Основная функция антител заключается в. Антитоксины. Как антитела нейтрализуют токсины

1. Опсонизация (иммунный фагоцитоз).

2. Антитоксический эффект.

3. Активация комплемента.

4. Нейтрализация.

5. Циркулирующие комплексы (связанные растворимые Аг образуют комплесы с Ат, которые выводятся из организма с желчью и мочой).

6. Антителозависимая цитотоксичность.

Динамика антителообразования.

Серологические реакции в лабораторной диагностике инфекционных заболеваний.

В защите организма от чужеродных антигенов решающую роль играют иммунологические механизмы, осуществляющиеся антителами и иммунокомпетентными клетками. Основа иммунологических механизмов – специфическая реакция между антителами или лимфоцитами (образовавшихся под воздействием попавшего в организм антигена) и антигена. Главная функция антител – связывание антигена и его дальнейшее выведение из организма.

Однако такие реакции между антителами и антигенами могут происходить и вне организма (in vitro) в присутствии электролита и возможны лишь при наличии комплементарности (структурного сходства, сродства) антигена и антитела.

Имея специфические антитела против определенного антигена можно распознать и выявить его среди других антигенов, а в сыворотке крови антитела против известного антигена.

Реакция антиген-антитело in vitro сопровождается возникновением определенного феномена – агглютинации, преципитации, лизиса.

Таким образом все серологические реакции используются с двумя целями:

    выявление антител в сыворотке больного с помощью стандартных антигенов-диагностикумов (для серологической диагностики инфекционных болезней );

    для выявления неизвестных антигенов по известным стандартным сывороткам, содержащим антитела определенной специфичности (для серологической идентификации возбудителей ).

Например, если сыворотка больного реагирует с конкретным микробным антигеном – значит в сыворотке больного есть антитела против данного микроорганизма.

Серологическая диагностика – берут стандартный антиген (диагностикум), представляющий собой инактивированные или живые бактерии, вирусы или же их антигены (компоненты) в изотоническом растворе.

Серологическая идентификация – используют стандартные иммунные сыворотки, которые получают от иммунизированных животных (в крови животных в результате многократной иммунизации возбудителем появляется большое количество антител).

Агглютинация.

Агглютинация – серологическая реакция между антителами (агглютининами) и антигенами (агглютининогенами), размещенными на поверхности бактериальной клетки, а в результате образуется комплекс антиген-антитело (агглютинат).

Механизм агглютинации – под влиянием ионов электролита уменьшается негативный поверхностный заряд бактериальной клетки и следовательно они могут сблизиться на такое расстояние при котором возникает склеивание бактерий.

Макро- и микроскопический вид агглютината :

    О-агглютинация (соматическая) – мелкозернистая, при микроскопии – бактерии склеиваются полюсами клеток, образуя сеть.

    Vi-агглютинация (капсульная) – мелкозернистая, при микроскопии - склеивание бактерий происходит всей поверхностью клетки.

    Н-агглютинация (жгутиковая) – агглютинины взаимодействуют с жгутиками обездвиживая бактерии, при микроскопии – крупнохлопчатая, склеивание бактериальных клеток в области жгутиков.


Реакция агглютинации используется для определения антител в сыворотке крови больных, например, при бруцеллезе (реакции Райта, Хеддельсона), брюшном тифе и паратифах (реакция Видаля) других инфекционных болезнях, а также при определении возбудителя, выделенного от больного. Эту же реакцию применяют для определения групп крови с использованием моноклональных антител против аллоантигенов эритроцитов.

Применяются различные варианты реакции агглютинации: развернутая, ориентировочная, непрямая и др.

Для определения у больного антител ставят развернутую реакцию агглютинации : к разведениям сыворотки крови больного добавляют взвесь убитых микробов (диагностикум) и через несколько часов инкубации при 37°С отмечают наибольше разведение (титр) сыворотки, при котором произошла агглютинация, т.е. образовался осадок.

Характер и скорость агглютинации зависят от вида антигена и антител.

Если необходимо определить возбудитель, выделенный от больного, ставят ориентировочную реакцию агглютинации, применяя диагностические антитела, т.е. проводят серотипирование возбудителя. Ориентировочную реакцию проводят на предметном стекле. К 1 капле диагностической иммунной сыворотки в разведении 1:10 или 1:20 добавляют чистую культуру возбудителя, выделенного от больного. Если появляется хлопьевидный осадок, то реакцию проводят в пробирках с увеличивающимися разведениями диагностической сыворотки, добавлял в каждую дозу сыворотки 2-З капли взвеси возбудителя. Реакцию считают положительной, если агглютинация отмечается в разведении, близком к титру диагностической сыворотки. В контролях (сыворотка, разведенная изотоническим раствором хлорида натрия, или взвесь микробов в том же растворе) осадок в виде хлопьев должен отсутствовать.

