Основы экологии. Математическая экология. Цели и задачи современной экологии

Экология математическая

Введение. Общесистемный подход к моделированию экологических систем.

Гипотезы Вольтерра о типах взаимодействий в экосистемах.

Модели экологических сообществ.

Принципы лимитирования в экологии.

Закон толерантности и функции отклика.

Модели водных экосистем.

Модели продукционного процесса растений.

Модели лесных сообществ.

Оценка загрязнения атмосферы и поверхности земли.

Глобальные модели.

Экология - развивающаяся междисциплинарная область знаний, включающую представления практически всех наук о взаимодействиях живых организмов, включая человека, с окружающей средой. До середины 20 века экология представляла собой одну из биологических дисциплин, а именно, науку о взаимодействии организмов с окружающей средой. Современная экология наряду с этим включает в себя науку и практические методы контроля за состоянием окружающей среды - мониторинг, охрану окружающей среды, учение о биогеоценозах и аторопологических воздействиях на природные экосистемы, эколого-экономические и эколого-социальные аспекты. Все это определяет и предмет математической экологии, объединяющей математически модели и методы, используемые при решении проблем экологии.

Фундаментом математической экологии является математическая теория динамики популяций (См. Статью "Популяций динамика "), в которой фундаментальные биологические представления о динамике численности видов животных, растений, микроорганизмов и их взаимодействии формализованы в виде математических структур, в первую очередь, систем дифференциальных, интегро-дифференциальных и разностных уравнений.

Любая экосистема состоит из нелинейно взаимодействующих подсистем, которые можно упорядочить в некоторую иерархическую структуру. По мере объединения компонентов, или подмножеств, в более крупные функциональные единицы, у этих новых единиц возникают свойства, отсутствующие у составляющих ее компонентов. Такие качественно новые "эмерджентные" свойства экологического уровня или экологической единицы не являются простой суммой свойств компонентов. Следствием является невозможность изучения динамики сложных экосистем путем их иерархического расчленения на подсистемы и последующего изолированного изучения этих подсистем, поскольку при этом неизбежно утрачиваются свойства, определяемые целостностью изучаемой системы.

Воздействие внешних факторов на экологическую систему также нельзя рассматривать независимо друг от друга, так как комбинированное действие нельзя свести к сумме действующих факторов. Тем более сложной задачей является количественное описание реакции сложной системы на комплексное воздействие различных факторов.

Все эти обстоятельства приводят к невозможности описать сложные экосистемы с помощью простых редуцированных "механизменных" моделей. Необходимы либо сложные имитационные модели, объединяющие в одну сложную систему на модельном уровне знания об элементах системы и типах их взаимодействия, либо упрощенные интегрированные модели типа "воздействие - отклик", интегрирующие данные большого числа наблюдений над экосистемой.

Имитационные компьютерные модели включают представления о компонентах систем и их взаимосвязях как в виде собственно математических объектов: формул, уравнений, матриц, логических процедур, так и в виде графиков, таблиц, баз данных, оперативной информации экологического мониторинга. Такие многомерные модели позволяют объединить разнородную информацию об экологической или эколого-экономической системе, "проигрывать" различные сценарии развития и вырабатывать на модели оптимальные стратегии управления, что невозможно делать на реальной системе в силу ее уникальности и ограниченности времени.

Имитационный подход, также как и моделирование экосистем с помощью функций отклик, требуют высоко развитой вычислительной техники, поэтому математическая экология как развитая и практически используемая наука получила распространение только в последние десятилетия 20 века. Широкое применение математического аппарата стимулировало развитие теоретической экологии . Построение математической моделей требует упорядочивания и классификации имеющейся информации об экосистемах, приводит к необходимости планировать систему сбора данных и позволяет объединить на содержательном уровне совокупность физических, химических и биологических сведений и представлений об отдельных происходящих в экосистемах процессах.

Общесистемный подход к моделированию экологических систем

При построении моделей экосистем применяют методы общесистемного анализа. В первую очередь это - выделение из системы отдельных структурных элементов, таких как живые и косные компоненты, среди живых - трофические уровни, виды, возрастные или половые группы, взаимодействие которых и будет определять поведение всей системы. Другой важный элемент - установление характера процессов, в которых участвует каждый элемент (процессы размножения и роста, взаимодействия типа хищничества, конкуренции и т.д.) Часто в экологическом моделировании используются балансовые компартментальные модели, когда рассматриваются потоки вещества и энергии между составляющими модель компартментами, содержание "вещества" в каждом из которых и представляет собой отдельную переменную системы.

Необходимость описывать экологические взаимодействия послужила толчком для развития системных исследований. По словам одного из иснователей общей теории систем Людвига фон Берталанфи "работы Вольтерра, Лотки, Гаузе и других по теории популяций принадлежат к классическим трудам общей теории систем. В них впервые была продемонстрирована возможность развития концептуальных моделей для таких явлений как борьба за существование, которые могут быть подвергнуты эмпирической проверке." (Л.Берталанфи.Общая теория систем. Критический обзор. 1969)

Широко используется принцип изоморфизма, позволяющий сходными математическими уравнениями описывать системы, разные по своей природе, но одинаковые по структуре и типу взаимодействия между элементами, их составляющими.

Работа с имитационной моделью требует знания величин параметров модели, которые могут быть оценены только из наблюдения и эксперимента. Часто приходится разрабатывать новые методики наблюдений и экспериментов с целью установления факторов и взаимосвязей, знание которых позволяет выявить слабые места гипотез и допущений, положенных в основу модели. Весь процесс моделирования - от построения моделей до проверки предсказанных с ее помощью явлений и внедрения полученных результатов в практику - должен быть связан с тщательно отработанной стратегией исследования и строгой проверкой используемых в анализе данных.

Это положение, справедливое для математического моделирования вообще, особенно важно для такой сложной науки как экология, имеющей дело с разнообразными взаимодействиями между огромным множеством организмов и средой их обитания. Почти все эти взаимодействия динамические в том смысле, что они зависят от времени и постоянно меняются, причем как правило включают в себя положительные и отрицательные обратные связи, то есть являются нелинейными. Сложность экосистем усугубляется с изменчивостью самих живых организмов, которая может проявляться и при взаимодействии организмов друг с другом (например, в процессе конкуренции или хищничества), и в реакции организма на изменения окружающей среды. Эта реакция может выражаться в изменении скорости роста и воспроизведения и в различной способности к выживанию в сильно различающихся условиях. К этому добавляются происходящие независимо изменения таких факторов среды как климат и характер мест обитания. Поэтому исследование и регулирование экологических процессов представляет собой исключительно сложную задачу.

Экспериментальное и натурное наблюдение экологических процессов осложняется их длительностью. Например, исследования в области земледелия и садоводства связаны главным образом с определением урожайности, а урожай собирают раз в год, так что один цикл эксперимента занимает год и более. Чтобы найти оптимальное количество удобрений и провести другие возможные мероприятия по окультуриванию, может понадобиться несколько лет, особенно когда необходимо рассматривать взаимодействия между экспериментальными результатами и погодой. То же касается процессов, проходящих в аквакультуре, например, при разработке оптимальных режимов содержания рыбоводных прудов. В лесоводстве из-за длительности круговорота урожаев древесины самый непродолжительный эксперимент занимает 25 лет, а долговременные эксперименты могут длиться от 40 до 120 лет. Аналогичные временные масштабы необходимы для проведения исследований с другими природными ресурсами. Поэтому математическое моделирование является необходимым инструментом в экологии, природопользовании и управлении природными ресурсами.

Классы задач и математический аппарат.

Современные математические модели в экологии можно разбить на три класса. Первый - описательные модели: регрессионные и другие эмпирически установленные количественные зависимости, не претендующие на раскрытие механизма описываемого процесса. Примеры таких моделей приведены в (Биология математическая ). Они применяются обычно для описания отдельных процессов и зависимостей и включаются как фрагменты в имитационные модели. Второй - модели качественные, которые строятся с целью выяснения динамического механизма изучаемого процесса, способные воспроизвести наблюдаемые динамические эффекты в поведении систем, такие, например, как колебательный характер изменения биомассы или образование неоднородной в пространстве структуры. Обычно эти модели не слишком громоздкие, поддающиеся качественному исследованию с применением аналитических и компьютерных методов. Третий класс - имитационные модели конкретных экологических и эколого-экономических систем, учитывающие всю имеющуюся информацию об объекте. Цель построения таких моделей - детальное прогнозирование поведения сложных систем или решение оптимизационной задачи их эксплуатации.

Чем лучше изучен сложная экологическая система, тем более полно может быть обоснована его математическая модель. При условии тесной связи наблюдений, экспериментального исследования и математического моделирования математическая модель может служить необходимым промежуточным звеном между опытными данными и основанной на них теорией изучаемых процессов. Для решения практических задач можно использовать модели всех трех типов. При этом особенно важны вопросы идентифицируемости (соответствия реальной системе) и управляемости таких моделей.

Обычно при математическом моделировании задача состоит в том, чтобы получить обоснованный прогноз кинетики компонентов экологической системы. При этом делаются различные исходные предположения и преследуются соответствующие цели при изучении моделей, которые один из пионеров математической биологии А.А. Ляпунов сформировал следующим образом (Ляпунов, 1968, 1972).

А . Биологические характеристики компонентов неизменны, так же как и взаимоотношения между ними. Система считается однородной в пространстве. Изучаются изменения во времени численности (биомассы) компонентов системы.

Б. При сохранении гипотезы однородности вводится предположение о закономерном изменении системы отношений между компонентами. Это может соответствовать либо закономерному изменению внешних условий (например, сезонному), либо заданному характеру эволюций форм, образующих систему. При этом по-прежнему изучается кинетика численности компонентов.

