Как доказать что призма правильная. Прямая призма — Гипермаркет знаний. Определение и свойства призмы

Многогранники

Основным объектом изучения стереометрии являются пространственные тела. Тело представляет собой часть пространства, ограниченную некоторой поверхностью.

Многогранником называется тело, поверхность которого состоит из конечного числа плоских многоугольников. Многогранник называется выпуклым, если он расположен по одну сторону плоскости каждого плоского многоугольника на его поверхности. Общая часть такой плоскости и поверхности многогранника называется гранью . Грани выпуклого многогранника являются плоскими выпуклыми многоугольниками. Стороны граней называется ребрами многогранника , а вершины – вершинами многогранника .

Например, куб состоит из шести квадратов, являющихся его гранями. Он содержит 12 ребер (стороны квадратов) и 8 вершин (вершины квадратов).

Простейшими многогранниками являются призмы и пирамиды, изучением которых и займемся далее.

Призма

Определение и свойства призмы

Призмой называется многогранник, состоящий из двух плоских многоугольников, лежащих в параллельных плоскостях совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих многоугольников. Многоугольники называются основаниями призмы , а отрезки, соединяющие соответствующие вершины многоугольников, – боковыми ребрами призмы .

Высотой призмы называется расстояние между плоскостями ее оснований (). Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани, называется диагональю призмы (). Призма называется n-угольной , если в ее основании лежит n-угольник.

Любая призма обладает следующими свойствами, следующими из того факта, что основания призмы совмещаются параллельным переносом:

1. Основания призмы равны.

2. Боковые ребра призмы параллельны и равны.

Поверхность призмы состоит из оснований и боковой поверхности . Боковая поверхность призмы состоит из параллелограммов (это следует из свойств призмы). Площадью боковой поверхности призмы называется сумма площадей боковых граней.

Прямая призма

Призма называется прямой , если ее боковые ребра перпендикулярны основаниям. В противном случае призма называется наклонной .

Гранями прямой призмы являются прямоугольники. Высота прямой призмы равна ее боковым граням.

Полной поверхностью призмы называется сумма площади боковой поверхности и площадей оснований.

Правильной призмой называется прямая призма с правильным многоугольником в основании.

Теорема 13.1 . Площадь боковой поверхности прямой призмы равна произведению периметра на высоту призмы (или, что то же самое, на боковое ребро).

Доказательство. Боковые грани прямой призмы есть прямоугольники, основания которых являются сторонами многоугольников в основаниях призмы, а высоты являются боковыми ребрами призмы. Тогда по определению площадь боковой поверхности:

,

где – периметр основания прямой призмы.

Параллелепипед

Если в основаниях призмы лежат параллелограммы, то она называется параллелепипедом . У параллелепипеда все грани – параллелограммы. При этом противолежащие грани параллелепипеда параллельны и равны.

Теорема 13.2 . Диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам.

Доказательство. Рассмотрим две произвольные диагонали, например, и . Т.к. гранями параллелепипеда являются параллелограммы, то и , а значит по Т о двух прямых параллельных третьей . Кроме того это означает, что прямые и лежат в одной плоскости (плоскости ). Эта плоскость пересекает параллельные плоскости и по параллельным прямым и . Таким образом, четырехугольник – параллелограмм, а по свойству параллелограмма его диагонали и пересекаются и точкой пересечения делятся пополам, что и требовалось доказать.

Прямой параллелепипед, у которого основанием является прямоугольник, называется прямоугольным параллелепипедом . У прямоугольного параллелепипеда все грани – прямоугольники. Длины непараллельных ребер прямоугольного параллелепипеда называются его линейными размерами (измерениями). Таких размеров три (ширина, высота, длина).

Теорема 13.3 . В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трех его измерений (доказывается с помощью двукратного применения Т Пифагора).

Прямоугольный параллелепипед, у которого все ребра равны, называется кубом .

Задачи

13.1Сколько диагоналей имеет n -угольная призма

13.2В наклонной треугольной призме расстояния между боковыми ребрами равны 37, 13 и 40. Найти расстояние между большей боковой гранью и противолежащим боковым ребром.

13.3Через сторону нижнего основания правильной треугольной призмы проведена плоскость, пересекающая боковые грани по отрезкам, угол между которыми . Найти угол наклона этой плоскости к основанию призмы.

