обладают одним и тем же по величине зарядом, который называют элементарным и обозначают

буквой e . Элементарный электрический заряд равен1 . 602 × 10 − 19 Кл (Кулон – единица электрического заряда в СИ). За положительный заряд принят заряд протона (+e ), за отрицательный – заряд электрона (–e ).

3. В любой электрически изолированной системе алгебраическая сумма зарядов не изменяется. Это утверждение отражает закон сохранения электрического заряда. Это утверждение очевидно, если в системе не происходит превращений элементарных частиц. Но закон сохранения заряда имеет и более фундаментальный характер – он выполняется в любых процессах рождения и уничтожения элементарных частиц.

4. Электрический заряд является релятивистки инвариантным: его величина не зависит от системы отсчета, а значит, не зависит от того, движется он или покоится.

В настоящее время известно, что все тела состоят из мельчайших заряженных частиц – положительно заряженных ядер (заряд которых обусловлен наличием в них протонов) и отрицательно заряженных электронов. Причем положительный суммарный заряд тела с высокой степенью точности равен его отрицательному суммарному заряду. Другими словами, число протонов в теле равно числу электронов. Ученые предполагают, что это равенство имеет место не только в масштабах одного тела, но и в масштабах всей Вселенной. Теперь мы можем ответить на вопрос о заряде тела. Заряжая

тело, мы, конечно, не создаем никаких новых заряженных частиц (об этом за

электронами, т.е. нейтральность тела. Положительно заряженный протон очень прочно связан с ядром, поэтому зарядить тело, меняя число протонов в нем, – сложная задача. Электроны же сравнительно легко можно вырвать из вещества, например, облучив его, или даже просто при помощи трения. Итак, зарядить тело положительно – значить отнять у него определенное число электронов, а зарядить отрицательно – сообщить телу определенное число лишних электронов. Отметим, что заряды тел порядка 1 нКл = 10-9 Кл можно считать уже весьма значительными. Для того чтобы тело имело такой заряд, число электронов в нем должно отличаться от числа протонов на

10 − 9 (1, 6 10− 19 ) = 6. 25× 109 ! штук.

Другими важнейшими ключевыми объектами, о которых пойдет речь в настоящем пособии, являются электрическое и магнитное поля. Фактически, нашей задачей будет изучение характеристик и свойств этих полей. В настоящее время известно, что электрическое поле – это особая форма материи, которая окружает любой электрический заряд и действует только на электрические заряды, а магнитное поле – это особая форма материи, окружающая движущиеся электрические заряды, и действующая только на движущиеся электрические заряды. Эти формы материи обладают энергией. Изучение характеристик и свойств электрического и магнитного полей и будет нашей основной задачей. Отметим, однако, что «внутренняя структура» полей до сих пор еще точно не установлена.

Необходимо отметить, что все разделы «Электромагнетизма» в настоящее время имеют развитый математический аппарат. И для лучшего усвоения курса необходимо хорошее знание математики. Материал содержит примеры с решениями и контрольные вопросы. Они поясняют законы физики и показывают их применения. Примеры могут быть не просто полезными при решении практического задания. Их следует рассматривать и как неотъемлемую часть теории, обязательную для изучения.

Рис. 1.1. Схема взаимодействия точечных зарядов

1. ЭЛЕКТРОСТАТИКА

Сначала рассмотрим поля, создаваемые неподвижными заряженными телами, т.е. только поля электрические. Раздел электромагнетизма, изучающий электрические поля неподвижных зарядов, называется электростатикой.

1.1. Закон Кулона

Электрические заряды посредством своих электрических полей взаимодействуют друг с другом. Это явление описывается законом Кулона –

законом о взаимодействии точечных зарядов: сила взаимодействия F двух неподвижных точечных зарядов q 1 и q 2 в вакууме направлена вдоль линии,

соединяющей оба заряда, прямо пропорциональна величинам этих зарядов и обратно пропорциональна квадрату расстояния между ними:

F = k

где k – коэффициент пропорциональности, зависящий от выбора единиц

измерения. В системе СИ k = 1 (4 πε 0 ) = 9 10 9 Н м 2 Кл 2 ,ε 0 = 8 , 85 10 − 12 Ф/м – электрическая постоянная. СилаF является силой притяжения, если заряды имеют разные знаки (рис.1.1), и силой отталкивания, если заряды одного знака.

При пользовании законом Кулона необходимо помнить, что он справедлив лишь для точечных зарядов. Точечный заряд – это заряд, не имеющий размеров. В природе таких зарядов не существует, так как не существует точечных тел. Все тела имеют конечные размеры и могут считаться точечными лишь

приближенно, когда их размеры очень малы по сравнению с расстоянием между ними или с размерами каких-то других тел. Попытка применить закон Кулона к заряженным телам конечных размеров может привести к недоразумению. Например, если величина одного из зарядов равна нулю, то по закону кулонаF =0. Однако тела конечных размеров, заряженное и незаряженное, всегда притягиваются (вследствие явлений электростатической индукции для металлических тел и поляризации для диэлектриков).

Если электрические заряды поместить внутрь диэлектрика, то сила электрического взаимодействия уменьшается в соответствии с выражением:

F = k

ε r 2

где ε - диэлектрическая проницаемость среды, показывающая, во сколько раз сила взаимодействия точечных зарядов в диэлектрике меньше силы их взаимодействия в вакууме. Одно из самых больших значенийε имеет вода:

ε Н 2 О = 81. Примером взаимодействия зарядов в диэлектрике может служить

взаимодействие положительных и отрицательных ионов в водных растворах солей. К вопросу об электрическом поле в среде мы еще вернемся в разделе 1.8.