Разные родственные бактерии могут агглютинироваться одной и той же диагностической агглютинирующей сывороткой, что затрудняет их идентификацию. Поэтому пользуются адсорбированными агглютинирующими сыворотками, из которых удалены перекрестно реагирующие антитела путем адсорбции их родственными бактериями. В таких сыворотках сохраняются антитела, специфичные только к данной бактерии. Получение таким способом монорецепторных диагностических агглютинирующих сывороток было предложено А.Кастелляни (1902). Реакция непрямой (пассивной) гемагглютинации (РНГА) основана на использовании эритроцитов (или латекса) с адсорбированными на их поверхности антигенами или антителами, взаимодействие которых с соответствующими антителами или антигенами сыворотки крови больных вызывает склеивание и выпадение эритроцитов на дно пробирки или ячейки в виде фестончатого осадка. РНГА применяют для диагностики инфекционных болезней, определения гонадотропного гормона в моче при установлении беременности, для выявления повышенной чувствительности к лекарственным препаратам и гормонам и в некоторых других случаях. Реакция торможения гемагглютинации (РТГА) основана на блокаде, подавлении вирусов антителами иммунной сыворотки, в результате чего вирусы теряют свойство агглютинировать эритроциты. РТГА применяют для диагностики многих вирусных болезней, возбудители которых (вирусы гриппа, кори, краснухи, клещевого энцефалита и др.) могут агглютинировать эритроциты различных животных. Реакцию агглютинации для определения групп крови применяют для установления системы АВО с помощью РА эритроцитов, используя антитела к группам крови А(II), В(III). Контролем служит сыворотка, не содержащая антител, т.е. АВ(IV) группы крови, антигены, содержащиеся в эритроцитах групп А(II), В(III); отрицательный контроль не содержит антигенов, т.е. используют эритроциты группы 0 (I). В реакции агглютинации для определения резус-фактора используют антирезусные сыворотки (не менее двух различных серий). При наличии на мембране исследуемых эритроцитов резус-антигена происходит агглютинация этих клеток. Контролем служат стандартные резус-положительные и резус-отрицательные эритроциты всех групп крови.

Реакцию агглютинации для определения антирезусных антител (непрямую реакцию Кумбса) применяют у больных при внутрисосудистом гемолизе. У некоторых таких больных обнаруживают антирезусные антитела, которые являются неполными. Они специфически взаимодействуют с резус-положительными эритроцитами, но не вызывают их агглютинации. Наличие таких неполных антител определяют в непрямой реакции Кумбса. Для этого в систему антирезусные антитела + резус-положительные эритроциты добавляют антиглобулиновую сыворотку (антитела против иммуноглобулинов человека), что вызывает агглютинацию эритроцитов. С помощью реакции Кумбса диагностируют: патологические состояния, связанные с внутрисосудистым лизисом эритроцитов иммунного генеза, например гемолитическую болезнь новорожденных: эритроциты резус-положительного плода соединяются с циркулирующими в крови неполными антителами к резус-фактору, которые перешли через плаценту от резус-отрицательной матери.

Реакция коагглютинации - разновидность РА: клетки возбудителя определяют с помощью стафилококков, предварительно обработанных иммунной диагностической сывороткой. Стафилококки, содержащие белокА, имеющий сродство к иммуноглобулинам, неспецифически адсорбируют антимикробные антитела, которые затем взаимодействуют активными центрами с соответствующими микробами, выделенными от больных. В результате коагглютинации образуются хлопья, состоящие из стафилококков, антител диагностической сыворотки и определяемого микроба.

АНТИТОКСИНЫ (греческий anti- против + токсины) - специфические антитела, образующиеся в организме человека и животных под действием токсинов (анатоксинов) микробов, ядов растений и животных, обладающие способностью нейтрализовать их ядовитые свойства.

Антитоксины являются одним из факторов иммунитета (см.) и выполняют главную защитную роль при токсинемических инфекциях (столбняке, дифтерии, ботулизме, газовой гангрене, некоторых стрептококковых и стафилококковых заболеваниях и др.).

В 1890 году Беринг и Китасато (Е. Behring, S. Kitasato) впервые наблюдали, что сыворотки животных, многократно получавших несмертельные дозы дифтерийного и столбнячного токсина, приобретали способность обезвреживать эти токсины (см.). В Пастеровском институте в Париже Ру (E. Roux) в 1894 г. была получена первая антитоксическая противодифтерийная сыворотка, которую он первый ввел в широкую практику. Антитоксическая сыворотка против газовой гангрены была получена Вейнбергом (М. Weinberg в 1915 году иммунизацией животных увеличивающимися дозами живой культуры. После открытия Рамоном (G. Ramon) в 1923 году анатоксинов (см.) получение любых антитоксинов не встречает больших трудностей.