Аппаратом для изучения этих двух классов задач служат системы обыкновенных дифференциальных и дифференциально-разностных уравнений с постоянными (А) и переменными (Б) коэффициентами.

В. Объекты считаются разнородными по своим свойствам и подверженными действию отбора. Предполагается, что эволюция форм определяется условиями существования системы. В этих условиях изучается, с одной стороны, кинетика численности компонентов, с другой - дрейф характеристик популяций. При решении таких задач используют аппарат теории вероятностей. К ним относятся многие задачи популяционной генетики.

Г. Отказ от территориальной однородности и учет зависимости усредненных концентраций от координат. Здесь возникают вопросы, связанные с пространственным перераспределением живых и косных компонентов системы. Например, численность (биомасса) видов - гидробионтов меняется с изменением глубины водоема. Для описания таких систем необходимо привлечение аппарата дифференциальных уравнений в частных производных. В имитационных моделях часто вместо непрерывного пространственного описания применяют разбиение всей системы на несколько пространственных блоков.

Задачи пространственной организации экологических систем представляет особый интерес. До последнего времени предполагали, что пространственная неоднородность распространения видов связана в основном с ландшафтно-климатическими факторами. В последние годы все более глубоко осознается тот факт, что сама пространственная структурированность экологических систем может быть обусловлена не только исходно существующей пространственной неоднородностью, но и спецификой локальных взаимодействий составляющих экосистему популяций между собой и с косными компонентами среды. Возникающие и активно поддерживающиеся таким образом пространственные структуры называют экологическими диссипативными структурами.

Биологические популяции и сообщества заведомо являются энергетически "проточными", т.е. далекими от равновесия системами. колебательные режимы в таких системах давно известны как в лабораторных исследованиях, так и из полевых наблюдений и неплохо исследованы теоретически. Экологические системы подвержены влиянию периодических и нерегулярных геофизических воздействий, их биологические составляющие обладают эндогенными биологическими ритмами (биологические часы). В настоящее время активно решаются проблемы связи между колебательными режимами в локальных (точечных) системах и пространственно-временными структурами в экологических системах. Как и в физических и химических системах, здесь решающую роль играет характер нелинейных взаимодействий, определяющих пути массо- и энергообмена в сложной системе.

Без учета пространственной неоднородности невозможно оценить влияние подвижности особей на регуляцию численности популяций, роль перемещений в синхронизации или затухании колебаний численности, которые имели бы место в отсутствие пространственных перемещений, как направленных, так и случайных - типа диффузии. Современный математический аппарат позволяет выяснить эти вопросы, а также установить связь локальной динамики популяций с крупномасштабными пространственными структурами и долговременной приспособленностью видов и видовых сообществ.

Гипотезы Вольтерра о типах взаимодействий в экосистемах

Первые модели динамики популяций -это ряд Фибоначчи (1202), модель экспоненциального роста (1798) Мальтуса, модель ограниченного роста Ферхюльста (1838) (См. Популяций динамика ). К настоящему времени имеется много самых разнообразных дискретных и непрерывных детерминистических и стохастических моделей. В начале 20 века появились первые модели взаимодействия видов. Классической книгой современной математической экологии является труд В.Вольтерра "Математическая теория борьбы за существование" (Volterra, 1931; Вольтерра, 1976). Развитие теоретической экологии в последующие десятилетия полностью подтвердило глубину и правильность его идей.

Системы, изученные Вольтерра, состоят из нескольких биологических видов и запаса пищи, который используют некоторые из рассматриваемых видов. О компонентах системы формулируются следующие допущения.

1.Пища либо имеется в неограниченном количестве, либо ее поступление с течением времени жестко регламентировано. 2. Особи каждого вида отмирают так, что в единицу времени погибает постоянная доля существующих особей. 3. Хищные виды поедают жертвы, причем в единицу времени количество съеденных жертв всегда пропорционально вероятности встречи особей этих двух видов, т.е. произведению количества хищников на количество жертв. 4. Если имеются пища в неограниченном количестве и несколько видов, которые способны ее потреблять, то доля пищи, потребляемая каждым видом в единицу времени, пропорциональна количеству особей этого вида, взятого с некоторым коэффициентом, зависящим от вида (модели межвидовой конкуренции).5. Если вид питается пищей, имеющейся в неограниченном количестве, прирост численности вида за единицу времени пропорционален численности вида. 6. Если вид питается пищей, имеющейся в ограниченном количестве, то его размножение регулируется скоростью потребления пищи, т.е. за единицу времени прирост пропорционален количеству съеденной пищи.

Перечисленные гипотезы позволяют описывать сложные живые системы при помощи систем обыкновенных дифференциальных уравнений, в правых частях которых имеются суммы линейных и билинейных членов. Как известно, такими уравнениями описываются и системы химических реакций. Такое сходство уравнений в химических и экологических моделях позволяет применить для математического моделирования кинетики популяций те же методы исследований, что и для систем химических реакций. Вольтерровские уравнения могут быть получены не только из локального "принципа встреч", ведущего свое происхождение из статистической физики, но и исходя из баланса масс каждого из компонентов биогеоценоза и энергетических потоков между этими компонентами.

Уравнения Вольтерра послужили отправной точкой для создания большинства динамических моделей в экологии вплоть до сегодняшнего дня. Вольтерра изучал сосуществование видов при более широких гипотезах, в частности при изменении внешних условий и с учетом явления последействия, рассмотрение которого приводит к интегро-дифференциальным уравнениям.

Модели экологических сообществ

Природные сообщества обладают сложным строением: несколькими уровнями, между которыми существуют разнообразные трофические (пищевые) и топические (не связанные с цепью питания) связи. Структура трофической пирамиды может быть весьма различной в зависимости от климата, почвы, ландшафта, длительности существования биогеоценоза и других факторов.

При анализе биологических сообществ принято строить пищевые или трофические сети, т.е. графы , вершины которых соответствуют видам, входящим в сообщество, а ребра указывают трофические связи между видами. Обычно такие графы - ориентированные: направление дуги между двумя вершинами указывает на тот из видов, который является потребителем другого, т.е. направление дуги совпадает с направлением потока вещества или биомассы в системе. (рис.1)

Рис.1. Пример двухвозрастной трофической пирамиды.

Часто трофические графы изображают в виде трофических пирамид. В такой пирамиде выделяются трофические уровни - группы видов, между которыми невозможны прямые пищевые связи. Уровней может быть несколько: виды, принадлежащие одному уровню, либо находятся в состоянии конкуренции за жизненные ресурсы, либо совместно используют ресурс. На рис. 1 изображен пример двухуровневой трофической пирамиды, взятой из книги Ю. Одума "Основы экологии" (1975). Из 15 видов насекомых (верхний уровень) 5 видов питаются только на одном из двух видов растений, 2 вида - только на втором, в рацион остальных 8 видов насекомых входят оба вида растений. Основные трофические уровни наземных сообществ - это продуценты или автотрофы (растения, аккумулирующие энергию света и вещества субстрата) и гетеротрофы: первичные консументы (травоядные) и вторичные консументы (хищники, питающиеся травоядными). В некоторых случаях трофическая цепь содержит большее число уровней: например, растения служат пищей насекомым, насекомые поедаются птицами, которые в свою очередь служат пищей более крупным хищным птицам.

Если в структуре сообщества учитывать движение некоторых биогенных элементов и энергии, то в системе обнаруживаются петли обратной связи. Разлагатели (редуценты) - микробы, грибы, бактерии - в процессе своей жизнедеятельности расщепляют сложные органические соединения (экскременты и мертвую органику) на более простые минеральные вещества, необходимые продуцентам. Образование органической биомассы происходит в процессе фотосинтеза с использованием солнечного света из углекислого газа и воды, причем необходимы также элементы, поступающие из почвы: азот, фосфор, калий, магний, железо и многие другие микроэлементы. Общая схема потоков массы и энергии между основными компонентами наземных экосистем изображена на рис. 2.

Рис.2. Общая схема потоков вещества и энергии в экосистеме.

Полную структуру парных взаимодействий между n видами можно изобразить с помощью матрицы S из п п элементов. Элемент (i,j) представляет собой знак +,- или 0 и показывает влияние i -го вида на j-й. Симметричные пары элементов матрицы S указывают на тип парного взаимодействия между видами:

Взаимодействие между видами можно характеризовать и при помощи знакового ориентированного графа, который строится по следующему правилу. Если вид j влияет каким-либо образом на вид i , то проводится ребро и ему приписывается знак этого влияния.

В современной литературе по математической экологии принято считать вольтерровскими моделями сообществ биологических видов системы вида

(1)

где - скорость естественного прироста или смертностиi -го вида в отсутствие всех остальных видов, а знак и абсолютная величина отражают соответственно характер и интенсивность влиянияj- го вида на i -й вид, показатель внутривидового взаимодействия для i -го вида. Мiатрицу Г = , отражающую структуру связей сообщества, называют матрицей сообщества.

С введенной выше знаковой матрицей S она связана соотношением

S = - sign Г.

Гипотеза Вольтерра, на основе которой построена система (1), предполагает локальный принцип описания взаимодействия видов - принцип "встреч", ведущий свое происхождение из статистической физики. Вольтерровские уравнения могут быть получены из чисто экологических предпосылок.

Рассмотрим сообщество, структура которого изображена на рис.2. Компоненты сообщества разобьем на три основные группы. 1. Продуценты с биомассами (или концентрациями) - это в основном зеленые растения. 2. Консументы с концентрациямиК этой группе отнесем животных, пожирающих другие организмы и разлагателей, расщепляющих мертвую органику на простые вещества, которые используются продуцентами. 3. Субстраты с концентрациямиЭто абиотические вещества (в основном продукты жизнедеятельности консументов), используемые продуцентами.

