Перечислить способы задания числовой последовательности. Свойства числовых последовательностей

ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ VI

§ 127. Числовые последовательности и способы их задания. Конечныеи бесконечные последовательности.

Рассмотрим следующие три совокупности чисел:

Естественно считать, что каждое число в любой из этих совокупностей снабжено номером в соответствии с тем местом, которое оно занимает в этой совокупности. Например, во второй совокупности число 1 имеет номер 1, число - 1 / 2 номер 2, число 1 / 3 номер 3 и т. д.

Наоборот, какой бы номер мы ни указали, в каждой из этих совокупностей найдется число, снабженное этим номером. Например, номер 2 в первой последовательности имеет число 2, во второй - число - 1 / 2 , в третьей - число sin 2. Аналогично номер 10 имеют: в первой последовательности - число 10, во второй - число - 1 / 10 , в третьей - число sin 10 и т. д. Таким образом, в приведенных выше совокупностях каждое число имеет вполне определенный номер и полностью определяется этим номером.

Совокупность чисел, каждое из которых снабжено своим номером п (п = 1, 2, 3, ...), называется числовой последовательностью.

Отдельные числа последовательности называются ее членами и обозначаются обычно так: первый член a 1 , второй a 2 , .... п -й член a n и т. д. Вся числовая последовательность обозначается

a 1 , a 2 , a 3 , ... , a n , ... или {a n }.

Задать числовую последовательность - это знанит указать, как отыскивается тот или иной ее член, если известен номер занимаемого им места. Существует много различных способов задания числовых последовательностей. Ниже мы остановимся на некоторых из них.

1. Обычно числовая последовательность задается с помощью формулы, позволяющей по номеру члена последовательности определить этот член. Например, если известно, что при любом п

a n = n 2 ,

a 1 = 1, a 2 = 4, a 3 = 9

и т. д. При a n = sin π / 2 п мы получим: a 1 = sin π / 2 = 1, a 2 = sin π = 0, a 3 = sin 3 π / 2 = - 1, a 4 = sin 2π = 0 и т. д.

Формула, позволяющая найти любой член числовой последовательности по его номеру, называется формулой общего члена числовой последовательности.

2. Бывают случаи, когда последовательность задается посредством описания ее членов. Например, говорят, что последовательность

1,4; 1,41; 1,414; 1,4142; ...

составлена из приближенных значений √2 с недостатком с точностью до 0,1; 0,01; 0,001; 0,0001 и т. д. В подобных случаях иногда вообще нельзя установить формулу общего члена; тем не менее последовательность оказывается полностью определенной.

3. Иногда указывается несколько первых членов последовательности, а все остальные члены определяются этими заданными членами по тому или иному правилу. Пусть, например,

a 1 = 1, a 2 = 1,

а каждый последующий член определяется как сумма двух предыдущих. Другими словами, при любом п > 3

a n = a n - 1 + a n - 2

Так определяется числовая последовательность 1, 1, 2, 3, 5, 8, 13, 21, 34, .... члены которой носят название «чисел Фибоначчи» [по имени итальянского математика Леонарда Пизанского (около 1170-1250), которого называли также Фибоначчи, что означает «сын Боначчо»].Они обладают многими интересными свойствами, рассмотрение которых, однако, выходит за пределы нашей программы.

Последовательность может содержать как конечное, так и бесконечное число членов.

Последовательность, состоящая из конечного числа членов, называется конечной, а последовательность, состоящая из бесконечного числа членов, - бесконечной последовательностью.

Например, последовательность всех четных положительных чисел 2, 4, 6, 8, 10, 12, ... бесконечна, а последовательность однозначных четных положительных чисел 2, 4, 6, 8 конечна.

Упражнения

932. Написать 4 первых числа последовательности с общим членом:

933. Найти формулу общего члена для каждой из данных последовательностей:

а) 1, 3, 5, 7, 9, ... ; . д) tg 45°, tg 22°30", tg 11°15", ... ;

б) 2, 4, 6, 8, 10, ... ; е) 1, - 1 / 2 , 1 / 4 , - 1 / 8 , 1 / 16 , ... ;

в) 3, -3, 3, -3, 3, ... ; ж) 1, 9, 25, 49, 81.....

г) 1 / 3 , 1 / 9 , 1 / 27 , 1 / 81 , ....;

934. Является ли конечной последовательность всех положительных корней уравнения:

а) sin х = х - 1; б) tg х = х ; в) sin х = ах + b ?