В организме в естественных условиях антитоксины образуются в результате перенесенной токсинемической инфекции или вследствие носительства токсигенных микроорганизмов, обнаруживаются в сыворотке крови и могут обеспечивать невосприимчивость к токсинемическим инфекциям.

Антитоксический иммунитет можно создать и искусственно: активной иммунизацией анатоксином или введением антитоксической сыворотки (пассивный иммунитет). При первичной иммунизации анатоксином скорость образования антитоксинов зависит от чувствительности иммунизируемого, от дозы и качества анатоксина, от интервалов и скорости резорбции антигена в организме. При иммунизации сорбированными или преципитированными анатоксинами, применяющимися в наст, время, появление и накопление антитоксинов в крови происходит более медленно, чем при иммунизации теми же дозами несорбированных анатоксинов, но титры антитоксинов значительно выше и обнаруживаются более длительное время. После первичной иммунизации «иммунологическая память» в организме к образованию антитоксинов сохраняется неопределенно длительное время, до 25 лет, а возможно - и всю жизнь. При ревакцинации выработка антитоксинов в организме происходит очень быстро. Уже на 2-й день после ревакцинации обнаруживаются значительные количества антитоксинов, титры которых продолжают нарастать в последующие 10-12 дней. Быстрая выработка антитоксинов при ревакцинации имеет большое практическое значение в профилактике столбняка и других токсинемических инфекций. В целях профилактики столбняка новорожденных проводят иммунизацию и ревакцинацию столбнячным анатоксином беременных женщин. Образующиеся антитоксины обладают способностью проходить через плаценту в организм плода, а также передаваться новорожденному с молоком матери.

Антитоксические сыворотки получают иммунизацией лошадей и крупного рогатого скота возрастающими дозами анатоксинов, а затем и соответствующими токсинами. Образование антитоксинов у животных происходит более интенсивно в случае применения преципитированных антигенов - 1% хлористого кальция или 0,5% калийно-алюминиевых квасцов. Для повышения титра антитоксинов у лошадей-продуцентов применяют различные стимуляторы (см. Адъюванты).

Советские ученые (О. А. Комкова, К. И. Матвеев, 1943, 1959) разработали метод получения поливалентных противогангренозных (Cl. perfrin-gens, Cl. oedematiens, Cl. septicum) и противоботулинических антитоксинов типов А, В, С и Е от одного продуцента. В этом случае лошадь иммунизируют небольшими дозами нескольких антигенов. Этот метод нашел широкое применение в практике производства поливалентных противогангренозных и противоботулинических сывороток от одного продуцента с удовлетворительными титрами всех антитоксинов.

Антитоксины противодифтерийной и противостолбнячной лошадиной сыворотки в основном содержатся в γ1-, γ2-, β2-фракциях глобулинов.

Антитоксины в практической медицине применяются для профилактики и лечения дифтерии, столбняка и ботулизма. С помощью антитоксинов у людей можно создать пассивный иммунитет такой напряженности, который защищает от заболевания в случае проникновения в организм возбудителя инфекции или токсина, как это бывает при ботулизме. Детям, имевшим контакт с больным дифтерией, вводят антитоксины для предупреждения заболевания дифтерией. При травме неиммунизированным против столбняка детям и взрослым вводят противостолбнячную сыворотку. При выявлении случаев заболевания ботулизмом всем лицам, употреблявшим в пищу продукт, вызвавший заболевание, вводят поливалентную противоботулиническую сыворотку в целях профилактики.

Для получения лечебного действия очень важным является раннее введение антитоксина, способного обезвреживать токсин, циркулирующий в крови. Поэтому эффективность серотерапии (см.) зависит в значительной степени от срока применения антитоксинов. Результаты лечения антитоксинами при разных инфекциях не одинаковы. При лечении дифтерии у людей получены хорошие результаты; при лечении столбняка и ботулизма лучшие результаты получены при введении антитоксинов в начале заболевания. Эффективным является лечение стафилококкового сепсиса гомологичным альфа-стафилококковым антитоксином (С. В. Скуркович, 1969). При газовой гангрене лечебное действие антитоксинов подвергается сомнению, хотя многие врачи продолжают его применять.

Однако введение людям гетерологичных антитоксических сывороток для профилактики и лечения инфекций иногда сопровождается осложнениями. В редких случаях при введении лошадиной сыворотки у человека может развиться анафилактический шок (см.), иногда со смертельным исходом. В 5-10% случаев развивается сывороточная болезнь (см.). Поэтому в СССР и других странах для профилактики столбняка у людей вместо лошадиной сыворотки применяют гомологичный иммуноглобулин из донорской крови, содержащий столбнячный антитоксин. Гомологичный антитоксин редко вызывает нежелательные реакции и находится в организме в необходимом титре до 30-40 дней (К. И. Матвеев, С. В. Скуркович и сотр., 1973).