Составим уравнения, отражающие баланс масс каждого из этих компонентов:

(2)

Здесь - функции рождаемости и смертности продуцентов и консументов; - функция выедания, описывающая скорость потребления биомассыi -го вида-продуцента единицей биомассы j -го вида-консумента; - функция выедания j -го вида r -м (среди консументов); - интенсивность производства k- го субстрата j -м консументом; - интенсивность потребления k- го субстрата i -м продуцентом; - сумма входных и выходных потоков соответствующих компонент. В общем случае все эти функции зависят от параметров внешней среды. Путем преобразования переменных система (2) может быть записана в виде, сходном с уравнениями Вольтерра (1).

Рис.3. Знакоориентированный граф сообщества из трех видов.

Применение этого формализма и его модификаций оказалось особенно успешным при моделировании замкнутых по веществу систем. (Алексеев, 1993). Пример трофической цепи для такой замкнутой системы (например, озерной экосистемы) приведен на рис. 3.

Принципы лимитирования в экологии

В силу сложности процессов в экологической системе необходимо выделить главные факторы, взаимодействие которых качественно определяет судьбу системы. Фактически все модели, включающие описание роста популяций или сообществ, основываются либо на "принципе лимитирующих факторов" (Leibig,1840. Перевод на русский язык: Либих, 1936), либо на "законе совокупного действия факторов", Э.А.Митчерлихf (Mitscherlich, 1909, 1925). Исходно эти принципы были сформулированы для популяций одного вида, однако применяются для описания многовидовых сообществ и экосистем.

Концепция лимитирующих факторов принадлежит немецкому агрохимику Юстусу Либиху, который предложил знаменитый закон минимума:. "Каждое поле содержит одно или несколько питательных веществ в минимуме и одно или несколько других в максимуме. Урожаи находятся в соответствии с этим минимумом питательных веществ".Либих понимал под этим относительный минимум питательного вещества по сравнению с содержанием других веществ. Позже в экологической литературе фактор, находящийся в минимуме, стали называть лимитирующим фактором. Закон "лимитирующего фактора" для фотосинтетических процессов в 1905 г. предложил Ф.Блэкман, а в 1965 г. Н.Д.Иерусалимский сформулировал этот закон для ферментативных процессов. Естественно, что при изменении соотношений факторов, лимитирующий фактор может изменяться.

Для жизни человеку нужны чистый воздух, качественная вода, незараженная почва, растения, энергетические ресурсы и др, но с развитием цивилизации вредное воздействие людей на природу становится угрожающим для нее. Может ли математика помочь экологии?

Наша школа расположена в красивом месте, на опушке леса. Нам очень хочется, чтобы лес был чистым, ухоженным, чтобы в нем всегда слышалось пение птиц, а белки, зайчата радовали глаз. Поэтому, учеников школы волнуют вопросы экологии. Но мне еще нравятся уроки математики и я решил выяснить, как знания по математике могут помочь в вопросах экологии.

Основная часть.

Чистый воздух - залог здоровья и не только на улице, но и в помещении, например, в классе. А каков газовый состав атмосферного воздуха? Для ответа на этот вопрос мне пригодились проценты (азот ≈ 78 %, кислород ≈ 21 %, аргон ≈ 1 %, немного углекислого газа и ряда других газов, природные загрязнители). В помещении количество кислорода уменьшается, а углекислого газа увеличивается. У нас около школы лес, поэтому нам полезно чаще проветривать класс.

По мнению специалистов в результате деятельности человека в атмосферу Земли ежегодно поступает 25,5 млрд тонн оксидов углерода, 190 млн тонн оксидов серы, 65 млн тонн оксидов азота, 1,4 млн тонн хлорфторуглеродов. В последние годы наибольшее количество вредных веществ в атмосферу выбрасывается с выхлопными газами автомобилей, причем их доля постоянно возрастает. Например, в Москве выбросы вредных веществ от автотранспорта превышают 800 тыс. тонн в год, что составляет 70% от общего количества загрязняющих веществ, поступающих в атмосферу города за год.

Вода - основа жизни.

Все мы используем воду, поэтому на нас лежит и ответственность за ее охрану от загрязнения и экономию. Морями и океанами покрыто около 70 % земной поверхности, а на пресную воду приходится всего лишь 2 % от всего объема водных запасов планеты.

Нормы качества питьевой воды содержатся в специальном документе – Государственном стандарте “Вода питьевая”. Этот стандарт качества устанавливает предельно допустимые уровни содержания химических веществ, встречающихся в природных водах или добавляемых к воде в процессе ее обработки. Так, содержание аллюминия не должно превышать 0,5 мг на 1 л воды, бериллия – 0,0002 мг на 1 л, молибдена – 0,25 мг на 1 л, мышьяка – 0,05 мг на 1 л, свинца – 0,03 мг на 1 л, фтора – 0,07 мг на 1 л, полиакриламида – 2 мг на 1 л. Также к группе показателей качества питьевой воды отнесены железо (не более 0,3 мг/л), марганец (не более 0,1 мг/л), медь (не более 0,1 мг/л), полифосфаты (не более 3,5 мг/л), цинк (не более 5 мг/л). Сухой остаток, образующийся после выпаривания воды, не должен превышать 1000 мг/л.

А сколько же нужно человеку воды каждый день? В бытовых целях вода расходуется для питья, приготовления пищи, стирки, мытья, смыва нечистот в канализацию и поливки сада и огорода. Оказалось, что наша семья из 4 человек, расходует в сутки более 500 л воды. Это большой объем. Качественно чистой воды на Земле не хватает. Представьте, если каждый человек сэкономит в день хотя бы 1 л воды, а в мире проживает около 6,8 млрд человек, значит экономия в день 6800000000 л воды по всему миру.

В Ногинске и Ногинском районе проживает 325,1 тыс. человек. Предположим, что большинство из них при чистке зубов держат кран все время открытым, тогда как остальные открывают его только на то время, когда они моют щетку и полощат рот. В среднем эта процедура занимает около 3 минут, а в это время вода течет из крана со скоростью 2 л/мин. Если все жители станут чистить зубы при постоянно открытом кране, то они израсходуют 1950600 л воды за один раз. Но при экономии воды они могут сэкономить 1625500 л воды.

Ученые утверждают, что при использовании современных технологий расходы воды в быту могут быть сокращенй на ⅓, в сельском хозяйстве - вдвое, а в промышленности - почти в 10 раз. БЕРЕГИТЕ ВОДУ!

Почва - наше богатство

Почва обладает плодородием - является наиболее благоприятным субстратом или средой обитания для подавляющего большинства живых существ - микроорганизмов, животных и растений. Показательно также, что по их биомассе почва (суша Земли) почти в 700 раз превосходит океан, хотя на долю суши приходится менее 1/3 земной поверхности. Почву часто называют главным богатством любого государства в мире, поскольку на ней и в ней производится около 90% продуктов питания человечества. Деградация почв сопровождается неурожаями и голодом, приводит к бедности государств, а гибель почв может вызвать гибель всего человечества. В нормальных естественных условиях все процессы, происходящие в почве, находятся в равновесии. Но нередко в нарушении равновесного состояния почвы повинен человек. В результате развития хозяйственной деятельности человека происходит загрязнение, изменение состава почвы и даже ее уничтожение. За неделю только наша семья использует более 10 полиэтиленовых пакетов. Для разложения таких пакетов требуется 15 лет. Если мы безрассудно будем выбрасывать сейчас пакеты, то в течении десятков лет почва будет содержать вредные вещества. Нужно всегда убирать мусор после себя и складывать в специально отведенные для этого места. Большую часть из того, что мы выбрасываем (пластмассы, металлы, стекло, бумага) может быть использована повторно.

Деревья - бесценная часть окружающей среды

Они очищают загрязненный воздух, вырабатывают кислород, очищают воздух от болезнетворных микробов. В лесах находят стол и дом множество видов растений, животных и микроорганизмов.

Продолжительность жизни у различных видов деревьев не одинакова. Осина живет стравнительно недолго – менее 100 лет. Возраст ели может достигать 600 лет. Для сосны, произрастающей в Белых горах восточной Калифорнии, 500 и даже 1000 лет еще не старость. Как и все живое, деревья умирают от возраста и болезней.

А в последние годы площади вырубленных и сгоревших лесов в 7 раз превышают площади территорий, где посадили новые деревья. Оказывается, что лиственный лес в 2 раза лучше очищает воздух от пыли, чем хвойный. Очень хорошо, что около нашей школы много дубов и мы стараемся еще сажать березки. Представьте, если каждый житель нашей страны вырастит за свою жизнь хотя бы одно дерево, то их увеличится на 141, 93 млн деревьев.

В солнечный летний день на лугу около школы можно увидеть много пчел. Эти насекомые «хорошо соображают» в математике. На поперечном срезе ячейки сот имеют шестиугольную форму, которая позволяет получить максимум пространства для хранения меда с минимальной затратой воска.

Математики искали ответ на этот вопрос и после длительных вычислений пришли к интересному выводу: самый лучший способ построить склад с максимальной вместимостью, но с минимальной затратой материала, это сделать стены шестиугольными. Если будет застроено одно и то же пространство, на шестиугольники потребуется меньше материала, чем на квадраты или треугольники. Еще одно удивительное качество пчел - это сотрудничество между собой при строительстве сот. Увидев полностью выстроенные соты, можно подумать, что они создавались единым блоком. На самом же деле, строительство сот начинается из совершенно разных точек одновременно. Сотни пчел начинают строить соты в трех или четырех разных местах. Они продолжают строить, пока не встречаются на середине. На месте стыка не бывает ни малейшей погрешности или ошибки. Пчелы также вычисляют угол отдельных ячеек по отношению друг к другу, когда строят соты. Ячейки, соприкасающиеся стороной, всегда стоятся под углом 13 градусов к земле. Таким образом, обе стенки сотов направлены под углом вверх. Этот угол предотвращает вытекание меда.

