Молекулярная кристаллография. Методы исследования включений в кристаллах. Образование и работа

При этом большое значение придавалось их форме. Греками же была создана геометрия, выведены пять платоновых тел и сконструировано множество многогранников, позволяющих описывать форму кристаллов.

Первым в России предпринял точные кристаллографические исследования Н. И. Кокшаров , а получил полную классификацию кристаллографической группы Е. С. Фёдоров .

Основные понятия кристаллографии

Для описания симметрии многограниников и кристаллических решеток в кристаллографии установлена следующая иерархия терминов:

  • Три категории симметрии
    • Семь сингоний
    • Шесть кристаллических (кристаллографических) систем
    • 14 решёток Браве
      • 32 класса или вида симметрии

Кроме того, используются термины:

Пирамиды роста

Пирами́ды ро́ста - пирамиды, основаниями которых служат грани кристалла, а общей вершиной - начальная точка роста .

Реальный кристалл во многих случаях целесообразно рассматривать как совокупность пирамид роста, поскольку очень часто физические свойства пирамид роста с основаниями, принадлежащим к различным простым формам , оказываются различными. Это подтверждается существованием у многих природных кристаллов структуры песочных часов, случаями закономерной оптической аномалии у кристаллов кубической системы и пр.

Симметрия

Симме́три́я кристаллов (др.-греч. συμμετρία «соразмерность», от μετρέω - «меряю»)- это закономерная повторяемость в пространстве одинаковых граней, ребер и углов фигуры, которая может совмещаться сама с собой в результате одного или нескольких отражений. Для описания симметрии пользуется воображаемыми образами - точками, прямыми, плоскостями, называемыми элементами симметрии.

Плоскость симметрии (P) - это воображаемая плоскость, которая делит фигуру на две симметрично равные части, расположенные друг относительно друга как предмет и его зеркальное отражение. Ось симметрии (L) - прямая линия, при вращении вокруг которой повторяются равные части фигуры, то есть она самосовмещается. Число совмещений при повороте на 360° определяет порядок оси симметрии (n). Центр симметрии (С) - точка внутри кристалла, в которой пересекаются и делятся пополам все линии, соединяющие соответственные точки на его поверхности.

Вид симметрии

Категория Низшая Средняя Высшая
Сингония Триклинная Моноклинная Ромбическая Тетрагональная Тригональная Гексагональная Кубическая
Примитивный L 1 L 4 L 3 L 6 4L 3 3L 2
Центральный C L 4 PC L 3 C = L i3 L 6 PC 4L 3 3L 2 3PC
Планальный P L 2 2P L 4 4P L 3 3P L 6 6P 3L i4 4L 3 6P
Аксиальный L 2 3L 2 L 4 4L 2 L 3 3L 2 L 6 6L 2 3L 4 4L 3 6L 2
План-аксиальный L 2 PC 3L 2 3PC L 4 4L 2 5PC L 3 3L 2 3PC = L i3 3L 2 3P L 6 6L 2 7PC 3L 4 4L 3 6L 2 9PC
«Инверсионно-примитивный» L i4 L i6 =L 3 +^ P
«Инверсионно-планальный» L i4 2L 2 2P L i6 3L 2 3P

См. также

Примечания

Литература

  • Уэвелль В. История индуктивных наук от древнейшего и до настоящего времени. В трех томах. Т.III. История кристаллографии. СПб.,1869.
  • Шубников А. В. У истоков кристаллографии. М., 1972.-52 с.
  • Шафрановский И. И. История кристаллографии в России. М.- Л.,1962.-416 с.
  • Шафрановский И. И. История кристаллографии (с древнейших времен до начала XIX столетия). Л., «Наука»,1978.-297 с.
  • Шафрановский И. И. Кристаллография в СССР: 1917-1991 / Отв. ред. Н. П. Юшкин. -СПб., 1996.
  • Burke J.G. Origins of the science of crystals. University of California, Los Angeles, 1966. 198 p.