Алгебра. 9 класс
Урок № 32
Дата:_____________
Учитель: Горбенко Алена Сергеевна
Тема: Числовая последовательность, способы ее задания и свойства
Тип урока: комбинированный
Цель урока: дать понятие и определение числовой последовательности, рассмотреть способы
задания числовых последовательностей
Задачи:
Образовательные: ознакомить учащихся с понятием числовой последовательности и членом
числовой последовательности; ознакомиться с аналитическим, словесным, рекуррентным и
графическим способами задания числовой последовательности; рассмотреть виды числовой
последовательности; подготовка к ВОУД;
Развивающие: развитие математической грамотности, мышления, техники вычисления, навыки
сравнения при выборе формулы; привитие интереса к математике;
Воспитательные: воспитание навыков самостоятельной деятельности; четкость и
организованность в работе; дать каждому ученику достичь успеха;
Оборудование: Школьные принадлежности, доска, мел, учебник, раздаточный материал.
Ход урока
I. Организационный момент
 Взаимное приветствие;
 Фиксация отсутствующих;
 Объявление темы урока;
 Постановка целей и задач урока учащимися.
Последовательность ­ одно из самых основных понятий математики. Последовательность может
быть составлена из чисел, точек, функций, векторов и т.д.
Сегодня на уроке мы познакомимся с понятием " числовая последовательность", узнаем, какие
могут быть последовательности, познакомимся со знаменитыми последовательностями.

II. Актуализация опорных знаний.
Вам известны функции, определённые на всей числовой прямой или на её непрерывных
III.
промежутках:
линейная функция у = кх+в,
квадратичная функция у = ах2+вх+с,


 функция у =



 функция у =|х|.
Подготовка к восприятию новых знаний
прямая пропорциональность у = кх,
обратная пропорциональность у =к/х,
кубическая функция у = х3,
,
Но бывают функции, заданные на других множествах.
Пример. Во многих семьях есть обычай, своего рода ритуал: в день рождения ребёнка
родители подводят его к дверному косяку и торжественно отмечают на нём рост именинника.
Ребёнок растёт, и на косяке с годами возникает целая лесенка отметок. Три, пять, два: Такова
последовательность приростов от года к году. Но есть и другая последовательность, и именно
её члены аккуратно выписывают рядом с засечками. Это ­ последовательность значений роста.
Две последовательности связаны друг с другом.
Вторая получается из первой сложением.
Рост ­ это сумма приростов за все предыдущие годы.
Рассмотреть ещё несколько задач.
Задача 1. На складе имеется 500 т угля, каждый день подвозят по 30 т. Сколько угля будет
на складе в 1 день? 2 день? 3 день? 4 день? 5 день?
(Ответы учащихся записываются на доске: 500, 530, 560, 590, 620).
Задача 2. В период интенсивного роста человек растёт в среднем на 5 см в год. Сейчас рост
у ученика С. ­ 180 см. Какого роста он будет в 2026 году? (2м 30 см). Но этого быть не
может. Почему?
Задача 3. Ежедневно каждый болеющий гриппом человек может заразить 4 окружающих.
Через сколько дней заболеют все ученики нашей школы (300 человек)? (Через 4 дня).
Это примеры функций, заданных на множестве натуральных чисел – числовые
последовательности.
Ставится цель урока: Найти способы нахождения любого члена последовательности.
Задачи урока: Выяснить, что такое числовая последовательность и как задаются
последовательности.
IV. Изучение нового материала
Определение: Числовая последовательность – это функция, заданная на множестве
натуральных чисел (последовательности составляют такие элементы природы, которые
можно пронумеровать).
Понятие числовой последовательности возникло и развилось задолго до создания учения о
функции. Вот примеры бесконечных числовых последовательностей, известных еще в
древности:
1, 2, 3, 4, 5, : ­ последовательность натуральных чисел;
2, 4, 6, 8, 10, :­ последовательность четных чисел;
1, 3, 5, 7, 9, : ­ последовательность нечетных чисел;
1, 4, 9, 16, 25, : ­ последовательность квадратов натуральных чисел;
2, 3, 5, 7, 11, : ­ последовательность простых чисел;
,
1,
Число членов каждого из этих рядов бесконечно; первые пять последовательностей ­
, :­ последовательность чисел, обратных натуральным.
,
монотонно возрастающие, последняя ­ монотонно убывающая.