Пчелы - "математики", соты, построенные ими, имеют самую прочную конструкцию, размеры соблюдаются с небывалой точностью: угол ячейки всегда равен 109*28" градусов.

Чтобы приготовить 100 граммов меда, пчела иногда пролетает 46 тысяч километров, это тоже самое, что облететь весь земной шар по экватору.

На 1 дм² медовых сот с двух сторон насчитывается 800 ячеек.

Электромагнитные поля - это невидимые глазу проявления энергии. Электромагнитное загрязнение среды особенно опасно для детей. Как сделать безопасной работу с компьютером? С помощью математических расчетов ученые выяснили, что электробытовые приборы (телевизор, компьютер) нужно устанавливать на расстоянии не менее 1 метра от себя, смотреть телевизор с расстояния не менее 2 метров. Монитор компьютера должен находиться на расстоянии не менее 50-60 см. Нельзя работать на компьютере более 4 часов в день, причем делая 10 мин. перерывы для отдыха через каждые 30 минут.

Мы должны беречь энергетические ресурсы планеты. Энергосберегающие лампочки - самый экономный и экологический способ освещения. При работе обычной лампы накаливания более 95 % электрической энергии расходуется на выделение тепла и лишь 5% - на свет. Энергосберегающая лампа расходует в 5 раз меньше энергии, чем лампа накаливания, а служит в 8 раз дольше ее.

р1 = 15 Вт р2 = 75 Вт t1 = 43800 t2 = 43800 t = 43800 с1 = 45 руб с2 = 7 руб а = 2,73 руб/кВч

S = 0,001 * 43800 * 2,37 * (75 – 15) + 43800:43800 * 7 – 43800:43800 * 45 = 6190,36 руб.

Я решил эту задачу и понял, насколько выгодно в доме иметь энергосберегающие лампы.

Итак, математика - наука, которая тесно связана с другими науками, в частности с экологией. При изучении экологии возникает много вопросов, ответы на которые можно получить при помощи математики. Математика позволяет проводить точные измерения, делать расчеты и подтверждать наблюдения.

Экология (от греч. ойкос - дом и логос — учение) — наука о законах взаимодействия живых организмов со средой их обитания.

Основателем экологии считается немецкий биолог Э. Геккель (1834- 1919 гг.), который впервые в 1866 г. употребил термин «экология». Он писал: «Под экологией мы подразумеваем общую науку об отношении организма и окружающей среды, куда мы относим все "условия существования" в широком смысле этого слова. Они частично являются органической частично неорганической природы».

Первоначально этой наукой была биология, изучающая популяции животных и растений в среде их обитания.

Экология изучает системы уровня выше отдельного организма. Основными объектами ее изучения являются:

  • популяция - группа организмов, относящихся к одному или сходным видам и занимающих определенную территорию;
  • , включающая биотическое сообщество (совокупность популяций на рассматриваемой территории) и среду обитания;
  • - область распространения жизни на Земле.

К настоящему времени экология вышла за рамки собственно биологии и превратилась в междисциплинарную науку, изучающую сложнейшие проблемы взаимодействия человека с окружающей средой. Экология прошла сложный и длительный путь к осознанию проблемы «человек — природа», опираясь на исследования в системе «организм — среда».

Взаимодействие Человека с Природой имеет свою специфику. Человек наделен разумом, и это дает ему возможность осознать свое место в природе и предназначение на Земле. С начала развития цивилизации Человек задумывался о своей роли в природе. Являясь, безусловно, частью природы, человек создал особую среду обитания, которая называется человеческой цивилизацией. По мере развития она все больше вступала в противоречие с природой. Сейчас человечество уже подошло к осознанию того, что дальнейшая эксплуатация природы может угрожать его собственному существованию.

Актуальность этой проблемы, вызванной обострением экологической обстановки в масштабах всей планеты, привела к «экологизации» — к необходимости учета законов и требований экологии — во всех науках и во всей человеческой деятельности.

Экологией в настоящее время принято называть науку о «собственном доме» человека — биосфере, ее особенностях, взаимодействии и взаимосвязи с человеком, а человека — со всем человеческим обществом.

Экология является не только интегрированной дисциплиной, где оказываются связанными физические и биологические явления, она образует своеобразный мост между естественными и общественными науками. Она не относится к числу дисциплин с линейной структурой, т.е. развивается не по вертикали — от простого к сложному, — она развивается по горизонтали, охватывая все более широкий круг вопросов из различных дисциплин.

Ни одна отдельная наука не способна решить все задачи, связанные с совершенствованием взаимодействия между обществом и природой, поскольку это взаимодействие имеет социальные, экономические, технологические, географические и другие аспекты. Решать эти задачи может лишь интегрированная (обобщающая) наука, какой и является современная экология.

Таким образом, из несамостоятельной дисциплины в рамках биологии экология превратилась в комплексную междисциплинарную науку - современную экологию — с ярко выраженной мировоззренческой составляющей. Современная экология вышла за пределы не только биологии, но и в целом. Идеи и принципы современной экологии имеют мировоззренческий характер, поэтому экология связана не только с науками о человеке и культуре, но и с философией. Столь серьезные изменения позволяют заключить, что, несмотря на более чем столетнюю историю экологии, современная экология — наука динамичная.

Цели и задачи современной экологии

Одной из главных целей современной экологии как науки является изучение основных закономерностей и развитие теории рационального взаимодействия в системе «человек — общество — природа», рассматривая человеческое общество как неотъемлемую часть биосферы.

Главнейшая цель современной экологии на данном этапе развития человеческого общества — вывести Человечество из глобального экологического кризиса на путь устойчивого развития, при котором будет достигнуто удовлетворение жизненных потребностей нынешнего поколения без лишения такой возможности будущих поколении.

Для достижения этих целей экологической науке предстоит решить ряд разнообразных и сложных задач, в том числе:

  • разработать теории и методы оценивания устойчивости экологических систем на всех уровнях;
  • исследовать механизмы регуляции численности популяций и биотического разнообразия, роли биоты (флоры и фауны) как регулятора устойчивости биосферы;
  • изучить и создать прогнозы изменений биосферы под влиянием естественных и антропогенных факторов;
  • оценивать состояния и динамики природных ресурсов и экологических последствий их потребления;
  • разрабатывать методы управления качеством окружающей среды;
  • формировать понимание проблем биосферы и экологическую культуру общества.

Окружающая нас живая среда не является беспорядочным и случайным сочетанием живых существ. Она представляет собой устойчивую и организованную систему, сложившуюся в процессе эволюции органического мира. Любые системы поддаются моделированию, т.е. можно предсказать, как та или иная система отреагирует на внешнее воздействие. Системный подход — основа изучения проблем экологии.

Структура современной экологии

В настоящее время экология разделилась на ряд научных отраслей и дисциплин , подчас далеких от первоначального понимания экологии как биологической науки об отношениях живых организмов с окружающей средой. Однако в основе всех современных направлений экологии лежат фундаментальные идеи биоэкологии , которая сегодня представляет собой совокупность различных научных направлений. Так, например, выделяют аутэкологию, исследующую индивидуальные связи отдельного организма со средой; популяционную экологию , занимающуюся отношениями между организмами, которые относятся к одному виду и живут на одной территории; синэкологию , комплексно изучающую группы, сообщества организмов и их взаимосвязи в природных системах (экосистемах).

Современная экология представляет собой комплекс научных дисциплин. Базовой является общая экология , изучающая основные закономерности взаимоотношений организмов и условий среды. Теоретическая экология исследует общие закономерности организации жизни, в том числе в связи с антропогенным воздействием на природные системы.

Прикладная экология изучает механизмы разрушения биосферы человеком и способы предотвращения этого процесса, а также разрабатывает принципы рационального использования природных ресурсов. Прикладная экология базируется на системе законов правил и принципов теоретической экологии. Из прикладной экологии выделяются следующие научные направления.

Экология биосферы , изучающая глобальные изменения, происходящие на нашей планете в результате воздействия хозяйственной деятельности человека на природные явления.

Промышленная экология , изучающая влияние выбросов предприятий на окружающую среду и возможности уменьшения этого влияния путем совершенствования технологий и очистных сооружений.

Сельскохозяйственная экология , изучающая способы получения сельскохозяйственной продукции без истощения ресурсов почвы при сохранении окружающей среды.

Медицинская экология, изучающая болезни человека, связанные с загрязнением окружающей среды.

Геоэкология , изучающая строение и механизмы функционирования биосферы, связь и взаимосвязь биосферных и геологических процессов, роль живого вещества в энергетике и эволюции биосферы, участие геологических факторов в возникновении и эволюции жизни на Земле.

Математическая экология моделирует экологические процессы, т.е. изменения в природе, которые могут произойти при изменении экологических условий.

Экономическая экология разрабатывает экономические механизмы рационального природопользования и охраны окружающей среды.

Юридическая экология разрабатывает систему законов, направленных на защиту природы.

Инженерная экология - сравнительно новое направление экологической науки, изучает взаимодействия техники и природы, закономерности формирования региональных и локальных природно- технических систем и способы управления ими в целях защиты природной среды и обеспечения экологической безопасности. Она обеспечивает соответствие техники и технологии промышленных объектов экологическим требованиям

Социальная экология возникла совсем недавно. Лишь в 1986 г. во Львове состоялась первая конференция, посвященная проблемам этой науки. Наука о «доме», или месте обитании социума (человека, общества), изучает планету Земля, а также космос — как жизненную среду социума.

Экология человека - часть социальной экологии, рассматривающая взаимодействие человека как биосоциального существа с окружающим миром.

- одно из новых самостоятельных ответвлений экологии человека - наука о качестве жизни и здоровье.