1.2. Электрическое поле и его характеристики

О природе взаимодействия электрических зарядов существовало две точки зрения. Одна из них исходила из представления о непосредственном действии тел на расстоянии, без участия каких-либо промежуточных материальных объектов (теория дальнодействия). Другая точка зрения, принятая в настоящее время, исходит из представления, что взаимодействия зарядов передаются с помощью особого материального посредника,

называемого электрическим полем. Взаимодействие двух зарядов q 1 иq 2 можно объяснить так: в пространстве вокруг зарядаq 1 существует особая форма материи – электрическое поле, которое и действует непосредственно на заряд

q2 . Действие электрического поля на помещенный в него заряд является основным его свойством.

Как уже говорилось выше, сначала речь пойдет об электрических полях, созданных неподвижными зарядами. Такие поля называются электростатическими. Для простоты изложения условимся в дальнейшем в этой главе под словом «поле», «электрическое поле» понимать электростатическое поле, т.е. поле, созданное неподвижными зарядами.

Для описания каждой точки электрического поля вводятся две характеристики – напряженносG ть и потенциал.

Е – векторная характеристика электрическогоНапряженность поля

поляG . Напряженность поля в некоторой точке определяется отношением силы

F , действующей со стороны поля на заряд q, помещенный в данную точку поля, к величине этого заряда:

Из данного определения следует, что напряженность численно равна силе, действующей на единичный положительный точечный заряд, помещенный в данную точку. Единица измерения напряженности в системе СИ[ E ] = 1 Н/Кл.

Например, значение напряженности поля в некоторой точке 50 Н/Кл говорит о том, что если заряд 1 Кл поместить в данную точку поля, то со стороны поля на него будет действовать сила 50 Н.

Векторное уравнение (1.3) показывает, что если заряд q , помещенный в электрическое поле, положительный, то сила, действующая на него со стороны поля, направлена так же,G как и напряженность поля. Если же зарядq

отрицательный, то вектора Е иF антипараллельны. Из уравнения (1.3) следует:

величина Е G получила названиесиловой характеристики электрического поля.

При перемещении электрического заряда в поле кулоновская сила (1.4), действующая со стороны поля на заряд, совершает работу. Говорят, что работу по перемещению заряда совершает электрическое поле. Термин «работа поля» мы будем использовать чаще, чем «работа кулоновских сил». Электростатическое поле обладает очень важным свойством –

потенциальностью. Это означает, что

работа поля по перемещению заряда из

одной точки поля в другую не зависит от

траектории движения заряда, а

только от начального и конечного

положений заряда. Так, работа поля при

движении заряда по траектории 1a 2 равна

работе поля

при движении заряда по

Схема перемещения заряда

траектории 1b 2 (рис. 1.2). Потенциальность

электрического

поля позволяет

физическую величину, называемую напряжением, или разностью потенциалов.

Напряжением U, или разностью потенциалов (ϕ 1 −ϕ 2 ) между двумя

точками поля 1 и2 называется величина, равная отношению работы А электрического поля по перемещению заряда q из точки1 в точку2 , к величине этого заряда:

U = ϕ −ϕ

А 1→ 2

Из данного определения следует, что напряжение между двумя точками поля численно равно работе по перемещению единичного положительного заряда из первой точки во вторую. Единица измерения напряжения в СИ[ U ] = 1 В (1 вольт). Например, напряжение между двумя точками 20 В означает, что если

единичный заряд перенести из одной точки в другую, то поле совершит при этом работу 20 Дж.

Разность потенциалов между двумя данными точками поля – величина строго определенная. Само же значение потенциала в какой-то данной точке поля не определено однозначно, так же как, например, не определена высота какого-либо тела, пока не указано относительно какого уровня эта высота откладывается, т.е. пока не указан нулевой уровень высоты.

Если какой-либо точке поля приписать нулевой потенциал, то потенциалы остальных точек поля будут иметь уже вполне определенные значения. Чаще всего нулевой потенциал приписывают точке, бесконечно удаленной от зарядов, создающих поле, или любой точке, соединенной проводником с Землей (заземленной точке).

Земля представляет собой проводящее тело огромных размеров. Она обладает значительным отрицательным электрическим зарядом. Равный ему положительный объемный заряд содержится в атмосфере, в слое высотой порядка десятков километров. У поверхности Земли напряженность поля приблизительно равна 130 Н/Кл. Считая Землю проводящим шаром и зная напряженность поля у поверхности, можно оценить величину заряда Земли:

q ЗЕМЛИ = 6 × 10 5 Кл . Термин «тело заземлено» означает, что оно соединено проводником с Землей. При таком соединении, хотя какой-то заряд и может перейти с тела на Землю или наоборот, потенциал Земли практически не меняется. Поскольку Земля по сравнению с любым земным телом простираетсядо бесконечности и потенциал ее постоянен в любой точке (т.к. Земля – проводник, см. п. 1.7), условились этот потенциал принимать за нуль. Заземлить проводник – значит, сообщить ему потенциалбесконечно удаленных точек, т.е. нулевой потенциал.

Перенесем заряд q из некоторой точки в бесконечность или точку, потенциал которой условно принят за нуль. Тогда по уравнению (1.5) получим

ϕ − 0 = A1 →∞ qϕ = A1 →∞ q. Таким образом, потенциал некоторой точки

– это работа, которую совершает поле при перемещении единичного заряда из данной точки в бесконечность.

Работа, совершаемая при перемещении заряда q из данной точки в точку

нулевого потенциала A 1 →∞ = q ϕ , называется потенциальной энергией заряда в данной точке, т.е.