Ссылки


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Кристаллография" в других словарях:

    Кристаллография … Орфографический словарь-справочник

    - (греч., от hrystallos кристалл, и grapho пишу). Описание наружного вида природных кристаллов, часть кристаллогии. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. КРИСТАЛЛОГРАФИЯ греч., от krystallos, кристалл, и… … Словарь иностранных слов русского языка

    - (от кристаллы и греч. grapho пишу, описываю), наука об атомно мол. строении, симметрии, физ. св вах, образовании и росте кристаллов. К. зародилась в древности в связи с наблюдениями над природными кристаллами, имеющими естеств. форму правильных… … Физическая энциклопедия

    Наука о к лах и кристаллическом веществе; делите” на геометрическую, физ. и хим. Геометрическая К. объединяет учение о симметрии (см. Элементы симметрии) и формах кристаллических тел, о геометрических законах построения пространственных решеток… … Геологическая энциклопедия

    КРИСТАЛЛОГРАФИЯ, изучение образования и строения кристаллических веществ. Эта дисциплина охватывает изучение образования кристаллов, химических связей в них, а также физических свойств твердых веществ. В частности, кристаллография занимается… … Научно-технический энциклопедический словарь

    кристаллография - и, ж. cristallographie f., Kristallographie <гр. Наука о кристаллах, их строении и свойствах. БАС 1. Кристаллография. Севастьянов Геогнозия 1810 ч. 1. Роме де Лиль, основатель современной кристаллографи, еще в 80 х гг. 18 столетия. Природа… … Исторический словарь галлицизмов русского языка

    - (от кристаллы и...графия), наука о кристаллическом состоянии вещества. Изучает симметрию, строение, образование и свойства кристаллов. Зародилась в древности и развивалась в тесной связи с минералогией как наука, устанавливающая законы огранения… … Современная энциклопедия

    - (от кристаллы и...графия) наука о кристаллическом состоянии вещества. Изучает симметрию, строение, образование и свойства кристаллов. Зародилась в древности и развивалась в тесной связи с минералогией как наука, устанавливающая законы огранения… … Большой Энциклопедический словарь

ОСНОВЫ КРИСТАЛЛОГРАФИИ И КРИСТАЛЛОХИМИИ

Кристаллография - наука о кристаллах. Она изучает их внешнюю форму, внутреннее строение (структуру), физико-химические свойства, происхождение. Современная кристаллография включает следующие основные разделы: морфология кристаллов (геометрическая кристаллография), кристаллохимия (структурная кристаллография), кристаллофизика, кристаллогенезис (рост кристаллов).

Кристаллическими называются твердые вещества, построенные из материальных частиц - ионов, атомов или молекул, геометрически правильно расположенных в пространстве. Для описания порядка расположения частиц в пространстве их стали отождествлять с точками. Из такого подхода постепенно сформировалось представление о пространственной или кристаллической решетке как о бесконечном трехмерном периодическом образовании (рис.1). В ней выделяют узлы (отдельные точки, центры тяжести атомов и ионов), ряды (ряд - совокупнось узлов, лежащих на одной прямой) и плоские сетки (плоскости проходящие через любые три узла). Таким образом, кристаллическое вещество имеет строго закономерное (решетчатое или ретикулярное) внутреннее строение (от лат. reticulum - сеточка). При благоприятных условиях они могут самоограняться, образуя правильные геометрические многогранники - кристаллы. Геометрически правильная форма кристаллов обусловливается прежде всего их строго закономерным внутренним строением. Сетки кристаллической решетки соответствуют граням реального кристалла, места пересечения сеток - ряды - ребрам кристаллов, а места пересечения ребер - вершинам кристаллов.

Аморфными называются твердые тела, в которых частицы располагаются в пространстве беспорядочно. Иногда их называют минералоидами.

