Определить внутреннее сопротивление источника эдс. Внутреннее сопротивление

На концах проводника, а значит, и тока необходимо наличие сторонних сил неэлектрической природы, с помощью которых происходит разделение электрических зарядов .

Сторонними силами называются любые силы, действующие на электрически заряженные частицы в цепи, за исключением электростатических (т. е. кулоновских).

Сторонние силы приводят в движение заряженные частицы внут-ри всех источников тока: в генераторах, на электростанциях, в гальванических элементах, аккумуляторах и т. д.

При замыкании цепи создается электрическое поле во всех про-водниках цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны движут-ся от положительно заряженного электрода к отрицательному), а во всей остальной цепи их приводит а движение электрическое поле (см. рис. выше).

В источниках тока в процессе работы по разделению заряженных частиц происходит превращение разных видов энергии в электричес-кую. По типу преобразованной энергии различают следующие виды электродвижущей силы:

- электростатическая — в электрофорной машине, в которой происходит превращение механической энергии при трении в электрическую;

- термоэлектрическая - в термоэлементе — внутренняя энергия нагретого спая двух проволок, изготовленных из разных металлов, превращается в электрическую;

- фотоэлектрическая — в фотоэлементе. Здесь происходит превращение энергии света в элек-трическую: при освещении некоторых веществ, например, селена, оксида меди (I) , кремния наблюдается потеря отрицательного электрического заряда;

- химическая — в гальванических элементах, аккумуляторах и др. источниках, в которых происходит превращение химической энергии в электрическую.

Электродвижущая сила (ЭДС) — характеристика источников тока. Понятие ЭДС было введено Г. Омом в 1827 г. для цепей постоянного тока. В 1857 г. Кирхгофф определил ЭДС как работу сторонних сил при переносе единичного электрического заряда вдоль замкнутого контура:

ɛ = A ст /q ,

где ɛ — ЭДС источника тока, А ст — работа сторонних сил , q — количество перемещенного заряда.

Электродвижущую силу выражают в вольтах.

Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единичного заряда) не во всем контуре, а только на данном участке.

Внутреннее сопротивление источника тока.

Пусть имеется простая замкнутая цепь, состоящая из источника тока (например, гальванического элемента, аккумулятора или генератора) и резистора с сопротивлением R . Ток в замкну-той цепи не прерывается нигде, следовательно, oн существует и внутри источника тока. Любой источник представляет собой некоторое сопротивление дли тока. Оно называется внутренним сопротивлением источника тока и обозначается буквой r .

В генераторе r — это сопротивление обмотки, в гальваническом элементе — сопротивление раствора электролита и электродов.

Таким образом, источник тока характеризуется величинами ЭДС и внутреннего сопротивлении, которые определяют его качество. Например, электростатические машины имеют очень большую ЭДС (до десятков тысяч вольт), но при этом их внутреннее сопротивление огромно (до со-тни Мом). Поэтому они непригодны для получения сильных токов. У гальванических элементов ЭДС всего лишь приблизительно 1 В, но зато и внутреннее сопротивление мало (приблизительно 1 Ом и меньше). Это позволяет с их помощью получать токи, измеряемые амперами.

Цель: экспериментально вычислить ЭДС и внутреннее сопротивление источника тока.

Оборудование: источник электрической энергии, амперметр, вольтметр, реостат (6 – 8 Ом), ключ, соединительные провода.

Величина, численно равная работе, которую совершают сторонние силы при перемещении единичного заряда внутри источника тока, называется электродвижущей силой источника тока ε, из закона Ома:

где I – сила тока, U – напряжение.

В СИ ε выражается в вольтах (В).

Электродвижущую силу и внутреннее сопротивление источника тока можно определить экспериментально.

Порядок выполнения работы

1.Определить цену деления шкалы измерительных приборов.

2.Составить электрическую цепь по схеме, изображенной на рис. 1

3.После проверки цепи преподавателем замкнуть ключ и, пользуясь реостатом, установить силу тока, соответствующую нескольким делениям шкалы амперметра снять показания вольтметра и амперметра.

4.Опыт повторить 2 раза, изменяя силу тока цепи при помощи реостата.

5.Полученные данные записать в таблицу 1.