Wp = qϕ

И можно сказать, что потенциал некоторой точки численно равен потенциальной энергии положительного единичного заряда, помещенного в

данную точку (ϕ = W р q ). Из уравнения (1.5) следует, что работа электрического поля по перемещению зарядаq из одной точки в другую.

История физики: электромагнетизм

В 18 веке продолжались работы по электризации тел, начатые Гильбертом. Многочисленные эксперименты, проведенные в различных лабораториях, позволили обнаружить не только новые материалы, способные электризоваться при трении, но и открыть ряд новых свойств этого явления. Англичанин Стивен Грей (1670-1735) показал, что электричество может распространяться по некоторым телам, т.е. ввел понятия проводника и изолятора. Были усовершенствованы устройства для получения электричества - электростатические машины, созданы конденсаторы (лейденская банка).

Интерес к новым явлениям широко распространялся в обществе благодаря различным фокусам и демонстрациям на публике. Систематические исследования с электрическими явлениями провел Франклин и сформулировал в 1747 г. свою теорию с использованием понятия электрического флюида, избыток или недостаток которого обусловливает электризацию тел.

Франклин Бенджамин (17.01.1706-17.04.1790) – американский физик, член Лондонского королевского общества (1756), Петербургской АН (1789), видный политический и общественный деятель, медаль Копли (1753). Родился в Бостоне в семье предпринимателя. Образование получил самостоятельно. В 1727 организовал в Филадельфии собственную типографию, в 1731 – первую в Америке публичную библиотеку, в 1743 – американское философское общество (первое в Америке научно-исследовательское учреждение), в 1751 – Пенсильванский университет. 1737-53 – почтмейстер Пенсильвании, 1753-74 – североамериканских колоний. Участвовал в составлении “Декларации независимости” и конституции США.

В 1746-54 провел экспериментальные исследования по электричеству, объяснил действие лейденской банки, построил первый плоский конденсатор, изобрел в 1750 молниеотвод, доказал в 1753 тождественность земного и атмосферного электричества, электрическую природу молнии. Разработал (1750) теорию электрических явлений, ввел понятия положительного и отрицательного электричества. Исследовал вопросы теплопроводности металлов, распространения звука в воздухе и воде. Автор ряда изобретений (применение искры для взрыва пороха и др.).

Работы Франклина Лондонское королевское общество признало недостойными публикации, и они были опубликованы его другом английским физиком Питером Коллинсоном (1694-1768) за свой счет. Успех публикации был огромен, а после того, как в 1752 г. был реализован его эксперимент с молниеотводом, подтверждающий эквивалентность электрической искры и молнии, научный энтузиазм к исследованию электрических явлений распространился очень широко. Королевское общество в 1753 г. присудило Франклину Коплеевскую медаль, а в 1756 г. избрало своим членом.

Общая, уже сложившаяся к тому времени методология научных исследований требовала количественных измерений. И основателем электрической метрологии был Вольта, который также сконструировал весьма точные электрометры.

Вольта Алессандро (18.02.1745-05.03.1827) – итальянский физик, химик и физиолог, член Лондонского королевского общества и Парижской АН, медаль Копли (1794). Родился в Комо в знатной дворянской семье. Учился в школе ордена иезуитов. В 1774-79 преподавал физику в гимназии в Комо, с 1779 – профессор Павийского университета, в 1815-19 – директор философского факультета Падуанского университета.

Работы в области электричества, молекулярной физики. Развил теорию лейденской банки (1769), построил смоляной электрофор (1775), электроскоп с соломинками (1781), конденсатор (1783), электрометр и другие приборы, описал действие телеграфа. В 1792 начал повторять опыты Л.Гальвани с “животным” электричеством и пришел к выводу, что причиной кратковременного тока является наличие цепи из двух классов разнородных проводников (двух металлов и жидкости). В конце 1799 сконструировал первый источник длительного гальванического тока – вольтов столб. Открыл (1795) взаимную электризацию разнородных металлов при контакте и составил ряд напряжений для металлов (1801). Исследовал тепловое расширение воздуха, наблюдал диффузию, установил проводимость пламени (1787). Обнаружил метан (1776) и объяснил его образование разложением животных и растительных останков.

Его именем названа единица напряжения - вольт

Блестящие исследования в области электричества провел Кулон.

Кулон Шарль Огюст (14.06.1736-23.08.1806) – французский физик и военный инженер, член Парижской АН (1803). Родился в Ангулеме в семье чиновника. Окончил военно-инженерную школу в Мезьере (1761), после чего несколько лет находился на военной службе на Мартинике, где руководил строительством флота. После возвращения во Францию служил в военно-инженерном корпусе, уделяя со временем все больше внимания научным исследованиям.

Работы в области механики, электричества и магнетизма. Первая научная работа, начатая еще на Мартинике, "О приложении правил максимумов и минимумов к некоторым проблемам статики, относящимся к архитектуре" определила прогресс строительной механики 18-19 веков. Сформулировал в 1781 законы трения скольжения и качения. Исследовал и сконструировал в 1784 крутильные весы, с помощью которых в 1785 установил основной закон электростатики, а в 1788 распространил его на взаимодействия магнитных полюсов. Выдвинул гипотезу магнетизма, по которой магнитные жидкости не свободны, а связаны с отдельными молекулами, поляризующимися в процессе намагничивания. Сконструировал магнетометр (1785).