Синтетическая эволюционная экология — новая научная дисциплина, включающая частные направления экологии — общую, био-, гео- и социальную.

Краткий исторический путь развития экологии как науки

В истории развития экологии как науки можно выделить три основных этапа. Первый этап - зарождение и становление экологии как науки (до 1960-х годов), когда накапливались данные о взаимосвязи живых организмов со средой их обитания, были сделаны первые научные обобщения. В этот же период французский биолог Ламарк и английский священник Мальтус впервые предупреждают человечество о возможных негативных последствиях воздействия человека на природу.

Второй этап - оформление экологии в самостоятельную отрасль знаний (после 1960-х до 1950-х годов). Начало этапа ознаменовалось выходом в свет работ русских ученых К.Ф. Рулье, Н.А. Северцева, В.В. Докучаева, впервые обосновавших ряд принципов и понятий экологии. После исследований Ч. Дарвина в области эволюции органического мира немецкий зоолог Э. Геккель первый понял, что Дарвин называл «борьбой за существование», представляет собой самостоятельную область биологии, и назвал ее экологией (1866 г.).

Как самостоятельная наука экология окончательно оформилась в начале XX столетия. В этот период американский ученый Ч. Адаме создал первую сводку по экологии, публикуются и другие важные обобщения. Крупнейший русский ученый XX в. В.И. Вернадский создает фундаментальное учение о биосфере.

В 1930-1940-е годы сначала английский ботаник А. Тенсли (1935 г.) выдвинул понятие «экосистема» , а несколько позжеВ. Я. Сукачев (1940 г.) обосновал близкое ему представление о биогеоценозе.

Третий этап (1950-е годы — до настоящего времени) — превращение экологии в комплексную науку, включающую в себя науки об охране окружающей человека среды. Одновременно с развитием теоретических основ экологии решались и прикладные вопросы, связанные с экологией.

В нашей стране в 1960-1980-е годы практически ежегодно правительство принимало постановления об усилении охраны природы; были изданы земельный, водный, лесной и иные кодексы. Однако, как показала практика их применения, они не дали требуемых результатов.

Сегодня Россия переживает экологический кризис: около 15% территории фактически являются зонами экологического бедствия; 85% населения дышат воздухом, загрязненным существенно выше ПДК. Растет число «экологически обусловленных» заболеваний. Наблюдается деградация и сокращение природных ресурсов.

Аналогичное положение сложилось и в других странах мира. Вопрос о том, что произойдет с человечеством в случае деградации природных экологических систем и утраты биосферой способности поддерживать биохимические циклы, становится одним из наиболее актуальных.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение.

Цель работы:

    Выяснить какой вклад вносит математика в экологию.

    Показать практическое применение математики в вопросах экологии окружающей среды.

Задачи работы:

    Изучить экологические проблемы

    Дать количественную оценку состоянию природных объектов и явлений,положительных и отрицательных последствий деятельности человека.

    Раскрыть вопросы о том, что происходит с экологией на нашей планете.

    Выполнить практические исследовательские вычисления

Предлагаемая вниманию читателя исследовательская работа посвящена связи между математикой и экологией.

Актуальность и практическая значимость проводимого исследования заключается в том, что экологические проблемы приобрели первостепенное значение в мире,и возникла необходимость вовлечения нас, подрастающего поколения, для их решения.

Владимир Путин подписал Указ о проведении в 2017 году в Российской Федерации Года экологии. В целях привлечения внимания общества к вопросам экологического развития Российской Федерации, сохранения биологического разнообразия и обеспечения экологической безопасности. Математика и экология тесно связаны. Не зря математику называют царицей наук, ведь она применятся во многих дисциплинах, даже там, где, казалось, сложно представить ее применение. Каждый человек любящий свое дело, не требует дополнительных стимулов, чтобы восхищаться оригинальностью решения и его изяществом. Режут слух высказывания некоторых ребят, филологов, артистов, экологов, которые говорят: “Математика нам не нужна. Вот получу оценку в аттестат и забуду математику”. Не тут-то было. Сразу хочется переубедить таких людей, “развернуть” их лицом к математике. Ведь интересен не предмет сам по себе, а исследования окружающего мира посредством этого предмета. Вот таким исследованием взаимоотношений живых организмов между собой и средой их обитания занимается наука экология. Математика в экологии изучает модели экологических объектов и процессов. Экологические процессы моделирует математическая экология. То есть с помощью математики можно предсказать какие изменения произойдут в природе после изменения экологической обстановке.

Глава 1. Экологические проблемы современности.

    1. Что происходит с лесами на нашей планете?

Интересно, что настоящее время общая площадь лесов на планете составляет 42 млн.кв.м., из них 45% - леса России.

Примерно 10 тыс. лет назад на земном шаре шумели дремучие леса. Их площадь составляла более 60 млн.кв.м.

В последние годы площади вырубленных и сгоревших лесов в 7 раз превышают площади территорий, где посадили новые деревья.

Каждый год срубаются примерно 400 тыс. кв.м. леса. 125 млн. деревьев вырубается только для производства бумаги.

1.2. Что происходит с фауной и флорой?

С каждым годом на нашей планете становится все меньше и меньше диких животных. С начала 20 века учеными было открыто около 50 видов ранее неизвестных зверей и птиц. Но за это же время полностью исчезли с лица Земли не менее 100 других видов. Кроме того млекопитающих пропало 25 видов.

Люди, не задумываясь о завтрашнем дне, о своем будущем, будущем фауны и всей живой природы, хищнически уничтожали животных.

Каролингский попугай, бескрылая гагарка, луговая курочка, дронт, белокрылая гагарка, - виды птиц, истребленные человеком. Тур, тарпан, зебра квагга, стеллерова корова, - звери, которых мы больше не увидим.

Множество других видов животных и растений находятся на грани исчезновения, поскольку деятельность человека сильно изменяет среду их обитания, лишает источников питания.

За один солнечный день 1 гектар леса поглощает из воздуха 120-280 кг углекислого газа и выделяет 180-200 кг кислорода;

Одно дерево средней величины производит столько кислорода, сколько необходимо для дыхания 3-х человек(2.5 кг в день). Среднему человеку необходимо 0.83 кг кислорода в день;

Один гектар хвойных деревьев задерживает за год 40 тонн пыли, а лиственных - 100 тонн.

Все вышесказанное дает нам возможность сделать следующие выводы: Лес - уникальная экологическая система. Не зря леса называют легкими планеты. Очевидный факт: без лесов на планете не сможет выжить даже сегодняшнее 7-миллиардное население Земли, а что будет завтра, когда население в очередной раз удвоится, а лесов станет в два раза меньше? Сто лет назад леса покрывали три четверти суши. К настоящему времени осталась четверть. Большой ущерб лесам наносят пожары, участившиеся в последнее время: ежегодно во многих странах мира выгорают миллионы км 2 леса. Поэтому мы должны беречь наши леса и сажать деревья.

1.3 Чистый воздух.

Чистый воздух — залог здоровья и не только на улице, но и в помещении, например, в классе. В помещении количество кислорода уменьшается, а углекислого газа увеличивается. По мнению специалистов, в результате деятельности человека в атмосферу Земли ежегодно поступает 25,5 млрд тонн оксидов углерода, 190 млн тонн оксидов серы, 65 млн тонн оксидов азота, 1,4 млн тонн хлорфторуглеродов. В последние годы наибольшее количество вредных веществ в атмосферу выбрасывается с выхлопными газами автомобилей, причем их доля постоянно возрастает.

Автомобиль - главный источник экологических проблем.

Легковому автомобилю для сгорания 1 кг бензина требуется 2,5 кг кислорода. В среднем автомобилист проезжает за год 10 тыс. км. И сжигает 10 т бензина, расходуя 35 т кислорода и, выбрасывая в атмосферу 160 т выхлопных газов.

Каждый автомобиль, стирая шины, ежегодно поставляет в атмосферу 5-8 кг резиновой пыли.

1 га леса поглощает в год минимум 5 т углекислого газа и выделят 10 т кислорода. За 1 час этот участок леса поглощает весь углекислый газ, который выделяют при дыхании 200 человек.

Автомобильный транспорт - один из основных загрязнителей окружающей среды.Я провела расчеты о том, сколько угарного газа выделяют машины на моей улице и не превышает ли это норму. Для исследования я выбрала улицу Коломенская нашего города. Протяженность улицы 820 метров.

Сначала был осуществлен подсчет количества единиц автотранспорта 2-х видов (легковые автомобили, грузовые автомобили), проезжающих по улице в разное время, а затем произвели все необходимые расчеты.

Длина улицы Коломенская 820 метров

Машины, проезжающие

Легковых автомобилей -120

Грузовых - 10

Среднее число машин, проезжающих по улице Коломенская за 1 день

120- легковых машин

10- грузовых машин

Выброс угарного газа составляет:

Для легкового автомобиля - 2 г/км

Для грузового автомобиля - 10 г/км

Сколько угарного газа выделяет один автомобиль, проезжая по улице Коломенская?

Легковой автомобиль:

2 г/км * 0,82 км = 1,64 г/км

Грузовой автомобиль:

10 г/км * 0,82 км =8,2 г/км

Сколько СО выделяют все автомобили, проезжающие по ул.Коломенская.

1,64 * 120 =196,8г СО выделяют легковые автомобили;

8,2 * 10=82 г СО выделяют грузовые автомобили;

196,8 + 82= 278,8 г угарного газа выделяют все автомобили за один день.

Выделение угарного газа

За неделю: 278,8 * 7 =1951,6г =1,95 кг.

За месяц: 278,8 * 30 = 8364 г =8,4 кг.

За год: 8,4 * 12 =100,8 кг.