Обозначение: у1, у2, у3, у4, у5,:
1, 2, 3, 4, 5, :п,:­порядковый номер члена последовательности.
(уп)­ последовательность, уп­ п­ый член последовательности.
(ап)­ последовательность, ап ­ п­ый член последовательности.
ап­1 ­предыдущий член последовательности,
ап+1 ­ последующий член последовательности.
Последовательности бывают конечными и бесконечными, возрастающие и убывающие.
Задания учащимся: Записать первые 5 членов последовательности:
От первого натурального числа увеличение на 3.
От 10 увеличение в 2 раза и уменьшение на 1.
От числа 6 чередовать увеличение на 2 и увеличение в 2 раза.
Эти числовые ряды тоже называются числовыми последовательностями.
Способы задания последовательностей:
Словесный способ.
Правила задания последовательности описываются словами, без указания формул или
когда закономерности между элементами последовательности нет.
Пример 1.Последовательность простых чисел: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, .... .
Пример 2. Произвольный набор чисел: 1, 4, 12, 25, 26, 33, 39, ... .
Пример 3. Последовательность чётных чисел 2, 4, 6, 8, 10, 12, 14, 16, ...
Аналитический способ.
Любой n­й элемент последовательности можно определить с помощью формулы.
Пример 1. Последовательность чётных чисел: y = 2n.
Пример 2.Последовательность квадрата натуральных чисел: y = n2;
1, 4, 9, 16, 25, ..., n2, ... .
Пример 3. Стационарная последовательность: y = C; C, C, C, ...,C, ...
Частный случай: y = 5; 5, 5, 5, ..., 5, ... .
Пример 4. Последовательность y = 2n;
2, 22, 23, 24, ..., 2n, ... .
Рекуррентный способ.
Указывается правило, позволяющее вычислить n­й элемент последовательности, если
известны её предыдущие элементы.
Пример 1. Арифметическая прогрессия: a1=a, an+1=an+d, где a и d – заданные числа, d ­
разность арифметической прогрессии. Пусть a1=5, d=0,7, тогда арифметическая прогрессия
будет иметь вид: 5; 5,7; 6,4; 7,1; 7,8; 8,5; ... .
Пример 2. Геометрическая прогрессия: b1= b, bn+1= bnq, где b и q – заданные числа, b
0,
0; q – знаменатель геометрической прогрессии. Пусть b1=23, q=½, тогда геометрическая
q
прогрессия будет иметь вид: 23; 11,5; 5,75; 2,875; ... .
4) Графический способ. Числовая последовательность
задается графиком, который представляет собой
изолированные точки. Абсциссы этих точек - натуральные
числа: n=1; 2; 3; 4; ... . Ординаты - значения членов
последовательности: a1; a2; a3; a4;…
Пример: Запишите все пять членов числовой последовательности,
заданной графическим способом.
Решение.
Каждая точки в этой координатной плоскости имеет
координаты (n; an). Выпишем координаты отмеченных точек
по возрастанию абсциссы n.
Получаем: (1; ­3), (2; 1), (3; 4), (4; 6), (5; 7).
Следовательно, a1= ­3; a2=1; a3=4; a4=6; a5 =7.

Ответ: ­3; 1; 4; 6; 7.
V. Первичное закрепление изученного материала
Пример 1. Составить возможную формулу n­го элемента последовательности (yn):
а) 1, 3, 5, 7, 9, 11, ...;
б) 4, 8, 12, 16, 20, ...;
Решение.
а) Это последовательность нечётных чисел. Аналитически эту последовательность можно
задать формулой y = 2n+1.
б) Это числовая последовательность, у которой последующий элемент больше предыдущего
на 4. Аналитически эту последовательность можно задать формулой y = 4n.
Пример 2. Выписать первые десять элементов последовательности, заданной рекуррентно: y1=1,
y2=2, yn = yn­2+yn­1, если n = 3, 4, 5, 6, ... .
Решение.
Каждый последующий элемент этой последовательности равен сумме двух предыдущих
элементов.
y1=1;
y2=2;
y3=1+2=3;
y4=2+3=5;
y5=3+5=8;
y6=5+8=13;
y7=8+13=21;
y8=13+21=34;
y9=21+34=55;
y10=34+55=89.
VI. Подведение итогов урока. Рефлексия
1. Что у вас удалось при выполнении задания?
2. Была ли работа слаженной?
3. Что не получилось, на ваш взгляд?

Вида y = f (x ), x О N , где N – множество натуральных чисел (или функция натурального аргумента), обозначается y = f (n ) или y 1 , y 2 ,…, y n ,…. Значения y 1 , y 2 , y 3 ,… называют соответственно первым, вторым, третьим, … членами последовательности.