Его именем названа единица заряда - кулон

Кулон сконструировал крутильные весы высокой чувствительности, установив предварительно, что сила закручивания нити зависит от вещества нити, пропорциональна углу закручивания и четвертой степени диаметра нити и обратно пропорциональна ее длине. С помощью этих весов Кулон экспериментально установил, что силы притяжения и отталкивания зарядов обратно пропорциональны квадратам расстояний. Кулоном же была постулирована пропорциональность силы взаимодействия произведению электрических зарядов, т.е. за 4 года интенсивной работы с 1785 по 1789 г. им был заложен фундамент современной электростатики. Поскольку электростатические силы так же зависят от расстояния, как и ньтоновские, то здесь можно использовать все свойства ньютоновских сил, найденные в теоретической механике.

Следует отметить, что используя также крутильные весы, Кавендиш в 1798 г. доказал справедливость закона тяготения для обычных (не небесных) тел.

Кавендиш Генри (10.10.1731-24.02.1810) – английский физик и химик, член Лондонского королевского общества (1760). Родился в Ницце в семье лорда. В 1749-53 учился в Кембриджском университете. Большую часть жизни провел в одиночестве, полностью отдаваясь научной работе в собственной лаборатории.

Публиковал только те статьи, в которых был полностью уверен, из-за чего многие работы по электричеству оставались неизвестными. Изданные в 1879 Дж. Максвеллом эти работы показали, что еще в 1771 он пришел к выводу об обратной пропорциональности силы электростатического взаимодействия квадрату расстояния. Ввел понятие электроемкости, открыл влияние среды на емкость конденсатора и определил диэлектрическую проницаемость ряда веществ. В 1798 измерил гравитационную силу притяжения двух небольших сфер, определил гравитационную постоянную, массу и среднюю плотность Земли. Получил в 1766 водород и определил его свойства, установил состав воды и показал, что ее можно получить искусственным путем, определил содержание кислорода в воздухе (1781).

С первых же случаев поражения электрическим разрядом возникли предположения о "животном электричестве", регуляторе жизни животных. В 1773 г. появился мемуар Джона Уолша об электрическом скате, а у физиологов возникла гипотеза о "животной эссенции", которая подобно электрическому флюиду ответственна за перенос нервных сигналов.

Профессор анатомии Болонского университета Луиджи Гальвани (1737-1798) провел электро-физиологические опыты и пришел к выводу об одинаковом эффекте сокращения мышц лягушки от физиологического и электрического воздействия. Результаты поразили Вольта, особое внимание которого привлекла одна особенность гальванического опыта: передача сигнала для сокращения мышцы проводниками однородными или составленными из разных металлов осуществлялась по-разному.

Вольта вначале провел опыт с обнаружением кисловатого вкуса на языке, если к кончику его прикладывать один конец, а к середине - другой конец дуги, составленной из разных металлов. Затем он приступил к чисто физическим исследованиям контактного электричества и получил закон контактных напряжений, расположив металлы в "ряд напряжений". В итоге Вольта изобрел новый прибор, который сначала назвал "искусственным электрическим органом", а потом "электродвижущим аппаратом". Французы позже стали называть его "гальваническим или вольтовым столбом".

Изобретение гальванических элементов (гораздо более удобных электрических источников, чем электростатические машины) существенно расширило круг исследований по электричеству. Прежде всего, была показана идентичность электрического и гальванического "флюидов", разница между которыми сначала проявлялась в ряде физиологических и химических процессов (электрический удар, химическое действие тока и т.п.).

Уже после первых исследований в области электричества и магнетизма возникали предположения о связи между ними. Поиски этой связи интенсифицировались после открытия законов Кулона. Решающий эксперимент в этой области в 1820 г. поставил Эрстед, который обнаружил отклонение магнитной стрелки проводником с током.

Эрстед Ханс Кристиан (14.08.1777–09.03.1851) – датский физик, непременный секретарь Датского королевского общества (с 1815), почетный член Петербургской (1830) и других академий наук. Родился в Рудкёбинге в семье аптекаря. Окончил Копенгагенский университет: диплом фармацевта (1797), степень доктора (1799). С 1806 – профессор этого университета, с 1829 одновременно директор Копенгагенской политехнической школы.

Работы в области электричества, акустики, молекулярной физики. Для научного творчества Эрстеда характерен поиск взаимосвязи между различными явлениями природы. Обнаружение им действия электрического тока на магнитную стрелку привело к возникновению новой области физики – электромагнетизма. В 1822-23 независимо от Ж.Фурье переоткрыл термоэлектрический эффект и построил первый термоэлемент. Экспериментально изучал сжимаемость и упругость жидкостей и газов, изобрел пьезометр.

Был блестящим лектором и популяризатором, организовал в 1824 Общество по распространению естествознания, создал первую в Дании физическую лабораторию.

Его именем названа единица напряженности магнитного поля - эрстед

Следует отметить один важный факт в опыте Эрстеда: обнаруженный эффект не вписывался в ньютоновскую концепцию взаимодействия, где все силы были центральными. В том же 1820 году французские физики Био и Феликс Савар (1791-1836) экспериментально исследовали зависимость величины магнитного поля от расстояния от проводника с током до точки наблюдения. Однако такой зависимости в общем виде им получить не удалось. Эта задача была решена Лапласом и полученный им общий закон носит название закона Био-Савара-Лапласа.

Одновременно Ампер открыл взаимодействие токов, которое он назвал электродинамическим.

Ампер Андре Мари (22.01.1775–10.06.1836) – французский физик, математик и химик, член Парижской (1814), Петербургской (1830) и других академий наук. Родился в Лионе в семье коммерсанта. Получил домашнее образование. В 1801 стал преподавать физику и химию в центральной школе г. Бурга. В 1805-24 работал в Политехнической школе в Париже (с 1809 – профессор), с 1824 – профессор Коллеж де Франс.