Все кристаллы обладают рядом основных специфических свойств, отличающих их от некристаллических аморфных тел. Такими свойствами являются:

    Однородность строения - одинаковость узора взаимного расположения атомов во всех частях объема его кристаллической решетки

    Анизотропность - различие физических свойств кристаллов (теплопроводность, твердость, упругость и другие) по параллельным и непараллельным направлениям кристаллической решетки. Свойства одинаковы по параллельным направлениям, но неодинаковы по непараллельным направлениям. В противоположность анизотропным, изотропные тела имеют одинаковые свойства во всех направлениях.

    Способность самоограняться . Этим свойством - принимать многогранную форму в результате свободного роста в подходящей среде - обладают только кристаллических вещества.

    Симметричность - это закономерная повторяемость в расположении предметов или их частей на плоскости или в пространстве. Симметрия кристаллов соответствует симметрии их пространственных решеток. Каждый кристалл может быть совмещен сам с собой определенными преобразованиями (поворотами или отражениями), которые называются симметрическими.

1.1. Основы геометрической кристаллографии

1.1.1. Элементы симметрии кристаллов

Изучение кристаллов начинается с рассмотрения их внешней формы. Внешняя форма хорошо сформированных кристаллических многогранников может быть описана с помощью элементов симметрии.

Симметричным считается объект, который может быть совмещен сам с собой определенными преобразованиями: поворотами или (и) отражениями в зеркальной плоскости.

Элементы симметрии - это вспомогательные геометрические образы (плоскости, прямые линии, точки), с помощью которых обнаруживается симметрия фигур.

Рассмотрим элементы симметрии.

Плоскость симметрии - это воображаемая плоскость, которая делит фигуру на две равные части так, что одна из частей является зеркальным отражением другой. Плоскость симметрии обозначается буквой Р (рис.2). Если плоскостей симметрии в данном кристалле несколько, то перед обозначением плоскости ставится их число. Например 3Р (три плоскости симметрии имеет спичечная коробка)(рис.4 ). В кристаллах может быть одна, две, три, четыре, пять, шесть, семь и девять плоскостей симметрии. Теоретически можно доказать, что восьми и более девяти плоскостей симметрии в кристаллах быть не может Многие кристаллы вообще не имеют ни одной плоскости симметрии.

Ось симметрии - воображаемая прямая линия, при повороте вокруг которой всегда на один и тот же угол происходит совмещение равных частей фигуры. Наименьший угол поворота вокруг оси, приводящий к такому совмещению, называется элементарным углом поворота оси симметрии a. Его величина определяет порядок оси симметрии n, который равен числу самосовмещений при полном повороте фигуры на 360 o (n = 360/a).

Оси симметрии обозначаются буквой L с цифровым индексом, указывающим на порядок оси - L n . Доказано, что в кристаллах возможны только оси второго, третьего, четвертого и шестого порядков.

Они обозначаются L 2 , L 3 , L 4 , L 6 . Осей пятого и порядка выше шестого в кристаллах не бывает. Оси третьего L 3 , четвертого L 4 и шестого L 6 порядка принято считать осями высшего порядка.

Центр симметрии (центр инверсии) - это такая точка внутри фигуры при проведении через которую любая прямая встретит на равном от нее расстоянии одинаковые и обратно расположенные части фигуры. Центр симметрии обозначается буквой С (рис.3). Если каждая грань кристалла имеет себе равную и параллельную или обратно параллельную, то данный кристалл обладает центром симметрии. Некоторые кристаллы могут не иметь центра симметрии (рис.5).

Перечень всех элементов симметрии кристалла, записанный в виде их символов, называется формулой симметрии или видом симметрии.

Cтрогий математический анализ (Гессель, 1830, Гадолин, 1867) показал, что существует всего 32 вида симметрии. Это все возможные для кристаллов комбинации элементов симметрии.

32 вида симметрии объединяются в сингонии. Всего различают семь сингоний.