Для устранения осложнений, наблюдаемых от введения гетерологичных нативных антитоксических сывороток, предложены различные способы очистки А. от балластных белков: высаливание нейтральными солями, фракционирование с помощью электродиализа, переваривание посредством ферментов. Лучшие результаты были получены методом пептического переваривания (И. А. Перфентьев, 1936). Очистка антитоксических сывороток методом протео-лиза в СССР была осуществлена в Институте эпидемиологии и микробиологии им. Η. Ф. Гамалеи АМН СССР (А. В. Бейлинсон и сотрудниками, 1945). Преимуществом метода протеолиза (диаферм-3) является то, что он дает в 2-4 раза большую степень очистки антитоксинов, чем другие методы, но при этом теряется 30-50% антитоксинов. При протеолизе происходит глубокое изменение молекулы антитоксина и уменьшение его анафилактогенных свойств. Разработаны методы очистки и концентрации антитоксинов с применением гидрата окиси алюминия, фильтрацией через сефадексы (молекулярные сита) и применением ионного обмена. При t° 37° в течение 20 суток титр антитоксина в очищенных сыворотках несколько снижается, затем стабилизируется и сохраняется неизменным до 2 лет и более. После лиофильного высушивания под вакуумом при низких температурах титр антитоксина снижается на 2-25%. Высушенные антитоксины сохраняют свои физические и специфические свойства и могут храниться в течение ряда лет.

Антитоксины подвергаются обязательному контролю на безвредность на морских свинках и апирогенность на кроликах.

Содержание антитоксинов в антитоксических сыворотках выражается в международных единицах (ME), принятых Всемирной организацией здравоохранения, что соответствует минимальному количеству сыворотки, нейтрализующему стандартную единицу токсина, выраженную в минимальных смертельных, некротических или реактивных дозах в зависимости от вида животного и токсина. Например., ME противостолбнячной сыворотки соответствует ее минимальному количеству, нейтрализующему примерно 1000 минимальных смертельных доз (Dim) стандартного токсина для морской свинки весом 350 г; ME противоботулинического антитоксина - наименьшее количество сыворотки, нейтрализующее 10 000 Dim токсина для мышей весом 18-20 г; ME стандартной противодифтерийной сыворотки соответствует ее минимальному количеству, нейтрализующему 100 Dim стандартного токсина для морской свинки весом 250 г.

Для некоторых сывороток, не имеющих принятых международных стандартов, утверждены национальные стандарты, и их активность выражается в национальных единицах, которые называются антитоксическими единицами (АЕ).

При титровании антитоксинов сначала определяют условную (опытную) единицу токсина. Опытная доза токсина обозначается символом Lt (Limes tod) и устанавливается по отношению к стандартной антитоксической сыворотке, выпускаемой Гос. НИИ стандартизации и контроля медицинских биологических препаратов им. Л. А. Тарасевича М3 СССР. Для определения опытной дозы токсина к определенному количеству стандартной сыворотки в соответствии с уровнем титрования (к 1/5, 1/10 или 1/50 ME) в объеме 0,2 мл добавляют убывающие или возрастающие дозы токсина в объеме 0,3 мл. После выдерживания при комнатной температуре в течение 45 минут эту смесь вводят внутривенно белым мышам в объеме 0,5 мл на каждую мышь. За животными наблюдают 4 сут. За опытную дозу принимают то минимальное количество токсина, которое в смеси с принятой дозой стандартной сыворотки вызывает гибель 50% взятых в опыт мышей.

Противоботулинические антитоксические сыворотки типов А, В, С, Е и противогангренозные (Cl. perfringens) В, С титруют на уровне 1/5 ME. Опытная доза токсина подтитровывается также к 1/5 ME стандартной сыворотки. Противоботулиническая сыворотка типа F и противогангренозные сыворотки типов A, D, Е, а также противостолбнячная сыворотка титруются на уровне 1/10 ME. Опытная доза токсина подтитровывается обязательно к 1/10 ME стандартной сыворотки. Противогангренозная сыворотка (Cl. oedematiens) титруется на уровне 1/50 ME. Опытная доза токсина подтитровывается к 1/50 ME стандартной сыворотки. Испытуемые сыворотки разводят в зависимости от предполагаемого титра и к различным разведениям сыворотки в объеме 0,2 мл добавляют опытную дозу токсина в объеме 0,3 мл (в расчете на 1 мышь), смесь оставляют для соединения при комнатной температуре в течение 45 мин. и вводят по 0,5 мл внутривенно белым мышам. Противостолбнячная сыворотка титруется подкожным введением 0,4 мл смеси в заднюю лапку мыши. В опыт на каждую дозу берут не менее двух мышей, смесь готовят из расчета не менее чем на 3 мыши. При каждом титровании сыворотки обязательно ставится контроль активности опытной дозы токсина со стандартной сывороткой.