Общие сведения о прямой призме

Боковой поверхностью призмы (точнее, площадью боковой поверхности) называется сумма площадей боковых граней. Полная поверхность призмы равна сумме боковой поверхности и площадей оснований.

Теорема 19.1. Боковая поверхность прямой призмы равна произведению периметра основания на высоту призмы, т. е. на длину бокового ребра.

Доказательство. Боковые грани прямой призмы - прямоугольники. Основания этих прямоугольников являются сторонами многоугольника, лежащего в основании призмы, а высоты равны длине боковых ребер. Отсюда следует, что боковая поверхность призмы равна

S = a 1 l + a 2 l + ... + a n l = pl,

где a 1 ,а n - длины ребер основания, р - периметр основания призмы, а I - длина боковых ребер. Теорема доказана.

Практическое задание

Задача (22) . В наклонной призме проведено сечение , перпендикулярное боковым ребрам и пересекающее все боковые ребра. Найдите боковую поверхность призмы, если периметр сечения равен р, а боковые ребра равны l.

Решение. Плоскость проведенного сечения разбивает призму на две части (рис. 411). Подвергнем одну из них параллельному переносу, совмещающему основания призмы. При этом получим прямую призму, у которой основанием служит сечение исходной призмы, а боковые ребра равны l. Эта призма имеет ту же боковую поверхность, что и исходная. Таким образом, боковая поверхность исходной призмы равна рl.

Обобщение пройденной темы

А теперь давайте попробуем с вами подвести итоги пройденной темы о призме и вспомним, какими свойствами обладает призма.


Свойства призмы

Во-первых, у призмы все ее основания являются равными многоугольниками;
Во-вторых, у призмы все ее боковые грани являются параллелограммами;
В-третьих, у такой многогранной фигуры, как призма, все боковые ребра равны;

Также, следует вспомнить, что такие многогранники, как призмы могут быть прямыми и наклонными.

Какая призма называется прямой?

Если же у призмы боковое ребро расположено перпендикулярно плоскости ее основания, то такая призма носит название прямой.

Не будет лишним напомнить, что боковые грани прямой призмы являются прямоугольниками.

Какую призму называют наклонной?

А вот если же у призмы боковое ребро не расположено перпендикулярно плоскости ее основания, то можно смело утверждать, что это наклонная призма.

Какую призму называют правильной?



Если у основания прямой призмы лежит правильный многоугольник, то такая призма является правильной.

Теперь вспомним свойства, которыми обладает правильная призма.

Свойства правильной призмы

Во-первых, всегда основаниями правильной призмы служат правильные многоугольники;
Во-вторых, если рассматривать у правильной призмы боковые грани, то они всегда бывают равными прямоугольниками;
В-третьих, если сравнивать размеры боковых ребер, то в правильной призме они всегда равны.
В-четвертых, правильная призма всегда прямая;
В-пятых, если же в правильной призмы боковые грани имеют форму квадратов, то такую фигуру, как правило, называют полуправильным многоугольником.

Сечение призмы

А теперь давайте рассмотрим сечение призмы:



Домашнее задание

А теперь давайте попробуем закрепить изученную тему с помощью решения задач.

Давайте нарисуем наклонную треугольную призму, у которой расстояние между ее ребрами будет равно: 3 см, 4 см и 5 см, а боковая поверхность этой призмы будет равна 60 см2. Имея такие параметры, найдите боковое ребро данной призмы.

А вы знаете, что геометрические фигуры постоянно окружают нас не только на уроках геометрии, но и в повседневной жизни встречаются предметы, которые напоминают ту или иную геометрическую фигуру.



У каждого дома, в школе или на работе имеется компьютер, системный блок которого имеет форму прямой призмы.

Если вы возьмете в руки простой карандаш, то вы увидите, что основной частью карандаша, является призма.

Идя по центральной улице города, мы видим, что у нас под ногами лежит плитка, которая имеет форму шестиугольной призмы.

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Определение .