Название "сингония" происходит от греческого " син" - "сходно" и "гон" -"угол". Сингонию кристалла определяют по обязательным и сходным для каждой сингонии элементам симметрии, а также, основываясь на наличии или отсутсвии единичных направлений.

Единичное направление (Е) - это единственное, неповторяющееся какими-либо операциями симметрии данной группы направление в кристаллическом многограннике.

7 сингоний объединены в три категории.

 Средняя категория объединяет тригональную, тетрагональную и гексагональную сингонии. Кристаллы этих сингоний имеют только одну ось симметрии высшего порядка (L 3 , L 4 , L 6), которые совпадают с единственным единичным направлением.

Таблица 1. Названия и формулы 32 видов симметрии.

Сингонии

Формула в символике Браве

Триклинная

Моноклинная

Р; L 2 ; L 2 PC

Ромбическая

L 2 2P; 3L 2 ; 3L 2 3PC

Тригональная

L 3 ; L 3 C; L 3 3P; L 3 3L 2; L 3 3L 2 3PC;

Тетрагональная

L 4 ; L 4 PC; L 4 4P; L 4 4L 2 ; L 4 4L 2 5PC; Li 4 ; Li 4 2L 2 2P

Гексагональная

Li 6 =L 3 P; Li 6 3L 2 3P=L 3 3L 2 4P; L 6 ; L 6 PC; L 6 6P; L 6 6L 2 ; L 6 6L 2 7PC

Кубическая

4L 3 3L 2 ; 4L 3 3L 2 3PC; 4L 3 3L 2 (3Li 4)6P; 3L 4 4L 3 6L 2 ; 3L 4 4L 3 6L 2 9PC

История науки

Истоки кристаллографии можно усмотреть ещё в античности, когда греки предприняли первые попытки описания кристаллов. При этом большое значение придавалось их форме. Греками же была создана геометрия, выведены пять платоновых тел и сконструировано множество многогранников, позволяющих описывать форму кристаллов.

Из курса кристаллографии

1. ВВЕДЕНИЕ.

В курсе кристаллографии нам предстоит познакомиться с закономерностями, существующими в мире кристаллов – мире не менее красивом, разнообразном, развивающемся, зачастую не менее загадочном, чем мир живой природы. Важность кристаллов для геологических наук состоит в том, что подавляющая часть земной коры находится в кристаллическом состоянии. В классификации таких фундаментальных объектов геологии, как минерал и горная порода, понятие кристалла является первичным, элементарным, аналогично атому в периодической системе элементов или молекуле в химической классификации веществ. По афористичному высказыванию известного минералога, профессора Санкт-Петербургского горного института Д.П. Григорьева, «минерал – это кристалл». Ясно, что свойства минералов и горных пород теснейшим образом связаны с общими свойствами кристаллического состояния. Слово «кристалл» – греческое (krustalloV), исходное его значение – «лёд». Однако уже в античное время этот термин был перенесён на прозрачные природные многогранники других веществ (кварца, кальцита и т. п.), так как считалось, что это тоже лёд, получивший в силу каких-то причин устойчивость при высокой температуре. В русском языке это слово имеет две формы: собственно «кристалл», означающее возникшее естественным путем многогранное тело, и «хрусталь» – особый сорт стекла с высоким показателем преломления, а также прозрачный бесцветный кварц («горный хрусталь»). В большинстве европейских языков для обоих этих понятий используется одно слово (сравните английские «Crystal Palace» – «Хрустальный дворец» в Лондоне и «Crystal Growth» – международный журнал по росту кристаллов). С кристаллами человечество познакомилось в глубокой древности. Связано это, в первую очередь, с их часто реализующейся в природе способностью самоограняться, т. е. самопроизвольно принимать форму изумительных по совершенству полиэдров. Даже современный человек, впервые столкнувшись с природными кристаллами, чаще всего не верит, что эти многогранники не являются делом рук искусного мастера. Форме кристаллов издавна придавалось магическое значение, о чём свидетельствуют некоторые археологические находки . Упоминания о «кристалле» (по-видимому, всё-таки речь идёт о «хрустале») неоднократно встречаются в Библии (см., напр.: Откровение Иоанна, 21, 11; 32, 1, и др.). В среде математиков существует аргументированное мнение, что прототипами пяти правильных многогранников (тел Платона) послужили природные кристаллы. Многим архимедовым (полуправильным) многогранникам также имеются точные или очень близкие аналоги в мире кристаллов. А в прикладном искусстве древности иногда в качестве образцов для подражания использовались кристаллические многогранники, причём и такие, которые заведомо не рассматривались тогдашней наукой. Например, в Государственном Эрмитаже хранится нитка бус, форма которых с высокой точностью воспроизводит характерную форму кристаллов красивого полудрагоценного минерала граната. Бусины эти изготовлены из золота (предположительно, ближневосточная работа I–V вв. н. э.). Таким образом, кристаллы с давних пор оказывали заметное воздействие на основные сферы интересов человека: эмоциональную (религия, искусство), идеологическую (религия), интеллектуальную (наука, искусство). Одним из первых законов, замеченных в отношении формы кристаллов, был закон постоянства углов между гранями или рёбрами кристаллов (И. Кеплер; Н. Стенон, ХVII в.): на разных индивидах одного и того же кристаллического вещества углы между соответственными гранями или pёбpaми одинаковы (рис. 1.1).