Рисунок 4.10 – Экспериментальная схема

Напряжение на внешней части цепи U, В Сила тока в цепи I,А Внутреннее сопротивление r, Ом Среднее значение внутреннего сопротивления r ср, Ом ЭДС e, В Среднее ЭДС e c р, В

Таблица 1 – Экспериментальные данные

1. Результаты измерений подставить в уравнение 1 и, решая системы уравнений:

определить внутреннее сопротивление источника по формулам:

__________________________________________________________________________________________________________________________________________________________

3.Записать данные в таблицу 1.

5.Сделать вывод.

__________________________________________________________________________________________________________________________________________________________


Контрольные вопросы

1. Какова физическая суть электрического сопротивления?

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

2. Какова роль источника тока в электрической цепи?

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

3. Каков физический смысл ЭДС? Дать определение вольту.

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

4. От чего зависит напряжение на зажимах источника тока?

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

5. Пользуясь результатами произведенных измерений, определить сопротивление внешней цепи.

_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________


Отчет по лабораторной работе №__________

студента группы__________________

ФИО_______________________________________________________________

ТЕМА: ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ МОЩНОСТИ ЭЛЕКТРИЧЕСКОГО ТОКА ЛАМПЫ НАКАЛИВАНИЯ ОТ НАПРЯЖЕНИЯ

Цель: освоить метод измерения мощности, потребляемой электроприбором, основанный на измерении силы тока и напряжения; исследовать зависимость мощности, потребляемой лампочкой от напряжения на её зажимах; исследовать зависимость сопротивления проводника от температуры.

Оборудование: электрическая лампа, источник постоянного напряжения и переменного, реостат ползунковый, амперметр; вольтметр, ключ, соединительные провода, миллиметровая бумага.

Краткие теоретические сведения

Величина, равная отношению работы тока А ко времени t, за которое она совершается, называется мощностью P:

Следовательно, (1)

Порядок выполнения работы

Эксперимент №1

1.Составить электрическую цепь по схеме, изображенной на рисунке 1, для нулевого опыта соблюдая полярность приборов

Рисунок 1 – Схема подключения

2.Определить цену деления шкалы измерительных приборов

_____________________________________________________________________________

3.После проверки схемы преподавателем, снять показания напряжения U и силы тока I.

4.Данные приборов записать в таблицу 1.

Таблица 1 – Экспериментальные данные №1


Эксперимент №2.

1.Собрать схему по рис.2, где лампочка через реостат подключается к переменному току.

Рисунок 4.12 – Схема подключения

2.После проверки схемы преподавателем, снять показания амперметра и вольтметра, изменяя положение ползунка на реостате 10 – 11 раз.

3.Данные приборов записать в таблицу 2.

Таблица 2 – Экспериментальные данные №2

Обработка результатов измерения

__________________________________________________________________________________________________________________________________________________________

2.Найти сопротивление R 0 , для нулевого опыта:

(5)

где ΔТ 0 К – изменение абсолютной температуры (в данном случае равна комнатной температуре по шкале Цельсия); α – коэффициент температурного сопротивления для вольфрама (Приложение Б).

______________________________________________________________________________________________________________________________________________________________________________________________________________________________________

3.Полученные данные занести в таблицу 1.

Эксперимент №2

1.Для каждого опыта определить мощность Р, потребляемую лампой по формуле:

Р= U max ·I max (6)

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

3.Найти температуру нити накала лампы для каждого опыта по формуле:

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

4.Результаты измерений и вычислений занести в таблицу 2.

5.На миллиметровой бумаге построите графики: а) зависимость мощности Р, потребляемой лампой, от напряжения U, на ее зажимах; б) зависимость сопротивления R от температуры Т.

6.Сделайте вывод по результатам двум экспериментов.

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Контрольные вопросы

1. Каков физический смысл напряжения на участке электрической цепи?

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

2. Как определить мощность тока с помощью амперметра и вольтметра?

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________

3. Для каких целей используют ваттметр. Как он включается в цепи?

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

4. Как изменится сопротивление металлического проводника с увеличением температуры?

______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

5. Чем спираль 100 Вт лампы накаливания отличается от спирали лампы 25 – ваттной?

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Электрический ток в проводнике возникает под воздействием электрического поля, заставляющего свободные заряженные частицы приходить в направленное движение. Создание тока частиц - серьезная проблема. Соорудить такое устройство, которое будет поддерживать разность потенциалов поля длительное время в одном состоянии - задача, решение которой оказалось под силу человечеству только к концу XVIII века.