Например, для функции y = n 2 можно записать:

y 1 = 1 2 = 1;

y 2 = 2 2 = 4;

y 3 = 3 2 = 9;…y n = n 2 ;…

Способы задания последовательностей. Последовательности можно задавать различными способами, среди которых особенно важны три: аналитический, описательный и рекуррентный.

1. Последовательность задана аналитически, если задана формула ее n -го члена:

y n = f (n ).

Пример. y n = 2n – 1 последовательность нечетных чисел: 1, 3, 5, 7, 9, …

2. Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.

Пример 1. «Все члены последовательности равны 1». Это значит, речь идет о стационарной последовательности 1, 1, 1, …, 1, ….

Пример 2. «Последовательность состоит из всех простых чисел в порядке возрастания». Таким образом, задана последовательность 2, 3, 5, 7, 11, …. При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.

3. Рекуррентный способ задания последовательности состоит в том, что указывается правило, позволяющее вычислить n -й член последовательности, если известны ее предыдущие члены. Название рекуррентный способ происходит от латинского слова recurrere – возвращаться. Чаще всего в таких случаях указывают формулу, позволяющую выразить n -й член последовательности через предыдущие, и задают 1–2 начальных члена последовательности.

Пример 1. y 1 = 3; y n = y n –1 + 4, если n = 2, 3, 4,….

Здесь y 1 = 3; y 2 = 3 + 4 = 7; y 3 = 7 + 4 = 11; ….

Можно видеть, что полученную в этом примере последовательность может быть задана и аналитически: y n = 4n – 1.

Пример 2. y 1 = 1; y 2 = 1; y n = y n –2 + y n –1 , если n = 3, 4,….

Здесь: y 1 = 1; y 2 = 1; y 3 = 1 + 1 = 2; y 4 = 1 + 2 = 3; y 5 = 2 + 3 = 5; y 6 = 3 + 5 = 8;

Последовательность, составленную в этом примере, специально изучают в математике, поскольку она обладает рядом интересных свойств и приложений. Ее называют последовательностью Фибоначчи – по имени итальянского математика 13 в. Задать последовательность Фибоначчи рекуррентно очень легко, а аналитически – очень трудно. n -е число Фибоначчи выражается через его порядковый номер следующей формулой .

На первый взгляд, формула для n -го числа Фибоначчи кажется неправдоподобной, так как в формуле, задающей последовательность одних только натуральных чисел, содержатся квадратные корни, но можно проверить «вручную» справедливость этой формулы для нескольких первых n .

Свойства числовых последовательностей.

Числовая последовательность – частный случай числовой функции, поэтому ряд свойств функций рассматриваются и для последовательностей.

Определение. Последовательность {y n } называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y 1 y 2 y 3 y n y n +1

Определение.Последовательность {y n } называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y 1 > y 2 > y 3 > … > y n > y n +1 > … .

Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Пример 1. y 1 = 1; y n = n 2 – возрастающая последовательность.

Таким образом, верна следующая теорема (характеристическое свойство арифметической прогрессии). Числовая последовательность является арифметической тогда и только тогда, когда каждый ее член, кроме первого (и последнего в случае конечной последовательности), равен среднему арифметическому предшествующего и последующего членов.

Пример. При каком значении x числа 3x + 2, 5x – 4 и 11x + 12 образуют конечную арифметическую прогрессию?

Согласно характеристическому свойству, заданные выражения должны удовлетворять соотношению

5x – 4 = ((3x + 2) + (11x + 12))/2.

Решение этого уравнения дает x = –5,5. При этом значении x заданные выражения 3x + 2, 5x – 4 и 11x + 12 принимают, соответственно, значения –14,5, –31,5, –48,5. Это – арифметическая прогрессия, ее разность равна –17.

Геометрическая прогрессия.

Числовую последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q , называют геометрической прогрессией, а число q – знаменателем геометрической прогрессии.

Таким образом, геометрическая прогрессия – это числовая последовательность {b n }, заданная рекуррентно соотношениями

b 1 = b , b n = b n –1 q (n = 2, 3, 4…).

(b и q – заданные числа, b ≠ 0, q ≠ 0).

Пример 1. 2, 6, 18, 54, … – возрастающая геометрическая прогрессия b = 2, q = 3.

Пример 2. 2, –2, 2, –2, … геометрическая прогрессия b = 2, q = –1.

Пример 3. 8, 8, 8, 8, … геометрическая прогрессия b = 8, q = 1.