Физические работы посвящены электромагнетизму. Установил закон взаимодействия электрических токов (закон Ампера), разработал теорию магнетизма. Согласно этой теории все магнитные взаимодействия сводятся к взаимодействию круговых электрических молекулярных токов, каждый из которых эквивалентен плоскому магниту – магнитному листку. Ампер впервые указал на тесную связь между электрическими и магнитными процессами. Открыл (1822) магнитный эффект катушки с током – соленоида, который является эквивалентом постоянного магнита, выдвинул идею усиления магнитного поля путем помещения внутрь соленоида железного сердечника. В 1820 предложил использовать электромагнитные явления для передачи сигналов, изобрел коммутатор, электромагнитный телеграф. Сформулировал понятие “кинематика”, проводил исследования в области философии и ботаники.

Его именем названа единица тока - ампер

Ампер также предложил гипотезу, согласно которой магнит представляет собой совокупность токов, и вывел формулу взаимодействия элементов тока. Развитая им теория позволяла объяснить различные виды взаимодействия: магнитостатические, электромагнитные и электродинамические. Проведенные Эрстедом, Ампером и другими учеными исследования действия магнитов на проводники с током и обнаруженное в 1821 г. Фарадеем вращение проводника с током в магнитном поле легли в основу создания гальванометров, которые в различных модификациях широко использовались при исследовании электромагнитных явлений.

Фарадей Майкл (22.09.1791–25.08.1867) – английский физик, член Лондонского королевского общества (1824), Петербургской АН (1830). Родился в Лондоне в семье кузнеца. С 12 лет работал разносчиком газет, затем подмастерьем в переплетной мастерской. Учился самостоятельно. В 1813 стал ассистентом Г.Дэви в Королевском институте в Лондоне, в 1825 – директором лаборатории, сменив на этом посту Г.Дэви, в 1833-62 – профессор кафедры химии.

Работы в области электричества, магнетизма, магнитооптики, электрохимии. Открытое Фарадеем вращение магнита вокруг проводника с током и проводника с током вокруг магнита стало основой лабораторной модели электродвигателя и наглядно выявило связь между электрическими и магнитными явлениями, что в итоге привело к открытию и установлению законов электромагнитной индукции. Открыл в 1835 экстратоки при замыкании и размыкании. Доказал тождественность различных видов электричества: “животного”, “магнитного”, гальванического, термоэлектричества и электричества, возникающего при трении. В результате работ по исследованию природы электрического тока в растворах кислот, солей и щелочей открыл в 1833 законы электролиза (законы Фарадея), которые были важным аргументом в пользу дискретности электричества. Ввел понятия подвижность, катод, анод, ионы, электролиз, электролиты, электроды, иэобрел вольтметр. В 1845 открыл диамагнетизм, в 1847 – парамагнетизм. Обнаружил вращение плоскости поляризации света в магнитном поле (эффект Фарадея), что явилось доказательством связи света с магнетизмом и положило начало магнитооптике.

Фарадей первым ввел понятие поля, представление об электрических и магнитных силовых линиях. Идея поля кардинально изменило существовавшее у Ньютона и его последователей представление о дальнодействии и пространстве, как только пассивном вместилище тел и электрических зарядов. В 1837 обнаружил влияние диэлектриков на электрическое взаимодействие и ввел понятие диэлектрической проницаемости. Высказал идею о распространении электрического и магнитного взаимодействий через промежуточную среду, мысль о единстве сил природы (различных видов энергии) и их взаимном превращении.

В его честь названа единица емкости - фарада

Первые исследования в области электричества были в основном сосредоточены на активных элементах - источниках электродвижущей силы, а пассивным проводникам практически не уделялось внимания. Ом провел систематические экспериментальные и теоретические исследования проводимости и сформулировал в 1827 г. свои законы в интегральной и дифференциальной формах, введя понятия и точные определения электродвижущей силы, электропроводности и силы тока.

Ом Георг Симон (16.03.1789-06.07.1854) - немецкий физик, член-корреспондент Берлинской (1839), член Туринской и Баварской АН, Лондонского королевского общества (1842), медаль Копли (1841). Родился в Эрлангене в семье слесаря. Окончил Эрлангенский университет, доктор философии (1811). Преподавал математику, затем физику в ряде гимназий. С 1833 - профессор Нюрнбергской высшей политехнической школы (с 1839 - ректор), 1849-52 - Мюнхенского университета.

Работы в области электричества, акустики, оптики. В 1826 экспериментально открыл основной закон электрической цепи (закон Ома), а в 1827 вывел его теоретически. Установил, что ухо воспринимает как простой тон только звук, вызванный простым гармоническим колебанием, остальные звуки - как основной тон и добавочные - обертона (акустический закон Ома).

Его именем названа единица электрического сопротивления - ом

При этом Ом проводил свои работы, используя аналогию электрического тока с тепловыми потоками французского математика и физика Жана Батиста Жозефа Фурье (1768-1830) между двумя телами с различной температурой. Однако его работы в течение десяти лет оставались незамеченными. Одновременно с опытами Ома проводили исследования во Франции Антуан Сезар Беккерель (1788-1878), который определил зависимость сопротивления от длины и сечения проводника, и в Англии - Питер Барлоу (1776-1862), подтвердивший постоянство тока во всей цепи. Ряд частных законов, полученных в это время независимо от Ома, в 1845 г. обобщил Кирхгоф в своих правилах.

Большой толчок к проведению электрических измерений дало первое практическое использование электрических явлений в телеграфии. Создание воздушного и подводного телеграфов потребовало разработки новых методов электрических измерений. В 1840 г. Уитстон предложил свой метод моста для точных измерений сопротивлений. Гаусс заложил основы электромагнитной метрики, взяв за основные три механические единицы (времени, длины и массы) и выразив через них все остальные, а также разработав ряд новых приборов.