Принципы титрования дифтерийного антитоксина те же, что и других сывороток, только разведения стандартной сыворотки и опытная доза токсина совместно вводятся внутрикожно морской свинке (метод Ремера). Предварительно со стандартной сывороткой вытитровывается так называемая некротическая доза - limes necrosis (Ln) дифтерийного токсина, представляющая собой то наименьшее количество токсина, которое при внутрикожном введении морской свинке (в объеме 0,05 мл) в смеси с 1/50 ME стандартной противодифтерийной сыворотки вызывает к 4-5-му дню образование некроза. Титрование дифтерийного антитоксина по методу Рамона (реакция флоккуляции) производят с помощью токсина или анатоксина, в к-ром предварительно определяют содержание антигенных единиц (АЕ) в 1 мл. Одну антигенную единицу токсина, обозначаемую как порог флоккуляции - limes flocculationis (Lf), нейтрализует одна единица дифтерийного антитоксина. Для титрования небольших количеств дифтерийного антитоксина применяется и внутрикожный метод Йенсена на кроликах..

Антитоксины широко применяются для профилактики и терапии токсинемических инфекций. Кроме того, их используют для нейтрализации ядов змей, пауков и ядов растительного происхождения.

Библиография: Рамон Г. Сорок лет исследовательской работы, пер. с франц., М., 1962; Резепов Ф. Ф. и д р. Определение безвредности и специфической активности иммунных сывороток и глобулинов, в кн.: Методич. руководство по лаборат. оценке качества бакт. и вирусн. препаратов, под ред. С. Г. Дзагурова, с. 235, М., 1972; Токсины-анатоксины и антитоксические сыворотки. М., 1969; Behring и. К i t а в a t о, Über das Zustandekommen der Diphterie-Immunität und der Tetanus-Immunität bei Tieren, Dtsch. med. Wschr., S. 1113, 1890; Kuhns W. J. a. Pappenheimer A. M. Immunochemical studies of antitoxin produced in normal and allergic individuals hyperimmunized with diphtheria toxoid, J. exp. Med., v. 95,p. 375, 1952; Miller J. F. A. P. a. o. Interaction between lymphocytes in immune responses, Cell. Immunol., v. 2, p. 469, 1971, bibliogr.; White R. G. The relation of the cellular responses in germinal or lymphocytopoietic centres of lymph nodes to the production of antibody, в кн.: Mechanism. antibody formation, p. 25, Prague, 1960.

К. И. Матвеев.

Антитела: это белки вырабатываемые клетками лимфоидных органов (В лимфоцитами) под влиянием антигена и способные вступать с ними в специфическую связь. При этом антитела могут нейтрализовать токсины бактерий и вирусов, их называют антитоксины и вируснейтрализующие антитела.

Могут осаждать растворимые антигены - преципитины, склеивать корпускулярные антигены - агглютинины.

Природа антител: антитела относятся к гаммаглобулинам. В организме гаммаглобулины вырабатываются плазмоцитами и составляют в сыворотки крови 30% от всех белков.

Гаммаглобулины несущие функцию антител называются иммуноглобулинами и обозначаются Ig. Белки Ig по химическому составу относятся к гликопротеидам, то есть состоят из протеинов, сахаров, 17 аминокислот.

Молекула Ig:

При электронной микроскопии молекула Ig имеет форму игрек с изменяющимся углом.

Структурная единица Ig - мономер.

Мономер состоит из 4 полипептидных цепей связанных друг с другом дисульфидными связями. Из 4 цепей две цепи длинные по середине изогнутые. Молекулярная масса от 50-70 кД - это так называемые тяжелые Н цепи, а две цепи короткие прилегают к верхним отрезкам Н цепей, молекулярная масса 24 кД - это легкие L цепи.

Вариабельные легкие и тяжелые цепи совместно образуют участок, который специфически связывается с антигеном - антигенсвязывающий центр Fab- фрагмент, Fc- фрагмент отвечающий за активацию комплемента.

Fab (англ. fragment antigen binding -- антиген-связывающий фрагмент) и один Fc (англ. fragment crystallizable -- фрагмент, способный к кристаллизации).