Геометрическая прогрессия является возрастающей последовательностью, если b 1 > 0, q > 1, и убывающей, если b 1 > 0, 0 q

Одно из очевидных свойств геометрической прогрессии состоит в том, что если последовательность является геометрической прогрессией, то и последовательность квадратов, т.е.

b 1 2 , b 2 2 , b 3 2 , …, b n 2,… является геометрической прогрессией, первый член которой равен b 1 2 , а знаменатель – q 2 .

Формула n- го члена геометрической прогрессии имеет вид

b n = b 1 q n– 1 .

Можно получить формулу суммы членов конечной геометрической прогрессии.

Пусть дана конечная геометрическая прогрессия

b 1 , b 2 , b 3 , …, b n

пусть S n – сумма ее членов, т.е.

S n = b 1 + b 2 + b 3 + … + b n .

Принимается, что q № 1. Для определения S n применяется искусственный прием: выполняются некоторые геометрические преобразования выражения S n q .

S n q = (b 1 + b 2 + b 3 + … + b n –1 + b n )q = b 2 + b 3 + b 4 + …+ b n + b n q = S n + b n q b 1 .

Таким образом, S n q = S n + b n q – b 1 и, следовательно,

Это формула суммы n членов геометрической прогрессии для случая, когда q ≠ 1.

При q = 1 формулу можно не выводить отдельно, очевидно, что в этом случае S n = a 1 n .

Геометрической прогрессия названа потому, что в ней каждый член кроме первого, равен среднему геометрическому предыдущего и последующего членов. Действительно, так как

b n = b n- 1 q;

b n = b n+ 1 /q,

следовательно, b n 2= b n– 1 b n+ 1 и верна следующаятеорема(характеристическое свойство геометрической прогрессии):

числовая последовательность является геометрической прогрессией тогда и только тогда, когда квадрат каждого ее члена, кроме первого (и последнего в случае конечной последовательности), равен произведению предыдущего и последующего членов.

Предел последовательности.

Пусть есть последовательность {c n } = {1/n }. Эту последовательность называют гармонической, поскольку каждый ее член, начиная со второго, есть среднее гармоническое между предыдущим и последующим членами. Среднее геометрическое чисел a и b есть число

В противном случае последовательность называется расходящейся.

Опираясь на это определение, можно, например, доказать наличие предела A = 0 у гармонической последовательности {c n } = {1/n }. Пусть ε – сколь угодно малое положительное число. Рассматривается разность

Существует ли такое N , что для всех n ≥ N выполняется неравенство 1/N ? Если взять в качестве N любое натуральное число, превышающее 1, то для всех n ≥ N выполняется неравенство 1/n ≤ 1/N ε , что и требовалось доказать.

Доказать наличие предела у той или иной последовательности иногда бывает очень сложно. Наиболее часто встречающиеся последовательности хорошо изучены и приводятся в справочниках. Имеются важные теоремы, позволяющие сделать вывод о наличии предела у данной последовательности (и даже вычислить его), опираясь на уже изученные последовательности.

Теорема 1. Если последовательность имеет предел, то она ограничена.

Теорема 2. Если последовательность монотонна и ограничена, то она имеет предел.

Теорема 3. Если последовательность {a n } имеет предел A , то последовательности {ca n }, {a n + с} и {| a n |} имеют пределы cA , A + c , |A | соответственно (здесь c – произвольное число).

Теорема 4. Если последовательности {a n } и {b n } имеют пределы, равные A и B pa n + qb n } имеет предел pA + qB .

Теорема 5. Если последовательности {a n } и {b n }имеют пределы, равные A и B соответственно, то последовательность {a n b n } имеет предел AB.

Теорема 6. Если последовательности {a n } и {b n } имеют пределы, равные A и B соответственно, и, кроме того, b n ≠ 0 и B ≠ 0, то последовательность {a n / b n } имеет предел A/B .

Анна Чугайнова

Урок № 32 Дата ____________

Алгебра

Класс: 9 «Б»

Тема: « Числовая последовательность и способы её задания».

Цель урока: учащиеся должны знать, что такое числовая последовательность; способы задания числовой последовательности; уметь различать различные способы задания числовых последовательностей.

Дидактические материалы: раздаточный материал, опорные конспекты.

Технические средства обучения: презентация по теме «Числовые последовательности».

Ход урока.

1.Организационный момент.

2.Постановка целей урока.

Сегодня на уроке вы, ребята, узнаете:

    Что такое последовательность?