Это шестигранник, основаниями которого являются два равных квадрата, а боковые грани представляют собой равные прямоугольники

Боковое ребро - это общая сторона двух смежных боковых граней

Высота призмы - это отрезок, перпендикулярный основаниям призмы

Диагональ призмы - отрезок, соединяющий две вершины оснований, которые не принадлежат к одной грани

Диагональная плоскость - плоскость, которая проходит через диагональ призмы и ее боковые ребра

Диагональное сечение - границы пересечения призмы и диагональной плоскости. Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник

Перпендикулярное сечение (ортогональное сечение) - это пересечение призмы и плоскости, проведенной перпендикулярно ее боковым ребрам

Элементы правильной четырехугольной призмы

На рисунке изображены две правильные четырехугольные призмы, у которых обозначены соответствующими буквами:

  • Основания ABCD и A 1 B 1 C 1 D 1 равны и параллельны друг другу
  • Боковые грани AA 1 D 1 D, AA 1 B 1 B, BB 1 C 1 C и CC 1 D 1 D, каждая из которых является прямоугольником
  • Боковая поверхность - сумма площадей всех боковых граней призмы
  • Полная поверхность - сумма площадей всех оснований и боковых граней (сумма площади боковой поверхности и оснований)
  • Боковые ребра AA 1 , BB 1 , CC 1 и DD 1 .
  • Диагональ B 1 D
  • Диагональ основания BD
  • Диагональное сечение BB 1 D 1 D
  • Перпендикулярное сечение A 2 B 2 C 2 D 2 .

Свойства правильной четырехугольной призмы

  • Основаниями являются два равных квадрата
  • Основания параллельны друг другу
  • Боковыми гранями являются прямоугольники
  • Боковые грани равны между собой
  • Боковые грани перпендикулярны основаниям
  • Боковые ребра параллельны между собой и равны
  • Перпендикулярное сечение перпендикулярно всем боковым ребрам и параллельно основаниям
  • Углы перпендикулярного сечения - прямые
  • Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник
  • Перпендикулярное (ортогональное сечение) параллельно основаниям

Формулы для правильной четырехугольной призмы

Указания к решению задач

При решении задач на тему "правильная четырехугольная призма " подразумевается, что:

Правильная призма - призма в основании которой лежит правильный многоугольник, а боковые ребра перпендикулярны плоскостям основания. То есть правильная четырехугольная призма содержит в своем основании квадрат . (см. выше свойства правильной четырехугольной призмы) Примечание . Это часть урока с задачами по геометрии (раздел стереометрия - призма). Здесь размещены задачи, которые вызывают трудности при решении. Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме . Для обозначения действия извлечения квадратного корня в решениях задач используется символ √ .

Задача.

В правильной четырёхугольной призме площадь основания 144 см 2 , а высота 14 см. Найти диагональ призмы и площадь полной поверхности.

Решение .
Правильный четырехугольник - это квадрат.
Соответственно, сторона основания будет равна

144 = 12 см.
Откуда диагональ основания правильной прямоугольной призмы будет равна
√(12 2 + 12 2 ) = √288 = 12√2

Диагональ правильной призмы образует с диагональю основания и высотой призмы прямоугольный треугольник. Соответственно, по теореме Пифагора диагональ заданной правильной четырехугольной призмы будет равна:
√((12√2) 2 + 14 2 ) = 22 см

Ответ : 22 см

Задача

Определите полную поверхность правильной четырехугольной призмы, если ее диагональ равна 5 см, а диагональ боковой грани равна 4 см.

Решение .
Поскольку в основании правильной четырехугольной призмы лежит квадрат, то сторону основания (обозначим как a) найдем по теореме Пифагора:

A 2 + a 2 = 5 2
2a 2 = 25
a = √12,5

Высота боковой грани (обозначим как h) тогда будет равна:

H 2 + 12,5 = 4 2
h 2 + 12,5 = 16
h 2 = 3,5
h = √3,5

Площадь полной поверхности будет равна сумме площади боковой поверхности и удвоенной площади основания

S = 2a 2 + 4ah
S = 25 + 4√12,5 * √3,5
S = 25 + 4√43,75
S = 25 + 4√(175/4)
S = 25 + 4√(7*25/4)
S = 25 + 10√7 ≈ 51,46 см 2 .

Ответ : 25 + 10√7 ≈ 51,46 см 2 .

Площадь боковой поверхности призмы. Здравствуйте! В этой публикации мы с вами разберём группу задач по стереометрии. Рассмотрим комбинацию тел – призмы и цилиндра. На данный момент эта статья завершает всю серию статей связанных с рассмотрением типов заданий по стереометрии.