Гаусс Карл Фридрих (30.04.1777-23.02.1855) - немецкий математик, астроном и физик, член Лондонского королевского общества (1804), Парижской (1820) и Петербургской АН (1824). Родился в Брауншвейге в семье водопроводчика. Учился в 1795-98 в Гёттингенском университете, в 1799 получил доцентуру в Брауншвейге, с 1807 - профессор Гёттингенского университета и директор астрономической обсерватории.

Работы во многих областях физики. В 1832 создал абсолютную систему мер, в 1833 совместно с В.Вебером построил первый в Германии электромагнитный телеграф. В 1839 в сочинении "Общая теория сил притяжения и отталкивания, действующих обратно пропорционально квадрату расстояния" изложил основы теории потенциала (теорема Остроградского-Гаусса). В 1840 в работе "Диоптрические исследования" разработал теорию построения изображений в сложных оптических системах. В 1845 пришел к мысли о конечности распространения электромагнитных взаимодействий. В 1829 сформулировал принцип наименьшего принуждения (принцип Гаусса). Одним из первых высказал в 1818 гипотезу о существовании неевклидовой геометрии.

Его именем названа единица магнитной индукции - гаусс

Работу по метрологии продолжили немецкий физик Вильгельм Эдуард Вебер (1804-1891) и Максвелл. В итоге появилась идея создания единой системы мер и в 1881 г. Международный конгресс в Париже установил международные единицы измерения.

Огромный вклад в развитие электромагнетизма был сделан работами Майкла Фарадея. Одной из ведущих философских идей физики 19 века было то, что все физические явления представляют собой проявления одной и той же сущности. Следуя этому принципу, в 1831 г. Фарадей обнаружил явление электромагнитной индукции. Он предложил теорию этого явления, впервые введя понятия линий магнитных сил и электромагнитного поля и высказав идею о распространении магнитных возмущений во времени. В 1833 г. американский физик Джозеф Генри (1797-1878) обнаружил явление самоиндукции, а российский ученый Эмиль Христианович Ленц (1804-1865) сформулировал в 1834 г. свое правило о направлении индукционных токов.

В середине 40-х годов немецкими учеными Францем Эрнстом Нейманом (1798-1895), Вебером и Гельмгольцем были построены теории индукции, учитывающие, что взаимодействие электрических зарядов зависят как от расстояния между ними, так и от скоростей.

В 1833-34 г.г. Фарадей установил основные законы электролиза, положив начало электрохимии. Им также было экспериментально доказано, что электрическое действие распространяется не только по прямой, но и по кривым линиям, а промежуточная среда существенно влияет на это действие. Таким образом, он подтверждал, что взаимодействие двух тел осуществляется через посредство среды, а не происходит в соответствии с теорией дальнодействия на расстоянии, что использовалось в наиболее простых моделях для математического истолкования явлений.

В результате опытов со сферическими конденсаторами с различными изолирующими прокладками Фарадей сформулировал свою теорию диэлектрической поляризации, которая была развита итальянским физиком Оттавиано Фабрицио Моссотти (1791-1863).

В 1845 г. при пропускании света через электромагнит Фарадей обнаружил поворот плоскости поляризации, что он объяснил присутствием магнитных полей в свете. Также им было обнаружено явление диамагнетизма.

Помимо многочисленных экспериментальных открытий, в конце жизни Фарадей в борьбе с атомистическими представлениями о непрерывности только пространства выдвигает оригинальную идею: развивая концепцию Босковича, вводит понятие поля. Он говорит, что материя не только взаимопроницаема, но и каждый ее атом простирается на всю солнечную систему, сохраняя свой собственный центр.

Также велико практическое значение открытий Фарадея, т.к. все машины современной электротехнической промышленности - генераторы (первый генератор тока был создан самим Фарадеем), трансформаторы, электромоторы - основаны на электромагнитной индукции. Сюда же следует отнести и телефон.

К 60-м годам 19 века электродинамика благодаря работам Неймана, Вебера и Гельмгольца считалась уже окончательно сформировавшейся наукой с четко определенными границами. Однако оригинальные идеи Фарадей заинтересовали Максвелла, и он задумал придать им математическую форму. Введя понятия токов смещения и напряженности поля, Максвелл сначала создал электродинамику диэлектриков, используя теорию Моссотти. Распространяя эти представления с поправками на магнетизм, он создает и теорию электромагнитной индукции. В итоге все построение сводится к знаменитым шести уравнениям Максвелла. Эти уравнения устанавливают непрерывность явлений, определяют изменения поля в отличие от ньютоновской модели, где законы определяют изменения поведения материальных частиц. Они связывают события, смежные в пространстве и во времени. Многие усматривали ряд логических ошибок и непоследовательностей при построении Максвеллом теории. Но она очень многое объясняла, и к концу 19 века крупнейшие физики придерживались мнения, которое высказал Герц: нужно принять уравнения Максвелла как гипотезу, постулаты, на которые и будет опираться вся теория электромагнетизма.

Герц Генрих Рудольф (22.02.1857-01.01.1894) - немецкий физик, член-корреспондент Берлинской АН (1889), член ряда академий наук и научных обществ, награды Венской, Парижской, Туринской АН, Лондонского королевского общества и др. Родился в Гамбурге в семье адвоката. Окончил Берлинский университет, степень доктора (1880) и был ассистентом у Г.Гельмгольца. С 1883 - приват-доцент Кильского университета, в 1885-89 - профессор Высшей технической школы в Карлсруэ, с 1889 - Боннского университета.