Первые попытки

Первые попытки «накопить электричество» для дальнейшего его исследования и использования были предприняты в Голландии. Немец Эвальд Юрген фон Клейст и голландец Питер ван Мушенбрук, проводившие свои исследования в городке Лейден, создали первый в мире конденсатор, названный позже «лейденской банкой».

Накопление электрического заряда уже проходило под действием механического трения. Использовать разряд через проводник можно было в течение некоторого, достаточно короткого, промежутка времени.

Победа человеческого разума над такой эфемерной субстанцией, как электричество, оказалась революционной.

К сожалению, разряд (электрический ток, создаваемый конденсатором) длился настолько коротко, что создать не мог. Кроме того, напряжение, даваемое конденсатором, постепенно понижается, что не оставляет возможности получать длительный ток.

Нужно было искать иной способ.

Первый источник

Эксперименты итальянца Гальвани по исследованию «животного электричества» были оригинальной попыткой найти естественный источник тока в природе. Развешивая лапки препарированных лягушек на металлических крючках железной решетки, он обратил внимание на характерную реакцию нервных окончаний.

Однако выводы Гальвани опроверг другой итальянец - Алессандро Вольта. Заинтересовавшись возможностью получения электричества из организмов животных, он провел серию экспериментов с лягушками. Но вывод его оказался полной противоположностью предыдущим гипотезам.

Вольта обратил внимание, что живой организм является лишь индикатором электрического разряда. При прохождении тока мышцы лапок сокращаются, указывая на разность потенциалов. Источником электрического поля оказался контакт разнородных металлов. Чем дальше друг от друга они находятся в ряду химических элементов, тем значительнее эффект.

Пластины из разнородных металлов, проложенные бумажными дисками, пропитанными раствором электролита, создавали длительное время необходимую разность потенциалов. И пусть она была невысока (1,1 В), но электрический ток можно было исследовать долгое время. Главное, что напряжение сохранялось неизменным так же долго.

Что происходит

Почему в источниках, получивших название «гальванических элементов», вызывается такой эффект?

Два металлических электрода, помещенных в диэлектрик, играют разные роли. Один поставляет электроны, другой их принимает. Процесс окислительно-восстановительной реакции приводит к появлению избытка электронов на одном электроде, который называют отрицательным полюсом, и недостатка на втором, обозначим его как положительный полюс источника.

В самых простых гальванических элементах окислительные реакции происходят на одном электроде, восстановительные - на другом. Электроны приходят на электроды из внешней части цепи. Электролит является проводником тока ионов внутри источника. Сила сопротивления руководит длительностью процесса.

Медно-цинковый элемент

Принцип действия гальванических элементов интересно рассмотреть на примере медно-цинкового гальванического элемента, действие которого идет в счет энергии цинка и сульфата меди. В этом источнике пластина из меди помещена в раствор а цинковый электрод погружен в раствор сульфата цинка. Растворы разделены пористой прокладкой во избежание смешивания, но обязательно соприкасаются.

Если цепь замкнута, поверхностный слой цинка окисляется. В процессе взаимодействия с жидкостью атомы цинка, превратившись в ионы, появляются в растворе. На электроде высвобождаются электроны, которые могут принимать участие в образовании тока.

Попадая на медный электрод, электроны принимают участие в восстановительной реакции. Из раствора на поверхностный слой поступают ионы меди, в процессе восстановления они превращаются в атомы меди, осаждаясь на медной пластине.

Суммируем происходящее: процесс работы гальванического элемента сопровождается переходом электронов восстановителя к окислителю по внешней части цепи. Реакции идут на обоих электродах. Внутри источника протекает ионный ток.

Сложности использования

В принципе, любая из возможных окислительно-восстановительных реакций может быть использована в батареях. Но веществ, способных работать в ценных технически элементах, не так уж и много. Более того, многие реакции требуют затрат дорогостоящих веществ.

Современные аккумуляторные батареи имеют более простое строение. Два электрода, помещенные в один электролит, заполняют сосуд - корпус батареи. Такие конструктивные особенности упрощают строение и удешевляют аккумуляторы.

Любой гальванический элемент способен создавать постоянный ток.