Классы иммуноглобулинов:

Ig М - составляет от 5-10% сывороточных иммуноглобулинов. Это самая крупная молекула из всех пяти классов иммуноглобулинов. Молекулярная масса 900 тыс. кД. Первым появляется в сыворотки крови при внедрении антигена. Наличие Ig М указывает на острый процесс. Ig М агглютинирует и лизирует антиген, а также активирует комплемент. Привязан к кровеносному руслу.

Ig G - составляет от 70-80 % сывороточных иммуноглобулинов. Молекулярная масса 160 тыс. кД. Синтезируется при вторичном иммунном ответе, способен преодолевать плацентарный барьер и обеспечивать иммунную защиту новорожденных впервые 3-4 месяца, затем разрушается. В начале заболевания количество Ig G незначительно, но по мере развития болезни количество их увеличивается. Ему принадлежит главная роль в защите от инфекций. Высокие титры Ig G свидетельствуют о том, что организм находится на стадии выздоровления или на недавно перенесенную инфекцию. Обнаруживается в сыворотки крови и через слизистую кишечника распространяется в тканевой жидкости.

Ig А - составляет от 10-15%, молекулярная масса 160 тыс. кД. Играет важную роль в защите слизистых оболочек дыхательных и пищеварительных трактов, мочеполовой системы. Различают сывороточные и секреторные Ig А. Сывороточный обезвреживает микроорганизмы и их токсины, не связывает комплемент и не проходит через плацентарный барьер.

Секреторные Ig А активируют комплемент и стимулируют фагоцитарную активность в слизистых оболочках, содержится преимущественно в выделениях слизистых оболочек, слюне, слезной жидкости, поте, отделяемого нося, где обеспечивает защиту поверхностей сообщающихся с внешней средой от микроорганизмов. Синтезируется плазматическими клетками. В сыворотке человека, представлен мономерной формой. Обеспечивает местный иммунитет.

Ig Е- его в сыворотке количество невелико и лишь небольшая часть плазматических клеток синтезирует Ig Е. Образуются в ответ на аллергены и взаимодействуя с ними вызывают реакцию ГНТ. Синтезируется В-лимфоцитами и плазматическими клетками. Через плацентарный барьер не проходит.

Ig D -участие его недостаточно изучено. Почти весь находится на поверхности лимфоцитов. Продуцируется клетками миндалин и аденоидов. IgD не связывает комплемент, не проходит через плацентарный барьер. Ig D и Ig А взаимосвязаны между собой осуществляют активацию лимфоцитов. Концентрация Ig D увеличивается при беременности, при бронхиальной астме, при системной красной волчанке.

Нормальные антитела (естественные)

В организме содержится определенный уровень их, образуются без явлений антигенной стимуляции. К ним относятся антитела против эритроцитарных антигенов, группы крови, против кишечных групп бактерий.

Процесс выработки антител, их накопление и исчезновение имеют определенные характеристики, которые различны при первичном иммунном ответе (это ответ при первичной встречи с антигеном) и вторичном иммунном ответе (это ответ при повторном контакте с тем же антигеном спустя 2-4 недель).

Синтез антител при любом иммунном ответе протекает в несколько стадий - это латентная стадия, логарифмическая, стационарная и фаза снижения антител.

Первичный иммунный ответ:

Латентная фаза: в этот период происходит процесс распознавания антигена и формирования клеток, которые способны синтезировать антитела к нему. Продолжительность этого периода 3-5 дней.

Логарифмическая фаза: скорость синтеза антител невелика. (продолжительность 15-20 дней).

Стационарная фаза: титры синтезируемых антител достигают максимальных значений. Первыми синтезируются антитела, относящиеся к иммуноглобулинам класса М, затем G. Позже могут появляться Ig А и Ig Е.

Фаза снижения: уровень антител снижается. Продолжительность от1-6 мес.

Вторичный иммунный ответ.

Антитела (иммуноглобулины, ИГ, Ig) - это растворимые гликопротеины, присутствующие в сыворотке крови, тканевой жидкости или на клеточной мембране, которые распознают и связывают антигены. Иммуноглобулины синтезируются В-лимфоцитами (плазматическими клетками) в ответ на чужеродные вещества определенной структуры - антигены. Антитела используются иммунной системой для идентификации и нейтрализации чужеродных объектов - например, бактерий и вирусов.

Антитела выполняют две функции: антиген-связывающую функцию и эффекторную (например запуск классической схемы активации комплемента и связывание с клетками), являются важнейшим фактором специфического гуморального иммунитета, состоят из двух лёгких цепей и двух тяжелых цепей. У млекопитающих выделяют пять классов иммуноглобулинов - IgG, IgA, IgM, IgD, IgE, различающиеся между собой по строению и аминокислотному составу тяжелых цепей. Иммуноглобулины экспрессируются в виде мембраносвязанных рецепторов на поверхности В-клеток и в виде растворимых молекул, присутствующих в сыворотке и тканевой жидкости.