    Какие виды последовательностей существуют?

    Как задаётся числовая последовательность?

    Научитесь записывать последовательность с помощью формулы и множества ее элементов.

    Научитесь находить члены последовательности.

3.Работа над изучаемым материалом.

3.1. Подготовительный этап.

Ребята, давайте проверим ваши логические способности. Я называю несколько слов, а вы должны продолжить:

–понедельник, вторник,…..

– январь, февраль, март…;

– Глебова Л, Гановичев Е, Дряхлов В, Ибраева Г,…..(список класса);

–10,11,12,…99;

Из ответов ребят делается вывод, что вышеназванные задания – это последовательности, то есть какой-то упорядоченный ряд чисел или понятий, когда каждое число или понятие стоит строго на своем месте, и, если поменять местами члены, то последовательность нарушится (вторник, четверг, понедельник – это просто перечисление дней недели). Итак, тема урока – числовая последовательность.

3.1. Объяснение нового материала. (Демонстрационный материал)

Анализируя ответы учащихся, дать определение числовой последовательности и показать способы задания числовых последовательностей.

(Работа с учебником с. 66 – 67)

Определение 1. Функцию y = f(x), xN называют функцией натурального аргумента или числовой последовательностью и обозначают: y = f(n) или y 1 , y 2 , y 3 , ..., y n , ... или (y n).

В данном случае независимая переменная – натуральное число.

Чаще всего последовательности будем обозначать так: (а n ), (b n ), (с n ) и т.д.

Определение 2. Члены последовательности .

Элементы, образующие последовательность, называются членами последовательности.

Новые понятия: предыдущий и последующий член последовательности,

а 1 …а п. (1-ый и п-ый член последовательности)

Способы задания числовой последовательности.

    Аналитический способ.

Любой n-й элемент последовательности можно определить с помощью формулы.(демонстрационный материал)

Разобрать примеры

Пример 1. Последовательность чётных чисел: y = 2n.

Пример 2. Последовательность квадрата натуральных чисел: y = n 2 ;

1, 4, 9, 16, 25, ..., n 2 , ... .

Пример 3. Стационарная последовательность: y = C;

C, C, C, ...,C, ... .

Частный случай: y = 5; 5, 5, 5, ..., 5, ... .

Пример 4 . Последовательность y = 2 n ;

2, 2 2 , 2 3 , 2 4 , ..., 2 n , ... .

    Словесный способ.

Правила задания последовательности описываются словами, без указания формул или когда закономерности между элементами последовательности нет.

Пример 1. Приближения числа π.

Пример 2. Последовательность простых чисел: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, .... .

Пример 3. Последовательность чисел делящихся на 5.

Пример 2. Произвольный набор чисел: 1, 4, 12, 25, 26, 33, 39, ... .

Пример 3. Последовательность чётных чисел 2, 4, 6, 8, 10, 12, 14, 16, ... .

    Рекуррентный способ.

Рекуррентный способ заключается в том, что указывается правило, позволяющее вычислить n-й член последовательности, если указаны ее несколько первых членов (как минимум один первый член) и формула, позволяющая по предыдущим членам вычислить ее следующий член. Термин рекуррентный произошло от латинского слова recurrere , что означает возвращаться . При вычислении членов последовательности по этому правилу мы как бы все время возвращаемся назад, вычисляя следующий член на основе предыдущего. Особенностью этого способа является то, что для определения, например, 100-го члена последовательности необходимо сначала определить все предыдущие 99 членов.

Пример 1 . a 1 =a, a n+1 =a n +0,7. Пусть a 1 =5, тогда последовательность будет иметь вид: 5; 5,7; 6,4; 7,1; 7,8; 8,5; ... .

Пример 2. b 1 = b, b n +1 = ½ b n . Пусть b 1 =23, тогда последовательность будет иметь вид: 23; 11,5; 5,75; 2,875; ... .

Пример 3. Последовательность Фибоначчи. Эта последовательность легко задаётся рекуррентно: y 1 =1, y 2 =1,y n -2 +y n -1 , если n=3, 4, 5, 6, ... . Она будет иметь вид:

1, 1,2, 3, 5, 8, 13, 21, 34, 55, ... . (п -ый член этой последовательности равен сумме двух предыдущих членов)

Аналитически последовательность Фибоначчи задать трудно, но возможно. Формула, по которой определяется любой элемент этой последовательности, выглядит так:

Дополнительная информация:

Итальянский купец Леонардо из Пизы (1180-1240), более известный под прозвищем Фибоначчи был значительным математиком средневековья. С помощью данной последовательности Фибоначчи определил число φ (фи); φ=1,618033989.