Сопротивление тока не позволяет всем ионам одновременно оказаться на электродах, поэтому элемент работает достаточно долго. Химические реакции образования ионов рано или поздно прекращаются, элемент разряжается.

Источника тока имеет большое значение.

Немного о сопротивлении

Использование электрического тока, бесспорно, вывело научно-технический прогресс на новую ступень, дало ему гигантский толчок. Но сила сопротивления протеканию тока становится на пути такого развития.

С одной стороны, электрический ток обладает бесценными свойствами, используемыми в быту и технике, с другой - имеется значительное противодействие. Физика как наука о природе пытается установить баланс, привести в соответствие эти обстоятельства.

Сопротивление тока возникает вследствие взаимодействия электрически заряженных частиц с веществом, по которому они движутся. Исключить этот процесс в нормальных температурных условиях невозможно.

Сопротивление

Источника тока и противодействие внешней части цепи имеют несколько различную природу, но одинаковым в этих процессах является совершение работы по перемещению заряда.

Сама работа зависит только от свойств источника и его наполнения: качеств электродов и электролита, так же как для внешних частей цепи, сопротивление которых зависит от геометрических параметров и химических характеристик материала. К примеру, сопротивление металлического провода возрастает с увеличением его длины и уменьшается при расширении площади сечения. При решении задачи, как уменьшить сопротивление, физика рекомендует использовать специализированные материалы.

Работа тока

В соответствии с законом Джоуля-Ленца в проводниках выделяется количество теплоты, пропорциональное сопротивлению. Если количество теплоты обозначить Q внут. , силу тока I, время его протекания t, то получим:

  • Q внут. = I 2 · r · t,

где r - внутреннее сопротивление источника тока.

Во всей цепи, включающей как внутреннюю, так и внешнюю ее части, выделится полное количество теплоты, формула которого имеет вид:

  • Q полное = I 2 · r · t + I 2 · R · t = I 2 · (r +R) ·t,

Известно, как обозначается сопротивление в физике: внешняя цепь (все элементы, кроме источника) имеет сопротивление R.

Закон Ома для полной цепи

Учтем, что основную работу совершают сторонние силы внутри источника тока. Ее величина равна произведению заряда, переносимого полем, и электродвижущей силы источника:

  • q · E = I 2 · (r + R) · t.

понимая, что заряд равен произведению силы тока на время его протекания, имеем:

  • E = I · (r + R).

В соответствии с причинно-следственными связями закон Ома имеет вид:

  • I = E: (r + R).

В замкнутой цепи прямо пропорциональна ЭДС источника тока и обратно пропорциональна общему (полному) сопротивлению цепи.

Опираясь на эту закономерность, можно определить и внутреннее сопротивление источника тока.

Разрядная емкость источника

К основным характеристикам источников можно отнести и разрядную емкость. Максимальное количество электричества, получаемое при эксплуатации в определенных условиях, зависит от силы тока разряда.

В идеальном случае, когда выполняются определенные приближения, разрядную емкость можно считать постоянной.

К примеру, стандартная батарейка разности потенциалов 1,5 В обладает разрядной емкостью 0,5 А·ч. Если ток разрядки 100 мА, то работает в течение 5 часов.

Способы зарядки батарей

Эксплуатация батарей приводит к их разрядке. зарядка малогабаритных элементов осуществляется при помощи тока, значение силы которого не превышает одной десятой емкости источника.

Предлагаются следующие способы зарядки:

  • использование неизменного тока в течение заданного времени (порядка 16 часов током 0,1 емкости аккумулятора);
  • зарядка понижающим током до заданного значения разности потенциалов;
  • использование несимметричных токов;
  • последовательное применение кратких импульсов зарядки и разрядки, при которых время первой превышает время второй.

Практическая работа

Предлагается задание: определить внутреннее сопротивление источника тока и ЭДС.

Для его выполнения необходимо запастись источником тока, амперметром, вольтметром, ползунковым реостатом, ключом, набором проводников.

Использование позволит определить внутреннее сопротивление источника тока. Для этого необходимо знать его ЭДС, величину сопротивления реостата.

Расчетная формула сопротивления тока во внешней части цепи может быть определена из закона Ома для участка цепи:

  • I = U: R,

где I - сила тока во внешней части цепи, измеряется амперметром; U - напряжение на внешнем сопротивлении.