Предельно допустимая концентрация СО в воздухе: 0,02 мг/л

В результате проведенного исследования я выяснила, что

1. Угарный газ отрицательно влияет на здоровье человека. Основу выхлопных газов, являющихся вредными для здоровья человека и окружающей среды, составляют - угарный газ, оксиды азота (IV), углеводороды, свинец.

2. Для снижения вредности топлива, необходимо применять водородные двигатели. У них отработанные газы представляют собой пары воды и полностью экологичны. Но эти двигатели, к сожалению, пока не нашли широкого применения.

1.4 Вода.

Каждому ясно, как велика роль воды в жизни нашей планеты и в особенности в существовании биосферы.

Морями и океанами покрыто около 70% земной поверхности, а на пресную воду приходится лишь 2 % всего объема водных запасов планеты.

В среднем в мире каждый городской житель расходует 100 литров воды ежедневно.

Представьте, если каждый человек в день сэкономит хотя бы 1 л. Воды, а в мире проживает примерно 7,3 млрд. человек, значит экономия в день составит 7 300 000 000 литров воды.

Биологическая потребность человека и животных в воде за год в 10 раз превышает их собственную массу. Еще более внушительны бытовые, промышленные и сельскохозяйственные нужды человека. Так, «для производства тонны мыла требуется 2 тонны воды, сахара — 9, изделий из хлопка — 200, стали 250, азотных удобрений или синтетического волокна — 600, зерна — около 1000, бумаги — 1000, синтетического каучука — 2500 тонн воды».

Использованная человеком вода в конечном счете возвращается в природную среду. Но, кроме испарившейся, это уже не чистая вода, а бытовые, промышленные и сельскохозяйственные сточные воды, обычно не очищенные или очищенные недостаточно. Таким образом, происходит загрязнение пресноводных водоемов — рек, озер, суши и прибрежных участков морей.

Все мы используем воду, поэтому на нас лежит и ответственность за ее охрану от загрязнения и экономию. Морями и океанами покрыто около 70 % земной поверхности, а на пресную воду приходится всего лишь 2 % от всего объема водных запасов планеты.

Нормы качества питьевой воды содержатся в специальном документе - Государственном стандарте “Вода питьевая”. Этот стандарт качества устанавливает предельно допустимые уровни содержания химических веществ, встречающихся в природных водах или добавляемых к воде в процессе ее обработки. Так, содержание алюминия не должно превышать 0,5 мг на 1 л воды, бериллия - 0,0002 мг на 1 л, молибдена - 0,25 мг на 1 л, мышьяка - 0,05 мг на 1 л, свинца - 0,03 мг на 1 л, фтора - 0,07 мг на 1 л, полиакриламида - 2 мг на 1 л. Также к группе показателей качества питьевой воды отнесены железо (не более 0,3 мг/л), марганец (не более 0,1 мг/л), медь (не более 0,1 мг/л), полифосфаты (не более 3,5 мг/л), цинк (не более 5 мг/л). Сухой остаток, образующийся после выпаривания воды, не должен превышать 1000 мг/л.

А сколько же нужно человеку воды каждый день? В бытовых целях вода расходуется для питья, приготовления пищи, стирки, мытья, смыва нечистот в канализацию и поливки сада и огорода. Оказалось, что наша семья из 4 человек, расходует в сутки более 322 л воды. Норма расхода на 1 человека в месяц 2,5м3 . 2,5м3X4=10м3.=10000дм3=10000л. 1000л:31день =322л. Это большой объем. Качественно чистой воды на Земле не хватает.

Ученые утверждают, что при использовании современных технологий расходы воды в быту могут быть сокращены на ⅓, в сельском хозяйстве — вдвое, а в промышленности — почти в 10 раз.

Я сравнила две семьи. Одна из которых экономит воду, а другая нет. Все расчеты приведены в таблице.

Семья, которая экономит воду.

Семья, которая не экономит воду.

Показания счётчика

Показания счётчика

Проведенное исследование позволило мне сделать следующий вывод:

Если семья,которая не экономит воду, сэкономит хотя бы 20% водопроводной воды от того объема, которым обычно пользуется, то за год такое количество воды может образовать озеро диаметром 200 м. и глубиной 2 метра.

1.5 Почва.

Почва обладает плодородием — является наиболее благоприятной средой обитания для подавляющего большинства живых существ. Показательно также, что по их биомассе почва (суша Земли) почти в 700 раз превосходит океан, хотя на долю суши приходится менее 1/3 земной поверхности. Почву часто называют главным богатством любого государства в мире, поскольку на ней и в ней производится около 90% продуктов питания человечества. Деградация почв сопровождается неурожаями и голодом, приводит к бедности государств, а гибель почв может вызвать гибель всего человечества. В нормальных естественных условиях все процессы, происходящие в почве, находятся в равновесии. Но нередко в нарушении равновесного состояния почвы повинен человек. В результате развития хозяйственной деятельности человека происходит загрязнение, изменение состава почвы и даже ее уничтожение. За неделю только наша семья использует более 10 полиэтиленовых пакетов. В нашем селе проживает 200 семьей, если каждая семья использует более 10 полиэтиленовых пакетов, то 200X10 пакет=2000пакет. Для разложения таких пакетов требуется 200 лет. Если мы безрассудно будем выбрасывать сейчас пакеты, то в течение десятков лет почва будет содержать вредные вещества.

Накопление мусора, отравление почвы - экологическая проблема. В среднем ежегодно человек выбрасывает 10 кг мусора.

Около 3,5 млрд т мусора ежегодно образуется в России. Специалисты подсчитали, что если мусор не уничтожать, то через 10-15 лет он покроет нашу Планету слоем толщиной 5 метров.

Большую часть мусора составляют предметы из пластмассы (70%), на втором месте стеклянные и жестяные предметы (25%), и на третьем месте деревянные и бумажные отходы (5%)

    Я провела расчеты и выяснила,что моя семья в год выбрасывает 540 бутылок (из-под молока, напитков, растительного масла и т. д.)

    В Санкт-Петербурге по данным 2017 года - 5 200 000 человек. В среднем в семье 4 человека, тогда: 5 200 000:4= 1 300 000 семей.

    Какую площадь займут 78 000 000 бутылок, если их разложить в ряд?

    Диаметр одной пластиковой бутылки - 9 см, длина бутылки -32 см, площадь, занимаемая одной бутылкой 9*32=288 кв. см.

Площадь, занимаемая 78 000 000 пластиковыми бутылками: 288*702000000 =202176000000 кв. см=20217600 кв. м

Подводя итоги вышесказанному необходимо отметить следующее:

Почва — важнейший природный ресурс, который при длительном использовании не убавляется, а сохраняется и даже улучшается.

Почву необходимо беречь от разрушения и охранять от загрязнения. Нужно всегда убирать мусор после себя и складывать в специально отведенные для этого места. Большую часть из того, что мы выбрасываем (пластмасса, металл, стекло, бумага) может быть использована повторно.

Глава II Пути решения .

1. Начнем с себя самих - будем выбрасывать мусор только в мусорные баки, урны- «Чисто не там,где убирают, а там где не сорят!»

2. Чаще будем проводить субботники по уборке территории.

3.Вывесить плакаты с природоохранной темой в лесу, в местах возможного появления свалок.

4.Ликвидация мусора на несанкционированных свалках в пределах города.

5. Бережно относиться к учебникам.

6. Собирать макулатуру.

7.Вернуть природе лес, который был срублен для изготовления наших учебников и тетрадей (высаживать больше деревьев, цветов)

8. Экономить воду

Заключение

Все вышесказанное дает нам возможность сделать следующие выводы:

    Мое предположение о том, что математика напрямую связана с экологией, подтвердилось.

    При изучении экологии возникает много вопросов, ответы на которые можно получить при помощи математики.

    Математика позволяет проводить точные измерения, делать расчеты и подтверждать наблюдения.

Математика создает условия для умения давать количественную оценку состояния природных объектов и явлений, положительных и отрицательных последствий деятельности человека в природе и социальном окружении. Текстовые задачи имеют возможность для раскрытия вопросов о среде обитания, заботы о ней, рациональном природопользовании, восстановлении и приумножении ее природных

Список литературы :

    «Я познаю мир. Экология». А.Е. Чижевский -Астрель- 2003г.

    «Экология России». Б.М. Миркин-М:АО МДС, Юнисам, 1995,-232с.

    «Охрана природы». А.В.Михеев-Просвещение, 2000г.144с.

    Энциклопедия для детей. «Математика». - М.: Аванта +, 2003г. - 688с.

    Интернет-ресурсы

Хамзин Идель Фанисович

Исседовательская работа

Скачать:

Предварительный просмотр:

Муниципальное образовательное учреждение
“Староромашкинская средняя общеобразовательная школа”
Чистопольского муниципального района РТ

Тема:

«Экология и математика»

Секция: «Экология»

Выполнил : Хамзин Идель Фанисович,

ученик 4 класса

МБОУ «Староромашкинская СОШ»

Чистопольского района РТ

Руководитель : Хамзина Гульназ Ринатовна, учитель начальных классов,

Второй квалификационной

Кинская СОШ» Чистопольского

Района РТ

Чистополь, 2015

ВВЕДЕНИЕ ………………………………………………………………..…3

Основная часть

I. «Числа» в окружающем воздухе……………………………..…..…5

II. Деревья - бесценная часть окружающей среды ….……………7

III. Математики предупреждают: «Не лей воду попусту»…………9

IV. Вред почве от пакетов ……………………………………......11

V. Пчелы-математики………………………………………….……12

VI. Учимся экономить на пользу экологии…………………..…….14

ЗАКЛЮЧЕНИЕ…………………………………………………….…..….…15

СПИСОК ЛИТЕРАТУРЫ…………..………...……………………………....16

ПРИЛОЖЕНИЕ…………………………………………………………

Введение

Загрязнение окружающей среды имеет почти такую же долгую историю, что и история самого человечества. Долгое время первобытный человек мало чем отличался от других видов животных и в экологическом смысле находился в равновесии с окружающей средой. К тому же численность человечества была невелика.