Основные работы относятся к электродинамике и механике. В 1887 в работе "Об очень быстрых электрических колебаниях" предложил удачную конструкцию генератора электромагнитных колебаний (вибратор Герца) и метод их обнаружения (резонатор Герца), впервые разработав теорию вибратора, излучающего электромагнитные волны в пространстве. Экспериментально доказал существование электромагнитных волн, распространяющихся в свободном пространстве в соответствии с теорией Максвелла. Придал уравнениям электродинамики симметричную форму, которая наглядно демонстрировала полную взаимосвязь между электрическими и магнитными явлениями (электродинамика Максвелла-Герца). В 1887 наблюдал внешний фотоэффект, заметив, что электрический разряд более интенсивен при облучении электродов ультрафиолетовым светом. В работе "О прохождении катодных лучей через тонкие металлические слои" (1891) открыл проницаемость металлов для катодных лучей, заложив основу для изучения этих лучей и строения вещества. Построил механику с введением неголономных связей, трактовкой механической системы как системы с большим числом степеней свободы и применением принципа кратчайшего пути или наименьшей кривизны.

Его именем названа единица частоты - герц

Следуя своим уравнениям и идеям Фарадея о природе света, Максвелл строит электромагнитную теорию света, описывающую распространение поперечных электромагнитных волн. Дополнительные предпосылки к этому были также получены Вебером и Кирхгофом при определении скорости распространения электромагнитной индукции по проводу: она оказалась равной скорости света. К этому времени были обнаружены и исследованы колебания электрического разряда конденсатора в цепи с индукционной катушкой, а в 1884 г. Герц показал, что эти колебания вызывают в пространстве появление волн, состоящих из поляризованных перпендикулярно друг к другу электрических и магнитных колебаний. Он также обнаружил отражение, преломление и интерференцию таких волн. Важным подтверждением электромагнитной теории были опыты русского физика Петра Николаевича Лебедева (1866-1912), который в 1900 г. измерил величину светового давления в полном соответствии с теорией Максвелла.

Итальянский физик Аугусто Риги (1850-1920) развил эти работы и их результаты обобщены им в 1897 г. в книге "Оптика электрических явлений", само название которой говорит о революционности такого вывода в развитии физики.

Одним и самых замечательных результатов практического применения электромагнитных волн явилось изобретение в 1895 г. радиотелеграфии Поповым и итальянским исследователем Гульельмо Маркони (1874-1937).

Попов Александр Степанович (16.03.1859-13.01.1906) - русский физик и электротехник. Родился в п. Турьинские Рудники (Екатеринбургская губерния) в семье священника. Окончил Петербургский университет (1882). В 1883-1901 преподавал в военных заведениях Кронштадта. С 1901 - профессор Петербургского электротехнического института (с 1905 - ректор).

Работы в области электротехники и радиотехники. В 1888 повторил опыты Г.Герца и в 1889 впервые указал на возможность использования электромагнитных волн для передачи сигналов. В 1894 сконструировал генератор электромагнитных колебаний и приемник с чувствительным элементом - когерером, а также изобрел первую приемную антенну. Установил, что приемник антенны реагирует на грозовые разряды, и создал грозоотметчик. 7 мая 1895 продемонстрировал свой грозоотметчик на заседании физического отделения Российского физико-химического общества и высказал мысль о возможности его применения для передачи сигналов на расстояние. На заседании 24 марта 1896 продемонстрировал передачу сигналов на расстояние 250 м. Несколько позже Г.Маркони создал подобные приборы, провел с ними эксперименты и положил начало широкому применению радиосвязи, а в 1909 получил за эти работы Нобелевскую премию, когда Попов уже умер. В 1897 обнаружил отражение электромагнитных волн от предметов (кораблей), находящихся на пути их распространения, что было положено в основу радиолокации.

Таким образом, к концу 19 века в основном завершилось построение классической физики.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://lscore.lspace.etu.ru/

По физике за 11 класс (Касьянов В.А., 2002 год),
задача №49
к главе «Электромагнетизм. ОСНОВНЫЕ ПОЛОЖЕНИЯ ».


На концах проводника длиной l, движущегося со скоростью в магнитном поле с индукцией перпендикулярной скорости движения, возникает разность потенциалов

Электромагнитная индукция - физическое явление, заключающееся в возникновении электрического тока в замкнутом контуре при изменении потока магнитной индукции, через поверхность, ограниченную этим контуром

Закон электромагнитной индукции (закон Фарадея): ЭДС электромагнитной индукции в контуре численно равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную этим контуром

Правило Ленца: индукционный ток в контуре имеет такое направление, что созданный им магнитный поток через поверхность, ограниченную контуром, препятствует изменению магнитного потока, вызвавшего этот ток

Самоиндукция - возникновение ЭДС индукции в проводящем контуре при изменении силы тока ЭДС самоиндукции в катушке
где L - индуктивность катушки

Трансформатор - устройство, применяемое для повышения или понижения переменного напряжения Коэффициент трансформации К - величина, равная отношению напряжений в первичной и вторичной обмотках трансформатора
Повышающий трансформатор - трансформатор, увеличивающий напряжение (К < 1).

Понижающий трансформатор - трансформатор, уменьшающий напряжение (К > 1)

Мгновенное значение напряжения - напряжение в данный момент времени

Фаза колебаний - аргумент функции, описывающей гармонические колебания

Напряжение и сила тока в резисторе совпадают по фазе в любой момент времени.

Действующее значение силы переменного тока равно силе постоянного тока, выделяющего в проводнике такое же количество теплоты, что и переменный ток за один и тот же промежуток времени Если переменный ток изменяется по гармоническому закону, в качестве промежутка времени выбирается период изменения тока.