Для повышения точности измерения делаются не менее 5 раз. Для чего это нужно? Измеренные в ходе эксперимента напряжение, сопротивление, ток (вернее, сила тока) используются далее.

Чтобы определить ЭДС источника тока, воспользуемся тем, что напряжение на его клеммах при разомкнутом ключе практически равно ЭДС.

Соберем цепь из последовательно включенных батареи, реостата, амперметра, ключа. К клеммам источника тока подключаем вольтметр. Разомкнув ключ, снимаем его показания.

Внутреннее сопротивление, формула которого получена из закона Ома для полной цепи, определим математическими расчетами:

  • I = E: (r + R).
  • r = E: I - U: I.

Измерения показывают, что внутреннее сопротивление бывает значительно меньше внешнего.

Практическая функция аккумуляторов и батарей находит широкое применение. Бесспорная экологическая безопасность электродвигателей не подлежит сомнению, но создать емкий, эргономичный аккумулятор - проблема современной физики. Ее решение приведет к новому витку развития автомобильной техники.

Малогабаритные, легкие, емкие аккумуляторные батареи также крайне необходимы в мобильных электронных устройствах. Запас энергии, применяемой в них, напрямую связан с работоспособностью устройств.

Закон Ома для полной цепи, определение которого касается значения электрического тока в реальных цепях, находится в зависимости от источника тока и от сопротивления нагрузки. Этот закон носит и другое название - закон Ома для замкнутых цепей. Принцип действия данного закона заключается в следующем.

В качестве самого простого примера, электрическая лампа, являющаяся потребителем электрического тока, совместно с источником тока есть не что иное, как замкнутая . Данная электрическая цепь наглядно показана на рисунке.

Электроток, проходя через лампочку, также проходит и через сам источник тока. Таким образом, во время прохождения по цепи, ток испытает сопротивление не только проводника, но и сопротивление, непосредственно, самого источника тока. В источнике сопротивление создается электролитом, находящимся между пластинами и пограничными слоями пластин и электролита. Отсюда следует, что в замкнутой цепи, ее общее сопротивление будет состоять из суммы сопротивлений лампочки и источника тока.

Внешнее и внутреннее сопротивление

Сопротивление нагрузки, в данном случае лампочки, соединенной с источником тока, носит название внешнего сопротивления. Непосредственное сопротивление источника тока называется внутренним сопротивлением. Для более наглядного изображения процесса, все значения необходимо условно обозначить. I - , R - внешнее сопротивление, r - внутреннее сопротивление. Когда по электрической цепи протекает ток, то для того, чтобы поддерживать его, между концами внешней цепи должна присутствовать разность потенциалов, которая имеет значение IхR. Однако, протекание тока наблюдается и во внутренней цепи. Значит, для того, чтобы поддержать электроток во внутренней цепи, также необходима разность потенциалов на концах сопротивления r. Значение этой разности потенциалов равно Iхr.

Электродвижущая сила аккумулятора

Аккумулятор должен иметь следующее значение электродвижущей силы, способной поддерживать необходимый ток в цепи: Е=IхR+Iхr . Из формулы видно, что электродвижущая сила аккумулятора составляет сумму внешнего и внутреннего . Значение тока нужно вынести за скобки: Е=I(r+R) . Иначе можно представить: I=Е/(r+R) . Двумя последними формулами выражается закон Ома для полной цепи, определение которого звучит следующим образом: в замкнутой цепи сила тока прямо пропорциональна электродвижущей силе и обратно пропорциональна сумме сопротивлений этой цепи.

Цель работы: Научиться экспериментальным путем определять ЭДС, и внутреннее сопротивление источника тока.

Приборы и оборудование: Источники электрической энергии, амперметр (до 2А с делением до 0,1А), вольтметр (постоянного до 3А с делением до 0,3В), магазин (сопротивления до 10 Ом) ключ, соединительные провода.

ТЕОРИЯ:

Для поддержания тока в проводнике необходимо, чтобы разность потенциалов (напряжение) на его концах была неизменной. Для этого используется источник тока. Разность потенциалов на его полюсах образуется вследствие разделения зарядов на положительные и отрицательные. Работу по разделению зарядов выполняют сторонние силы (не электрического происхождения).

Величина, измеряемая работой, совершенной сторонними силами при перемещении единичного положительного электрического заряда внутри источника тока, называется электродвижущей силой источника тока (ЭДС) и выражается в вольтах.