    Графический способ

Члены последовательности можно изображать точками на координатной плоскости. Для этого по горизонтальной оси откладывают номер, а по вертикальной – значение соответствующего члена последовательности.

Для закрепления способов задания прошу привести несколько примеров последовательностей, которые задаются или словесным, или аналитическим, или рекуррентным способом.

Виды числовых последовательностей

( На перечисленных ниже последовательностях отрабатываются виды последовательностей ).

Работа с учебником стр.69-70

1) Возрастающая – если каждый член меньше следующего за ним, т.е. a n a n +1.

2) Убывающая – если каждый член больше следующего за ним, т.е. a n a n +1 .

3) Бесконечная.

4) Конечная.

5) Знакочередующаяся.

6) Постоянная (стационарная).

Возрастающую или убывающую последовательность называют монотонными.

    3; 6; 9; 12; 15; 18;…

  1. –1; 2; –3; 4; –5; …

    1, 4, 9, 16 ,…

    –1; 2; –3; 4; –5; 6; …

    3; 3; 3; 3; …; 3; … .

Работа с учебником: выполним устно №150, 159 стр.71, 72

3.2. Закрепление нового материала. Решение задач.

Для закрепления знаний выбираются примеры в зависимости от уровня подготовки учащихся.

Пример 1. Составить возможную формулу n-го элемента последовательности (y n):

а) 1, 3, 5, 7, 9, 11, ...;

б) 4, 8, 12, 16, 20, ...;

Решение.

а) Это последовательность нечётных чисел. Аналитически эту последовательность можно задать формулой y = 2n+1.

б) Это числовая последовательность, у которой последующий элемент больше предыдущего на 4. Аналитически эту последовательность можно задать формулой y = 4n.

Пример 2 . Выписать первые десять элементов последовательности, заданной рекуррентно: y 1 =1, y 2 =2, y n = y n -2 +y n -1 , если n = 3, 4, 5, 6, ... .

Решение.

Каждый последующий элемент этой последовательности равен сумме двух предыдущих элементов.

Пример 3. Последовательность (y n) задана рекуррентно: y 1 =1, y 2 =2,y n =5y n -1 - 6y n -2 . Задать эту последовательность аналитически.

Решение.

Найдём несколько первых элементов последовательности.

y 3 =5y 2 -6y 1 =10-6=4;

y 4 =5y 3 -6y 2 =20-12=8;

y 5 =5y 4 -6y 3 =40-24=16;

y 6 =5y 5 -6y 4 =80-48=32;

y 7 =5y 6 -6y 5 =160-96=64.

Получаем последовательность: 1; 2; 4; 8; 16; 32; 64; ..., которую можно представить в виде

2 0 ; 2 1 ; 2 2 ; 2 3 ; 2 4 ; 2 5 ; 2 6 ... .

n = 1; 2; 3; 4; 5; 6; 7... .

Анализируя последовательность, получаем следующую закономерность: y = 2 n -1 .

Пример 4. Дана последовательность y n =24n+36-5n 2 .

а) Сколько в ней положительных членов?

б) Найти наибольший элемент последовательности.

в) Есть в данной последовательности наименьший элемент?

Данная числовая последовательность – это функция вида y = -5x 2 +24x+36, где x

а) Найдём значения функции, при которых -5x 2 +24x+360. Решим уравнение -5x 2 +24x+36=0.

D = b 2 -4ac=1296, X 1 =6, X 2 =-1,2.

Уравнение оси симметрии параболы y = -5x 2 +24x+36 можно найти по формуле x=, получим: x=2,4.

Неравенство -5x 2 +24x+360 выполняется при -1,2 В этом интервале находится пять натуральных чисел (1, 2, 3, 4, 5). Значит в заданной последовательности пять положительных элементов последовательности.

б) Наибольший элемент последовательности определяется методом подбора и он равен y 2 =64.

в) Наименьшего элемента нет.

3.4.Задания для самостоятельной работы

Бесконечной числовой последовательностью называется числовая функция, определенная на множестве всех натуральных чисел. Общий вид: а 1 ; а 2 ; а 3 ; … а n ; … (или (а n)).

Способы задания последовательностей:

1. Последовательность может быть задана при помощи формулы, указывающей, как по номеру n члена последовательности вычислить его значение а.

Последовательность, у которой все члены принимают равные между собой значения, называется постоянной последовательностью.