Строение антител

Антитела являются относительно крупными (~150 кДа - IgG) гликопротеидами, имеющими сложное строение. Состоят из двух идентичных тяжелых цепей (H-цепи, в свою очередь состоящие из VH, CH1, шарнира, CH2 and CH3 доменов) и из двух идентичных лёгких цепей (L-цепей, состоящих из VL и CL доменов). К тяжелым цепям ковалентно присоединены олигосахариды. При помощи протеазы папаина антитела можно расщепить на два Fab (англ. fragment antigen binding - антиген-связывающий фрагмент) и один Fc (англ. fragment crystallizable - фрагмент, способный к кристаллизации). В зависимости от класса и исполняемых функций антитела могут существовать как в мономерной форме (IgG, IgD, IgE, сывороточный IgA) так и в олигомерной форме (димер-секреторный IgA, пентамер - IgM). Всего различают пять типов тяжелых цепей (α-, γ-, δ-, ε-и μ- цепи) и два типа легких цепей (κ-цепь и λ-цепь).

Виды антител:

  • IgG является основным иммуноглобулином сыворотки здорового человека (составляет 70-75 % всей фракции иммуноглобулинов), наиболее активен во вторичном иммунном ответе и антитоксическом иммунитете. Благодаря малым размерам (коэффициент седиментации 7S, молекулярная масса 146 кДа) является единственной фракцией иммуноглобулинов, способной к транспорту через плацентарный барьер и тем самым обеспечивая иммунитет плода и новорожденного.
  • IgM представляют собой пентамер основной четырехцепочечной единицы, содержащей две μ- цепи. Появляются при первичном иммунном ответе на неизвестный антиген, составляют до 10 % фракции иммуноглобулинов. Являются наиболее крупными иммуноглобулинами (970 кДа).
  • IgA сывороточный IgA составляет 15-20 % всей фракции иммуноглобулинов, при этом 80 % молекул IgA представлено в мономерной форме у человека. Секреторный IgA представлен в димерной форме в комплексе секреторным компонентом, содержится в серозно-слизистых секретах (например, в слюне, молозиве, молоке, отделяемом слизистой оболочки мочеполовой и респираторной системы).
  • IgD составляет менее одного процента фракции иммуноглобулинов плазмы, содержится в основном на мембране некоторых В-лимфоцитов. Функции до конца не выяснены, предположительно является антигенным рецептором для В-лимфоцитов, еще не представлявшихся антигену.
  • IgE связан с мембранами базофилов и тучных клеток, в свободном виде в плазме почти отсутствует. Связан с аллергическими реакциями.

Функции антител

Иммуноглобулины всех изотипов бифункциональны. Это означает, что иммуноглобулин любого типа - распознает и связывает антиген, а затем - усиливает киллинг и/или удаление иммунных комплексов, сформированных в результате активации эффекторных механизмов. Одна область молекулы антител (Fab) определяет ее антигенную специфичность, а другая (Fc) осуществляет эффекторные функции: связывание с рецепторами, которые экспрессированы на клетках организма (например, фагоцитах); связывание с первым компонентом (C1q) системы комплемента для инициации классического пути каскада комплемента.

Как вырабатываются антитела

Выработка антител в ответ на поступление в организм антигенов зависит от того, впервые или повторно организм сталкивается с данным антигеном. При первичной встрече антитела появляются не сразу, а через несколько дней, при этом сначала образуются IgМ- антитела, а затем начинают преобладать IgG-антитела. Своего пика количество антител в крови достигает приблизительно за неделю, затем их количество медленно снижается. При повторном поступлении антигена в организм выработка антител происходит быстрее и в большем объеме, при этом образуются сразу IgG- антитела. Иммунная система способна запоминать свои встречи с некоторыми антигенами очень надолго, этим объясняется, например, пожизненный иммунитет к натуральной оспе или к детским инфекциям.

Реакция антиген-антитело

В результате реакции антиген-антитело в геле образуются линии преципитации, по которым можно судить о числе реагирующих компонентов, иммунологическом родстве антигенов и их электрофоретической подвижности. Антитела могут быть обнаружены в макроскопической реакции агглютинации с помощью частиц, нагруженных антигеном. Разработаны многочисленные варианты иммунологического анализа, основанные на взаимодействии меченых антигенов и антител. В качестве меток используют радиоактивные изотопы и ферменты.

Как антитела нейтрализуют токсины?

Молекула антитела, присоединившись вблизи активного центра токсина, может стереохимически блокировать его взаимодействие с субстратом, особенно с макромолекулярным. В комплексе с антителами токсин теряет способность к диффузии в тканях и может стать объектом фагоцитоза, особенно если размер комплекса увеличивается в результате связывания с нормальными аутоантителами.