Когда цепь замыкается, разделенные в источнике тока заряды образуют электрическое поле, которое перемещает заряды по внешней цепи; внутри же источника тока заряды движутся навстречу полю под действием сторонних сил. Таким образом, энергия, запасенная в источнике тока, расходуется на работу по перемещению заряда в цепи с внешним R и внутренним r сопротивлениями.

ХОД РАБОТЫ

1. Собрать электрическую цепь как показано на схеме.

2. Измерить ЭДС источника электрической энергии замкнув его на вольтметр (схема).

3. Измерить силу тока и падение напряжения на заданном сопротивлении.

Е U I R r rcр
1.
2.
3.

4. Вычислить внутреннее сопротивление по закону Ома для всей цепи.

5. Произвести опыты с другими сопротивлениями и вычислить внутреннее сопротивление элемента.

6. Вычислить среднее значение внутреннего сопротивления элемента.

7. Результаты всех измерений и вычислений записать в таблицу.

8. Найти абсолютную и относительную погрешность.



9. Сделать вывод.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Укажите условия существования электрического тока в проводнике.

2. Какова роль источника электрической энергии в электрической цепи?

3. От чего зависит напряжение на зажимах источника электрической энергии?

ЛАБОРАТОРНАЯ РАБОТА № 7

ОПРЕДЕЛЕНИЕ ЭЛЕКТРОХИМИЧЕСКОГО ЭКВИВАЛЕНТА МЕДИ.

Цель работы : научиться на практике рассчитывать электрохимический эквивалент меди.

Оборудование: Весы с разновесом, амперметр, часы., источник электрической энергии, реостат, ключ, медные пластины (электроды), соединительные провода, электролитическая ванна с раствором медного купороса.

Теория

Процесс, при котором молекулы солей, кислот и щелочей при растворении в воде или других растворителях распадаются на заряженные частицы (ионы), назы­вается электролитической диссоциацией, получившийся при этом раствор с поло­жительными и отрицательными ионами называется электролитом.

Если в сосуд с электролитом поместить пластины (электроды), соединенные с зажимами источника тока (создать в электролите электрическое поле), то положи­тельные ионы будут двигаться к катоду, а отрицательные - к аноду. Следовательно, в растворах кислот, солей и щелочей электрический заряд будет перемещаться вместе с частицами вещества. У электродов при этом происходит окислительно-восстановительные реакции, при которых на них выделяется вещест­во. Процесс прохождения электрического тока через электролит, сопровождающий­ся химическими реакциями называется электролизом.

Для электролиза справедлив закон Фарадея: масса выделившегося вещества на электроде прямо пропорциональна заряду, прошедшему через электролит:

где k-электрохимический эквивалент-количествовещества, выделенное при прохождении через электролит 1 Кл электричества. Измерив силу тока в цепи, вре­мя его прохождения и массу выделившегося на катоде вещества можно определить электрохимический эквивалент (1с выражается в кг/Кл).

где m-масса меди, выделившейся на катоде; I-сила тока в цепи; t- время пропускания тока в цепи.

Соберите электрическую цепь по схеме.

1. Одну из пластин, которая будет катодом, (если пластина мокрая, ее надо подсушить) тщательно взвесить с точностью до 10мг и записать результат в таблицу.

2. Вставить электрод в электролитическую ванну и составить электрическую цепь согласно схеме.

3. Отрегулировать реостатом ток, чтобы величина его не превышала 1А на 50см 2 погруженной части катодной пластины.

4. Замкнуть цепь на 15-20 минут.

5. Разомкнуть цепь, вынуть катодную пластинку, смыть с нее остатка раствора и высушить под рукосушителем.

6. Взвесить высушенную пластину с точностью до 10мг.

7. Значение тока, время опыта, увеличение в массе катодной пластину записать в таблицу и определить электрохимический эквивалент.

Оценка погрешностей.

.

Относительная погрешность:
.

, следовательно .

После этого дается результат в виде: .

Сравните полученный результат с табличным.

Контрольные вопросы.

1. Что такое электролитическая диссоциация, электролиз?

2. До каких пор будет происходить электролиз медного купороса, если оба электрода медные? Оба электрода угольные?

3. Быстрее или медленнее пойдет электролиз, если один из медных электродов заменить цинковым?