2. Реккурентный (индуктивный) способ: он состоит в том, что указывается правило (обычно это формула), позволяющая вычислить общий член последовательности через предыдущие, и задается несколько начальных членов последовательности. Эта формула называется реккурентным соотношением.

3. Последовательность может быть задана словесно, т.е. описанием ее членов.

При изучении последовательностей удобно использовать их геометрическое изображение. Для этого используют в основном 2 способа:

1. Т.к. последовательность (а n) есть функция, заданная на N, то ее можно изобразить как график этой функции с координатами точек (n; а n).

2. Члены последовательности (а n) можно изобразить точками х=а n .

Ограниченные и неограниченные последовательности.

Последовательность (а n) называется ограниченной, если существуют числа M и m, такие, что имеет место неравенство m≤a n ≤M. В противном случае она называется неограниченной.

Существует 3 вида неограниченных последовательностей:

1. Для нее существует m и не существует M – в таком случае она ограниченная снизу и неограниченная сверху.

2. Для нее не существует m и существует M – в таком случае она неограниченная снизу и ограниченная сверху.

3. Для нее не существует ни m, ни М – в таком случае она не ограниченная ни снизу, ни сверху.

Монотонные последовательности.

К монотонным последовательностям относятся убывающие, строго убывающие, возрастающие, строго возрастающие последовательности.

Последовательность (а n) называется убывающей, если каждый предыдущий член не меньше последующего: а n +1 ≤a n .



Последовательность (а n) называется строго убывающей, если каждый предыдущий член строго больше последующего: а n >a 2 >a 3 >…>a n +1 >…

Последовательность (а n) называется возрастающей, если каждый последующий член не меньше предыдущего: а n ≤a n +1 .

Последовательность называется строго возрастающей, если каждый последующий член строго больше предыдущего: а 1

Предел числовой последовательности. Основные теоремы о пределах.

Число а называется пределом последовательности (а n), если для каждого положительного числа ε найдется такое натуральное число N, что для любого n>N выполняется неравенство:

|a n – a| < ε.

В этом случае пишут: lim a n = a , или a n ->a при n->∞.

Последовательность, имеющая предел, называется сходящейся, а не имеющая предела – расходящейся.

Если последовательность имеет предел, то она ограниченная.

Всякая сходящаяся последовательность имеет только один предел.

Последовательность называется бесконечно малой, если ее предел равен нулю.

Для того, чтобы число а было пределом последовательности (а n), необходимо и достаточно, чтобы а n имело представление а n =а+α n , где (α n) - бесконечно малая последовательность.

Сумма двух бесконечно малых последовательностей есть бесконечно малая последовательность.

Произведение бесконечно малой последовательности на ограниченную последовательность есть бесконечно малая последовательность.

Теоремы о пределах:

1. О пределе суммы: Если последовательность (а n) и (в n) сходятся, то последовательность (а n + в n) также сходится и: lim (а n + в n) = lim а n + lim в n .

n ->∞ n ->∞ n ->∞

2. О пределе произведения: Если последовательности (а n) и (в n) сходятся, то последовательность (а n ∙ в n) также сходится и:

lim (а n ∙ в n) = lim а n ∙ lim в n .

n ->∞ n ->∞ n ->∞

Следствие 1: Постоянный множитель можно выносить за знак предела:

lim (са n) = с ∙ lim а n

n ->∞ n ->∞

3. Если последовательности (а n) и (в n) сходятся, то последовательность (а n /в n) также сходится и: lim (а n / в n) = (lim а n)/ (lim в n).

n ->∞ n ->∞ n ->∞

Функция. Способы задания функции.

Если каждому элементу х по какому-либо правилу f поставлен в соответствие элемент у, единственный для каждого х, то говорят, что на множестве А задана функция f со значением из множества В, и пишут: f:А->В, или у=f (х).

Пусть задана функция у=f (х). Тогда х назыв. аргументом или независимой переменной, а у – значением функции или зависимой переменной.

Множество А называют областью определения функции, а множество всех у, поставленных в соответствие хотя бы одному х – множеством значений функции. Область определения функции называют также областью значений аргумента, или областью изменения независимой переменной..

Способы задания функции:

1. Табличный способ.

2. Аналитический способ: при таком способе указывается область определения функции (множество А), и формулируется закон (задается формула), по которому каждому х сопоставляется соответствующий у.

3. Способ словесного описания.

4. Геометрический (графический) способ: задать функцию графически – значит изобразить ее график.