Стенон первый предложил рациональное объяснение этого, состоящее в послойном нарастании граней (т. е. их параллельном перемещении) при увеличении объёма кристалла, а Кеплер выдвинул первую правильную, хотя и неполную теорию строения кристаллов из шаров одинакового диаметра. Довольно давно были отмечены и такие общие особенности кристаллов, как однородность – постоянство свойств кристалла в любой его точке, и анизотропность – различие свойств кристалла по непараллельным направлениям (при одинаковости тех же свойств по параллельным направлениям). С анизотропностью тесно связана группировка всех граней кристалла в призматические пояса (зоны), оси которых имеют вполне определённые взаимные ориентировки (рис. 1.2). Эти оси (как и параллельные им рёбра между гранями одной зоны) соответствуют направлениям с наиболее плотным расположением атомов.

И, разумеется, не могло остаться без внимания одно из основных свойств кристаллов – их симметричность, визуально выражающаяся в закономерном, «правильном» расположении одинаковых граней кристалла. Как говорил творец современной теории строения кристаллов E.С. Фёдоров, «кристаллы блещут симметрией». Эти и многие другие геометрические и физические закономерности, обнаруженные в кристаллах, привели к середине XIX в. к представлению об их трёхмерно-периодическом или решётчатом строении (рис. 1.3). Это представление просуществовало в виде гипотезы (хотя и весьма солидно обоснованной) до 1912 г., когда был проведён исторический эксперимент по дифракции рентгеновских лучей в кристаллах (Макс фон Лауэ). Этот эксперимент непосредственно доказал правильность принятой гипотезы и послужил стимулом бурного развития кристаллографии и её проникновения буквально во все области человеческой деятельности.