Защитное действие сывороточных антител

Антитела нейтрализуют вирусы разными способами - например, стереохимически ингибируя связывание вируса с клеточным рецептором и предотвращая тем самым его проникновение в клетку и последующую репликацию. Иллюстрация этого механизма - протективный эффект, которым обладают антитела, специфичные к гемагглютинину вируса гриппа. Антитела к гемагглютинину вируса кори тоже препятствуют его проникновению в клетку, но межклеточное распространение вируса блокируется антителами к белку слияния цитоплазматических мембран соседних клеток.

Антитела могут непосредственно разрушать вирусные частицы, активируя комплемент по классическому пути или вызывая агрегацию вирусов с последующим фагоцитозом и внутриклеточной гибелью. Эффективными могут быть даже относительно низкие концентрации антител в крови: например, можно защитить реципиентов от заражения полиомиелитом, вводя противовирусные антитела, или предотвратить заболевание корью детей, контактировавших с больными, вводя профилактически нормальный гамма-глобулин человека.

Материнские антитела

В первые несколько месяцев жизни, когда собственная лимфоидная система ребенка еще недостаточно развита, защиту от инфекций обеспечивают материнские антитела, проникающие через плаценту или поступающие с молозивом и всасывающиеся в кишечнике. Основной класс иммуноглобулинов молока - это секреторный иммуноглобулин А. Он не всасывается в кишечнике, а остается здесь, защищая слизистую оболочку. Поразительно, что эти антитела направлены к бактериальным и вирусным антигенам, часто попадающим в кишечник. Кроме того, полагают, что клетки, продуцирующие иммуноглобулин А к таким антигенам, мигрируют в ткань молочной железы, откуда продуцируемые ими антитела попадают молоко.

А3 . Действие каких факторов вызывает необратимую денатурацию белка?

А4 . Укажите, что наблюдается при действии на растворы белков концентрированной азотной кислоты:

А5 . Белки, выполняющие каталитическую функцию, называются:

Гормонами

Ферментами

Витаминами

Протеинами

А6. Белок гемоглобин выполняет следующую функцию:

Часть Б

Б1 . Соотнесите:

Тип белковой молекулы

Свойство

Глобулярные белки

Молекула свернута в клубок

Фибриллярные белки

Не растворяются в воде

В воде растворяются или образуют коллоидные растворы

Нитевидная структура

Б2 . Белки:

Часть С

С1. Напишите уравнения реакций, с помощью которых из этанола и неорганических веществ можно получить глицин.

Вариант 2

Часть А

А1 . Массовая доля какого элемента в белках наибольшая?

А2 .Укажите, к какой группе веществ относится гемоглобин:

А3. Свертывание спирали в клубок-«глобулу» характеризует:

А4 . При горении белков ощущается запах:

А5 . Появление желтой окраски при взаимодействии раствора белка с концентрированной азотной кислотой указывает на наличие в белке остатков аминокислот, содержащих:

А6 .Белки, защищающие от проникающих в клетку бактерий:

Часть Б

Б1. Белки можно обнаружить:

Б2 . Какие утверждения о белках верны?

Часть С

С1. Осуществить превращения :

Н 2 О/Hg 2 + +Ag 2 O/NH 3(р-р) +Cl 2 NH 3 (изб.)

С 2 Н 2 → Х 1 → Х 2 → Х 3 → Х 4

Вариант 3

Часть А

А1 .Первичная структура белка представляет собой:

А2 .Витки спирали вторичной структуры белка скреплены главным образом за счет связей:

А3. Денатурация белков приводит к разрушению:

Пептидных связей

Водородных связей

Первичной структуры

Вторичной и третичной структуры

А4 . Укажите общую качественную реакцию на белки:

А6. Антитела и антитоксины выполняют следующую функцию белков:

Часть Б

Б1. Соотнесите:

Вид ткани или функции белка

Тип белка

Мускульные ткани

Глобулярные белки

Покровные ткани, волосы, ногти

Фибриллярные белки

Ферменты

Транспортные белки

Б2 . При гидролизе белков могут образоваться вещества:

C 2 H 5 OH

CH 3 CH(NH 2 )COOH

CH 3 COOH

CH 2 (OH)CH(NH 2 )COOH

NH 2 CH 2 COOH

NH 2 -NH 2

Часть С

С1. Напишите уравнения реакций образования дипептида из:

а) аспарагиногвой кислоты (2-аминобутандиовой кислоты);

б) из аминоуксусной кислоты и аланина.

Вариант 4

Часть А

А1 .Вторичная структура белка обусловлена:

А2 . Объединение четырех глобул в молекулу гемоглобина характеризует:

Первичную структуру белка