Действующее (эффективное) значение силы переменного тока в раз меньше его амплитуды

Активное сопротивление - сопротивление элемента электрической цепи, в котором электрическая энергия необратимо преобразуется во внутреннюю (тепловую) Изменяющееся со временем электрическое поле является источником магнитного поля.

Магнитоэлектрическая индукция - явление возникновения магнитного поля в переменном электрическом поле Колебания силы тока в цепи конденсатора опережают по фазе колебания напряжения на его обкладках на π/2. Реактивное сопротивление - элемент цепи, для которого средняя мощность переменного тока равна нулю

Емкостное сопротивление - реактивное сопротивление конденсатора. Колебания силы тока в конденсаторе опережают по фазе на π/2 колебания напряжения на его обкладках

Индуктивное сопротивление - реактивное сопротивление катушки. Колебания силы тока в катушке индуктивности отстают по фазе на π/2 от колебаний напряжения на ней. Формула Томсона:

Полное сопротивление колебательного контура переменному току зависит от частоты тока

Резонанс в колебательном контуре - физическое явление резкого возрастания амплитуды колебаний силы тока в контуре при совпадении частоты вынужденных колебаний с частотой собственных колебаний в контуре

Резонансная кривая - график зависимости амплитуды вынужденных колебаний силы тока от частоты приложенного к контуру напряжения. В полупроводниках существует два механизма собственной проводимости: электронная и дырочная

Электронная проводимость - результат направленного перемещения в межатомном пространстве свободных электронов, покинувших валентную оболочку атома в результате нагревания полупроводника или под действием внешних полей.

Дырочная проводимость - результат направленного перемещения валентных электронов между электронными оболочками соседних атомов на вакантные места - дырки.

Примеси в полупроводнике - атомы посторонних химических элементов, содержащихся в основном полупроводнике. Различают донорные и акцепторные примеси. Атомы донорной примеси имеют валентность, большую валентности основного полупроводника Атомы акцепторной примеси имеют валентность, меньшую валентности основного полупроводника

Полупроводник n-типа - полупроводник с донорной примесью

Полупроводник p-типа - полупроводник с акцепторной примесью

p-n-Переход - контактный слой двух примесных полупроводников p-и n-типа

Запирающий слой - двойной слой разноименных электрических зарядов, создающий электрическое поле на p-n-переходе, препятствующее свободному разделению зарядов

Полупроводниковый диод - элемент электрической схемы, содержащий p-n-переход и два вывода для включения в электрическую цепь

Транзистор - полупроводниковый прибор с двумя p-n-переходами и тремя выводами для включения в электрическую цепь. Транзистор используется для усиления и генерации электрических сигналов.

Коэффициент усиления - отношение изменения выходного напряжения к изменению входного Излучение и прием электромагнитных волн радио- и СВЧ-диапазона

Новый репетитор по физике для подготовки к ЕГЭ. Электромагнетизм. Колебания и волны. Оптика. Элементы теории относительности. Физика атома и атомного ядра. Касаткина И.Л.

Р.на Д.: 2018 , - 845 с. Р.на Д.: 2006 , - 848 с.

Учебное пособие предназначено для абитуриентов, готовящихся к сдаче одного из самых трудных выпускных и вступительных экзаменов - ЕГЭ по физике. В данном пособии абитуриент найдет все, что необходимо при подготовке к этому экзамену: необходимую теорию в сжатом виде, ценные указания к решению задач, большое количество уже решенных задач разной трудности, подобных задачам Открытого банка заданий, и множество задач с ответами для проверки умений их решать. Кроме того, "Репетитор" очень полезен старшеклассникам 9-10 классов в самом процессе учебы, а также при подготовке к Всероссийским проверочным работам (ВПР). Большая ценность этого пособия и в том, что здесь имеется краткая теория и показаны способы решения задач и вузовского уровня, что окажет неоценимую помощь студентам младших курсов технических вузов и колледжей. Оно может быть полезно репетиторам и преподавателям.

Формат: pdf (2018 , 84 5с.)

Размер: 21,5 Мб

Смотреть, скачать: drive.google

Формат: djvu (2006 , 6-е изд., 848с.) Репетитор по физике. Электромагнетизм. Колебания и волны. Оптика. Теория относительности. Физика атома и атомного ядра. Касаткина И.Л.

Размер: 36 Мб

Скачать: yandex.disk

СОДЕРЖАНИЕ
Электростатика 3
1. Взаимодействие зарядов. Закон Кулона 3
2. Электрическое поле. Напряженность электрического поля 44
3. Работа перемещения заряда в электрическом поле. Потенциал. Разность потенциалов 78
4. Электроемкость. Энергия электрического поля 125
Законы постоянного тока 181
5. Закон Ома для участка цепи. Соединение проводников 181
6. Закон Ома для всей цепи. Расчет электрических цепей 239
7. Работа и мощность тока. Закон Джоуля-Ленца. КПД электрической цепи 285
8. Электропроводность веществ 328
Магнетизм 351
9. Магнитное поле тока. Действие магнитного поля на заряды и токи 351
10. Электромагнитная индукция. Энергия магнитного поля 394
Колебания и волны 418
11. Механические колебания 418
12. Механические волны 482
13. Электромагнитные колебания в колебательном контуре 502
14. Переменный ток 529
15. Электромагнитные волны 567
16. Волновые свойства света 578
Геометрическая оптика 601
17. Законы отражения 601
18. Законы преломления 624
19. Линзы 657
20. Фотометрия 713
21. Элементы теории относительности 727
22. Тепловое излучение. Фотоэффект. Квантовые свойства света 756
23. Физика атома 775
24. Физика атомного ядра 794
Дополнение 815
Приложение 827