Если в банке заданий будут появляться новые, то, конечно же, будут и дополнения на блоге в будущем. Но и того что уже есть вполне достаточно, чтобы вы могли научиться решать все задачи с кратким ответом в составе экзамена. Материала хватит на годы вперёд (программа по математике статична).

Представленные задания связаны с вычислением площади призмы. Отмечу, что ниже рассматривается прямая призма (и соответственно прямой цилиндр).

Без знания всяких формул, мы понимаем, что боковая поверхность призмы это все её боковые грани. У прямой призмы боковые грани это прямоугольники.

Площадь боковой поверхности такой призмы равна сумме площадей всех её боковых граней (то есть прямоугольников). Если речь идёт о правильной призме, в которую вписан цилиндр, то понятно, что все грани этой призмы являются РАВНЫМИ прямоугольниками.

Формально площадь боковой поверхности правильной призмы можно отразить так:


27064. Правильная четырехугольная призма описана около цилиндра, радиус основания и высота которого равны 1. Найдите площадь боковой поверхности призмы.

Боковая поверхность данной призмы состоит из четырёх равных по площади прямоугольников. Высота грани равна 1, ребро основания призмы равно 2 (это два радиуса цилиндра), следовательно площадь боковой грани равна:

Площадь боковой поверхности:

73023. Найдите площадь боковой поверхности правильной треугольной призмы, описанной около цилиндра, радиус основания которого равен √0,12, а высота равна 3.

Площадь боковой поверхности данной призмы равна сумме площадей трёх боковых граней (прямоугольников). Для нахождения площади боковой грани необходимо знать её высоту и длину ребра основания. Высота равна трём. Найдём длину ребра основания. Рассмотрим проекцию (вид сверху):

Имеем правильный треугольник в который вписана окружность с радиусом √0,12. Из прямоугольного треугольника АОС можем найти АС. А затем и AD (AD=2АС). По определению тангенса:

Значит AD=2АС=1,2.Таким образом, площадь боковой поверхности равна:

27066. Найдите площадь боковой поверхности правильной шестиугольной призмы, описанной около цилиндра, радиус основания которого равен √75, а высота равна 1.

Искомая площадь равна сумме площадей всех боковых граней. У правильной шестиугольной призмы боковые грани это равные прямоугольники.

Для нахождения площади грани необходимо знать её высоту и длину ребра основания. Высота известна, она равна 1.

Найдём длину ребра основания. Рассмотрим проекцию (вид сверху):

Имеем правильный шестиугольник, в который вписана окружность радиуса √75.

Рассмотрим прямоугольный треугольник АВО. Нам известен катет ОВ (это радиус цилиндра). ещё можем определить угол АОВ, он равен 300 (треугольник АОС равносторонний, ОВ –биссектриса).

Воспользуемся определением тангенса в прямоугольном треугольнике:

АС=2АВ, так как ОВ является медианой, то есть делит АС пополам, значит АС=10.

Таким образом, площадь боковой грани равна 1∙10=10 и площадь боковой поверхности:

76485. Найдите площадь боковой поверхности правильной треугольной призмы, вписанной в цилиндр, радиус основания которого равен 8√3, а высота равна 6.

Площадь боковой поверхности указанной призмы из трёх равных по площади граней (прямоугольников). Чтобы найти площадь требуется знать длину ребра основания призмы (высота нам известна). Если рассматривать проекцию (вид сверху), то имеем правильный треугольник вписанный в окружность. Сторона этого треугольника выражается через радиус как:

Подробности этой взаимосвязи . Значит она будет равна

Тогда площадь боковой грани равна: 24∙6=144. А искомая площадь:

245354. Правильная четырехугольная призма описана около цилиндра, радиус основания которого равен 2. Площадь боковой поверхности призмы равна 48. Найдите высоту цилиндра.

Всё просто. Имеем четыре равных по площади боковые грани, следовательно площадь одной грани равна 48:4=12. Так как радиус основания цилиндра равен 2, то ребро основания призмы будет рано 4 – оно равно диаметру цилиндра (это два радиуса). Нам известна площадь грани и одно ребро, второе являющееся высотой будет равно 12:4=3.

27065. Найдите площадь боковой поверхности правильной треугольной призмы, описанной около цилиндра, радиус основания которого равен √3, а высота равна 2.

С уважением, Александр.