С течением времени в результате развития биологической организации людей, их умственных способностей, человеческий род выделился среди других видов: возник первый вид живых существ, воздействие которых на все живое представлял собой потенциальную угрозу в природе.

На всех стадиях своего развития человек был тесно связан с окружающим миром. Но с тех пор, как появилось высокоиндустриальное общество, опасное вмешательство человека в природу резко усилилось, расширился объём этого вмешательства, оно стало выражать разнообразные проявления и сейчас грозит стать глобальной опасностью для человечества. Человеку приходится все больше вмешиваться в хозяйство биосферы - той части нашей планеты, в которой существует жизнь. Биосфера Земли в настоящее время подвергается нарастающему антропогенному воздействию.

Для жизни человеку нужны чистый воздух, качественная вода, незараженная почва, растения, энергетические ресурсы и другие, но с развитием цивилизации вредное воздействие людей на природу становится угрожающим для нее. Может ли математика помочь экологии? Давайте рассмотрим на примере.

Наша школа расположена в красивом месте, в центре села. Недалеко от села есть небольшой лес. Нам очень хочется, чтобы лес был чистым, ухоженным, чтобы в нем всегда слышалось пение птиц, а белки, зайчата радовали глаз. Поэтому нас, учеников школы, волнуют вопросы экологии. На уроках математики мы решили выяснить, как знания по математике могут помочь в решении вопросов экологии.

Я свое исследование начал с воздуха, ведь он среда нашего обитания, без которого наша жизнь невозможна. От качества воздуха в огромной мере зависит качество жизни, и это стоит того, чтобы познакомиться с воздухом подробнее. Воздух – смесь газов, из которых состоит атмосфера Земли: азот (78,09% по объему), кислород (20,95%), благородные газы (0,94%), углекислый газ (0,03%) и множество (примерно две тысячи) микропримесей. Средняя плотность воздуха при нормальных условиях 1,29 грамма на литр, растворяемость в воде 29,2 кубических сантиметров на литр. Но это – чистый воздух. Реальный воздух, которым мы дышим, может очень сильно отличаться от указанных параметров.

К сожалению, воздух, которым мы дышим в городах и закрытых помещениях, представляет собой жуткий коктейль из промышленных выбросов, автомобильных выхлопных газов, ароматов свалок, пыли, табачного дыма и других ядовитых веществ, а также бактерий и вирусов.

Цель моей работы доказать роль математики в экологии.

Задачи:
- знакомство с экологическими проблемами нашего села и нахождение решения этих проблем;

Применение знаний при решении задач экологического содержания.

  1. « Числа» в окружающем воздухе

Чистый воздух - залог здоровья и не только на улице, но и в помещении, например, в классе. В помещении количество кислорода уменьшается, а углекислого газа увеличивается. По мнению специалистов, в результате деятельности человека в атмосферу Земли ежегодно поступает 25,5 млрд тонн оксидов углерода, 190 млн тонн оксидов серы, 65 млн тонн оксидов азота, 1,4 млн тонн хлорфторуглеродов. В последние годы наибольшее количество вредных веществ в атмосферу выбрасывается с выхлопными газами автомобилей, причем их доля постоянно возрастает. Например, в Москве выбросы вредных веществ от автотранспорта превышают 800 тыс.тонн в год, что составляет 70% от общего количества загрязняющих веществ, поступающих в атмосферу города за год.

В нашем селе 90 легковых, 6 грузовых автомобиля. Автомобильный транспорт - один из основных загрязнителей окружающей среды. Для исследования мы выбрали улицу Центральная нашего села. Протяженность участка 2000 метров.

Сначала был осуществлен подсчет количества единиц автотранспорта 2-х видов (легковые автомобили, грузовые автомобили), проезжающих по улице в разное время, а затем произвели все необходимые раcчёты.

Длина улицы Центральная 2000 метров = 2км

Машины, проезжающие

Легковых автомобилей –20

Грузовых – 10

Среднее число машин, проезжающих по улице Центральная за 1 день

20- легковых машин

10- грузовых машин

Выброс угарного газа составляет:

Для легкового автомобиля – 2 г/км

Для грузового автомобиля – 10 г/км

Сколько угарного газа выделяет один автомобиль, проезжая по улице Центральная?

Легковой автомобиль:

2 г/км * 2 км = 4 г/км

Грузовой автомобиль:

10 г/км * 2 км =20 г/км

Сколько СО выделяют все автомобили, проезжающие по ул. Центральная.

4 * 20 =40г СО выделяют легковые автомобили;

20 * 10=200 г СО выделяют грузовые автомобили;

40 + 200= 24 0г угарного газа выделяют все автомобили за один день.

Выделение угарного газа

За неделю: 240* 7 =1680г =1,68 кг.

За месяц: 240 * 30 = 7200 г =7,2 кг.

За год: 7,2* 12 =86,4 кг.

Предельно допустимая концентрация СО в воздухе: 0,02 мг/л

Выводы:

1. Угарный газ отрицательно влияет на здоровье человека. Основу выхлопных газов, являющихся вредными для здоровья человека и окружающей среды, составляют – угарный газ, оксиды азота (IV), углеводороды, свинец.

2. Для снижения вредности топлива, необходимо применять водородные двигатели. У них отработанные газы представляют собой пары воды и полностью экологичны. Но эти двигатели, к сожалению, пока не нашли широкого применения.

  1. Деревья - бесценная часть окружающей среды

Они очищают загрязненный воздух, вырабатывают кислород, очищают воздух от болезнетворных микробов. В лесах находят стол и дом множество видов растений, животных и микроорганизмов.

Продолжительность жизни у различных видов деревьев не одинакова. Осина живет сравнительно недолго – менее 100 лет. Возраст ели может достигать 600 лет. Для сосны, произрастающей в Белых горах восточной Калифорнии, 500 и даже 1000 лет еще не старость. Как и все живое, деревья умирают от возраста и болезней.

А в последние годы площади вырубленных и сгоревших лесов в 7 раз превышают площади территорий, где посадили новые деревья. Оказывается, что лиственный лес в 2 раза лучше очищает воздух от пыли, чем хвойный. Представьте, если каждый житель нашей страны вырастит за свою жизнь хотя бы одно дерево, то их увеличится на 141, 93 млн деревьев. Наш пришкольный участок очень большой. На участке растут 50 берез, 10 большие сосны. В 2011 году школьники и учителя посадили 30 саженцев дуба, 35 саженцев сосны.

Факты:

За один солнечный день 1 гектар леса поглощает из воздуха 120-280 кг углекислого газа и выделяет 180-200 кг кислорода;

Одно дерево средней величины производит столько кислорода, сколько необходимо для дыхания 3-х человек(2.5 кг в день). Среднему человеку необходимо 0.83 кг кислорода в день;

Один гектар хвойных деревьев задерживает за год 40 тонн пыли, а лиственных - 100 тонн. Интересно узнать, сколько кислорода выделяют деревья в нашем пришкольном участке?

10 сосен+50 берез =60 дерево

60 деревоX2,5кг кислорода=150 кг кислорода

150 кг кислорода:0,83кг=180 человек. В нашей школе обучается 59 учащихся, преподают 16 учителей, технического персонала – 4 - всего 79 человек. Следовательно, выделяемый деревьями кислород достаточен для нас, поэтому нам полезно чаще проветривать класс.

Вывод: Лес – уникальная экологическая система. Не зря леса называют легкими планеты. Очевидный факт: без лесов на планете не сможет выжить даже сегодняшнее 6-миллиардное население Земли, а что будет завтра, когда население в очередной раз удвоится, а лесов станет в два раза меньше? Сто лет назад леса покрывали три четверти суши. К настоящему времени осталась четверть. Большой ущерб лесам наносят пожары, участившиеся в последнее время: ежегодно во многих странах мира выгорают миллионы км 2 леса. Поэтому мы должны беречь наши леса и сажать деревья.

  1. Математики предупреждают: «Не лей воду попусту»

Каждому ясно, как велика роль воды в жизни нашей планеты и в особенности в существовании биосферы.

Биологическая потребность человека и животных в воде за год в 10 раз превышает их собственную массу. Еще более внушительны бытовые, промышленные и сельскохозяйственные нужды человека. Так, «для производства тонны мыла требуется 2 тонны воды, сахара - 9, изделий из хлопка - 200, стали 250, азотных удобрений или синтетического волокна - 600, зерна - около 1000, бумаги - 1000, синтетического каучука - 2500 тонн воды».

Использованная человеком вода в конечном счете возвращается в природную среду. Но, кроме испарившейся, это уже не чистая вода, а бытовые, промышленные и сельскохозяйственные сточные воды, обычно не очищенные или очищенные недостаточно. Таким образом, происходит загрязнение пресноводных водоемов - рек, озер, суши и прибрежных участков морей.

Все мы используем воду, поэтому на нас лежит и ответственность за ее охрану от загрязнения и экономию. Морями и океанами покрыто около 70 % земной поверхности, а на пресную воду приходится всего лишь 2 % от всего объема водных запасов планеты.

Нормы качества питьевой воды содержатся в специальном документе – Государственном стандарте “Вода питьевая”. Этот стандарт качества устанавливает предельно допустимые уровни содержания химических веществ, встречающихся в природных водах или добавляемых к воде в процессе ее обработки. Так, содержание аллюминия не должно превышать 0,5 мг на 1 л воды, бериллия – 0,0002 мг на 1 л, молибдена – 0,25 мг на 1 л, мышьяка – 0,05 мг на 1 л, свинца – 0,03 мг на 1 л, фтора – 0,07 мг на 1 л, полиакриламида – 2 мг на 1 л. Также к группе показателей качества питьевой воды отнесены железо (не более 0,3 мг/л), марганец (не более 0,1 мг/л), медь (не более 0,1 мг/л), полифосфаты (не более 3,5 мг/л), цинк (не более 5 мг/л). Сухой остаток, образующийся после выпаривания воды, не должен превышать 1000 мг/л.