Изображение:NaCllatice.jpg‎

Разнообразие и высокая стабильность свойств кристаллов, возможность целенаправленного изменения этих свойств обусловили широчайшее применение кристаллов в науке и технике. Без использования кристаллов немыслима современная микроэлектроника и, следовательно, электронно-вычислительная техника. В оптике (вспомним, что 90% информации человек получает с помощью зрения) кристаллы используются не только в качестве пассивных элементов типа призм и линз, но и как генераторы и разнообразные модуляторы оптического излучения. Работы по высокотемпературной сверхпроводимости, сулящей необозримые перспективы для энергетики и экологии, также базируются на получении определённых кристаллов и исследовании их свойств. Интенсивно изучается и используется роль кристаллов в биологических системах, в медицине и т. д. Разнообразные запросы науки и техники вызвали появление целой отрасли промышленности – производства синтетических кристаллов. Определяя позицию кристаллографии в системе наук, её можно поместить в центре тетраэдра, вершинами которого являются минералогия, математика, физика и химия. Это те области знаний, с которыми кристаллография наиболее тесно связана как генетически, так и при обмене новой информацией. Минералогия (буквально – рудознание), древняя наука о мире камня, была подлинной колыбелью, в которой зародилась и приобрела свои основные характерные черты кристаллография. Минералы, с их неисчерпаемым разнообразием свойств, и сейчас являются богатейшим источником новых данных и задач для кристаллографии. Перед математикой со стороны кристаллографии были поставлены крайне интересные и глубокие теоретические вопросы. Бóльшую часть из них математика разрешила, создав фундамент структурной кристаллографии и теории симметрии. Но и до сих пор сотрудничество кристаллографии и математики обогащает обе эти науки. Взаимодействие физики с кристаллографией имеет богатую и длительную историю. Достаточно вспомнить, что многие новые физические явления: разделение естественного света на две плоскополяризованные компоненты, пьезо- и пироэлектричество, электро- и магнитооптические эффекты и т. д., были открыты именно в кристаллах, а первый оптический квантовый генератор (лазер) был создан на кристалле рубина. О современном единении этих областей знания говорит название специального раздела науки – кристаллофизики. Можно упомянуть и печальный курьёз этой темы: крупнейший физик, нобелевский лауреат академик П.Л. Капица в дни своей опалы (на закате сталинской эпохи) был переведён с поста директора созданного им Института физических проблем на должность старшего научного сотрудника Института кристаллографии.

С химией у кристаллографии также существуют давние и тесные связи. Закон Дальтона и закон Гаюи (см. лекцию 5), одинаковые по форме, взаимно подкрепляли гипотезу о дискретном строении материи. Кристаллография является одной из надёжнейших основ стереохимии. Связь этих наук ярко иллюстрируется тем фактом, что дважды лауреат Нобелевской премии был одновременно крупнейшим и химиком, и кристаллографом. Кристаллам и кристаллографии отдали надлежащую дань и художники, и литераторы. Так, центром композиции своей знаменитой гравюры «Меланхолия» один из гениев Возрождения Альбрехт сделал кристаллический многогранник; своеобразнейший художник нашего столетия Морис Эшер широко использовал в своих работах принципы кристаллографической симметрии; будущий нобелевский лауреат по литературе поэт некоторое время служил лаборантом в кристаллографической лаборатории Санкт-Петербургского (тогдашнего Ленинградского) университета (впрочем, следов его деятельности в этой науке не сохранилось). Кристаллографом был и известный ученый, московский физик . Число же упоминаний о кристаллах в литературных произведениях перечислить невозможно. Таким образом, кристаллографии принадлежит почётная роль связующего звена между самыми разными сторонами духовного мира человека. Наверное, наиболее глубоко и синтетично выразил это обстоятельство Н.А. Морозов, крупный учёный, поэт, многолетний узник Шлиссельбургской крепости, в стихотворении, посвящённом Е.С. Фёдорову:

В недрах стеклянных фиалов Словно волшебный скульптóр Светлые грани кристаллов Лепит бесцветный раствор.

В нас из мечтаний неясных, Мыслей, томлений и дум Грёзы творений прекрасных Вечно ваяет наш ум.

Родствен семье минералов Мир бестелесных идей. Грёзы, как грани кристаллов, Вкраплены в души людей.

Г. Вейль . Симметрия. М.: Наука, 1968. 192 с.

Основные понятия кристаллографии

Для описания симметрии многограниников и кристаллических решеток в кристаллографии установлена следующая иерархия терминов.