А сколько же нужно человеку воды каждый день? В бытовых целях вода расходуется для питья, приготовления пищи, стирки, мытья, смыва нечистот в канализацию и поливки сада и огорода. Оказалось, что наша семья из 4 человек, расходует в сутки более 322 л воды. Норма расхода на 1 человека в месяц 2,5м3 . 2,5м3X4=10м3.=10000дм3=10000л. 1000л:31день =322л. Это большой объем. Качественно чистой воды на Земле не хватает. Представьте, если каждый человек сэкономит в день хотя бы 1 л воды, а в мире проживает около 6,8 млрд человек, значит экономия в день 6800000000 л воды по всему миру.

В нашем селе проживает 642 человека. Предположим, что большинство из них при чистке зубов держат кран все время открытым, тогда как остальные открывают его только на то время, когда они моют щетку и полощут рот. В среднем эта процедура занимает около 3 минут, а в это время вода течет из крана со скоростью 2 л/мин. Если все жители станут чистить зубы при постоянно открытом кране, два раза в день утром и вечером, то они израсходуют 2л X 3мин=6 л, 6л Х 2 раза=12 л, 12л Х642 житель=7704 л воды за один день. Но при экономии воды они могут сэкономить 1л X 1мин=1 л, 1л Х 2 раза=2 л, 2л Х642 житель=1284 л,

7704 л -1284=6420 л воды.

Вывод:

Ученые утверждают, что при использовании современных технологий расходы воды в быту могут быть сокращены на ⅓, в сельском хозяйстве - вдвое, а в промышленности - почти в 10 раз.

БЕРЕГИТЕ ВОДУ!

  1. Вред почве от пакетов

Почва обладает плодородием - является наиболее благоприятной средой обитания для подавляющего большинства живых существ. Показательно также, что по их биомассе почва (суша Земли) почти в 700 раз превосходит океан, хотя на долю суши приходится менее 1/3 земной поверхности. Почву часто называют главным богатством любого государства в мире, поскольку на ней и в ней производится около 90% продуктов питания человечества. Деградация почв сопровождается неурожаями и голодом, приводит к бедности государств, а гибель почв может вызвать гибель всего человечества. В нормальных естественных условиях все процессы, происходящие в почве, находятся в равновесии. Но нередко в нарушении равновесного состояния почвы повинен человек. В результате развития хозяйственной деятельности человека происходит загрязнение, изменение состава почвы и даже ее уничтожение. За неделю только наша семья использует более 10 полиэтиленовых пакетов. В нашем селе проживает 200 семьей, если каждая семья использует более 10 полиэтиленовых пакетов, то 200X10 пакет=2000пакет. Для разложения таких пакетов требуется 200 лет. Если мы безрассудно будем выбрасывать сейчас пакеты, то в течение десятков лет почва будет содержать вредные вещества.

Вывод:

Почва - важнейший природный ресурс, который при длительном использовании не убавляется, а сохраняется и даже улучшается.

Почву необходимо беречь от разрушения и охранять от загрязнения. Нужно всегда убирать мусор после себя и складывать в специально отведенные для этого места. Большую часть из того, что мы выбрасываем (пластмасса, металл, стекло, бумага) может быть использована повторно.

  1. Пчелы-математики

В пришкольном участке нашей школы все лето цветы своим ароматом манят пчел. Эти насекомые «хорошо соображают» в математике. На поперечном срезе ячейки сот имеют шестиугольную форму, которая позволяет получить максимум пространства для хранения меда с минимальной затратой воска.

Математики искали ответ на этот вопрос и после длительных вычислений пришли к интересному выводу: самый лучший способ построить склад с максимальной вместимостью, но с минимальной затратой материала, это сделать стены шестиугольными. Если будет застроено одно и то же пространство, на шестиугольники потребуется меньше материала, чем на квадраты или треугольники. Еще одно удивительное качество пчел - это сотрудничество между собой при строительстве сот. Увидев полностью выстроенные соты, можно подумать, что они создавались единым блоком. На самом же деле, строительство сот начинается из совершенно разных точек одновременно. Сотни пчел начинают строить соты в трех или четырех разных местах. Они продолжают строить, пока не встречаются на середине. На месте стыка не бывает ни малейшей погрешности или ошибки. Пчелы также вычисляют угол отдельных ячеек по отношению друг к другу, когда строят соты. Ячейки, соприкасающиеся стороной, всегда стоятся под углом 13 градусов к земле. Таким образом, обе стенки сотов направлены под углом вверх. Этот угол предотвращает вытекание меда.

Пчелы - "математики", соты, построенные ими, имеют самую прочную конструкцию, размеры соблюдаются с небывалой точностью: угол ячейки всегда равен 109*28" градусов. Чтобы приготовить 100 граммов меда, пчела иногда пролетает 46 тысяч километров, это тоже самое, что облететь весь земной шар по экватору. На 1 дм² медовых сот с двух сторон насчитывается 800 ячеек.

В нашем селе в 5 семей держат 12 улей. За хорошее солнечное лето 1 семья пчел собирает примерно 60кг меда. 12семья X 60кг=720кг меда.

Мед - любимое с детства лакомство и одновременно кладезь витаминов и полезных микроэлементов. Применение меда крайне многогранно как и свойства меда, от кулинарии до медицины и даже судовой системы.

Мед содержит в себе многие необходимые организму вещества, крайне положительно влияет на иммунитет организма и работу различных органов. Мед обладает отличными антибактериальными свойствами.

Цветочный мёд образуется при переработке пчёлами медвяной росы и пади, которые они собираются со стеблей и листьев растений. В природе распространены:

  • липовый мёд - душистый, приятный аромат, светло - янтарным цветом;
  • гречишный - приятный специфический вкус и аромат, в жидком виде темно- жёлтый, золотистый или коричневый, в составе минеральных веществ есть железо;
  • смешанный - сборный, цветочный мёд пчёлы собирают с различных растений.

Пчелы приносят людям пользу не только в виде медового кушанья. Не менее важна для человека их способность опылять растения пчёлы в качестве опылителей крайне важны в сельском хозяйстве.

Маточное молочко. Им пчелы вскармливают личинок и кормят матку. Растворы маточного молочка убивают 19 видов бактерий и простейших, а также вирусы.

Значение: высокое антимикробное действие. Используется для лечения кожных и туберкулёзных заболеваний.

Вывод:

И в правду пчелы математики. Ведь они без карты и компаса пролетают 46 тысяч километров и находят свой дом.

  1. Учимся экономить на пользу экологии

Электромагнитные поля - это невидимые глазу проявления энергии. Электромагнитное загрязнение среды особенно опасно для детей. Как сделать безопасной работу с компьютером? С помощью математических расчетов ученые выяснили, что электробытовые приборы (телевизор, компьютер) нужно устанавливать на расстоянии не менее 1 метра от себя, смотреть телевизор с расстояния не менее 2 метров. Монитор компьютера должен находиться на расстоянии не менее 50-60 см. Нельзя работать на компьютере более 4 часов в день, причем делая 10 мин. перерывы для отдыха через каждые 30 минут.

Мы должны беречь энергетические ресурсы планеты. Энергосберегающие лампочки - самый экономный и экологический способ освещения. При работе обычной лампы накаливания более 95 % электрической энергии расходуется на выделение тепла и лишь 5% - на свет. Энергосберегающая лампа расходует в 5 раз меньше энергии, чем лампа накаливания, а служит в 8 раз дольше ее.

В моем классе 18 энергосберегающих ламп, если вместо него была лампа накаливания сколько ущерба была бы школе.

18 энергосберегающей лампы X 0,04квт=0,72 квт

0,72 квт X 2.02 руб=1,45 руб

18 лампа накаливания X 0,1квт=1,8 квт

1,8 квт X 2,02 руб=3,64 руб

Если в день горят 3 часа. 1,45 руб X 3 час=4,35 руб

3,64 руб X 3 час=10,92 руб

В месяц: 4,35 руб X 26 день=113,1 руб

10,92 руб X 26день=283,92 руб

Экономия школе за месяц 283,92 руб-113,1 руб=170,82руб

Я решил эту задачу и понял, насколько выгодно использования в школе и дома энергосберегающей лампы.

Вывод

Итак, по своим наблюдениям могу сделать вывод: экология - наука, которая тесно связана с другими науками, в частности с математикой. При изучении экологии возникает много вопросов, ответы на которые можно получить при помощи математики. Математика позволяет проводить точные измерения, делать расчеты и подтверждать наблюдения. Хочу сказать, что не надо быть великим математиком, чтобы беречь природу и очистить нашу зеленую планету от загрязнении.

Каждый год, каждый день, каждый час на Земле исчезают животные, растения. 25 тысяч видов растений находятся в опасности. Загрязняются водоёмы, вырубаются леса, разрушаются почвы. Мы должны помочь природе. Ведь природа наш общий дом.

Дерево, трава, цветок и птица

Не всегда умеют защититься.

Если будут уничтожены они,

На планете мы останемся одни.

Литература

  1. «Я познаю мир. Экология». А.Е. Чижевский –Астрель- 2003г.
  2. «Экология России». Б.М. Миркин-М:АО МДС, Юнисам, 1995,-232с.
  3. «Охрана природы». А.В.Михеев-Просвещение, 2000г.144с.
  4. Энциклопедия для детей. «Математика». – М.: Аванта +, 2003г. – 688с.
  5. Интернет