Где используется графит. Графит. Свойства, применение

Графит (от др.-греч. γράφω - пишу) — минерал, неметалл из класса самородных элементов. Гексагональная модификация углерода. Формула: С. Первоначально английские пастухи, открывшие минерал в XVI веке, приняли графит за свинец.

Графит в музее минералогии, Бонн.

Блеск металловидный, жирный или графит матовый. Твердость 1-2. Удельный вес 2,09-2,23 г/см 3 . Пишет на бумаге, пачкает руки. Жирен на ощупь. Цвет железно-черный, стально-серый. Черта черная. Спайность весьма совершенная. Сплошные чешуйчатые, плотные или землистые массы, вкрапления и кристаллы в виде шестиугольных пластинок. Сингония гексагональная. Кристаллы встречаются редко. Кристаллическая структура графита обусловливает его отличия от алмаза - другой аллотропной формы углерода, в котором атомы прочно связаны друг с другом по всем направлениям. Кристаллическая структура графита определяет и его малую твердость, легкость растирания, ощущение жирности, весьма совершенную спайность, непрозрачность, металловидный блеск, высокую электропроводность.

Отличительные признаки . Для графита характерна небольшая твердость (графит мягкий), графит легко пишет на бумаге, имеет более или менее постоянный стально-серый, железно-черный цвет. Графит можно спутать с молибденитом. В отличие от молибденита графит растирается пальцами в черную пыль (молибденовый блеск растирается в светло-серый порошок).

Химические свойства . С кислотами не взаимодействует. При нагревании с селитрой дает вспышку. Кусочек цинка, помещенный на поверхности графита и смоченный каплей медного купороса, выделяет пятно меди (отличие от молибденита).

Разновидность : Шунгит -аморфная разность графита.

Происхождение графита

Известные крупные месторождения графита образовались в результате изменения осадочных отложений органогенного происхождения (каменных углей, битумов и т. п.) под действием контактного или глубинного (регионального) метаморфизма. В отдельных случаях графит образовался в результате непосредственной кристаллизации из магм, богатых углеродом, или восстановления известняков, захваченных магматическими породами.

Наибольшее практическое значение имеет графит метаморфического происхождения.

Встречается в контактовой зоне каменного угля с магматическими породами, в гнейсах, в кристаллических сланцах, в мраморах, в контактах магматических пород с известняками, в виде вкраплений в кислых, средних и основных магматических породах, в пневматолитовых образованиях.

Спутники . В контактах магматических пород с известняками: апатит, флогопит. В пневматолитовых образованиях: кварц, полевой шпат, каолинит, апатит, биотит, титаномагнетит. В гнейсах: каолинит.

Применение графита

Графит используется очень широко. Можно сказать, что нет ни одной отрасли, где бы он в той или иной степени ни применялся. Необходим графит главным образом в металлургической промышленности для изготовления огнеупорных тиглей и для покрытия поверхности литейных форм с целью предохранения отливки от пригара формовочной земли; кроме того, в электропромышленности - в производстве электродов и дуговых углей, в производстве карандашей, черных красок, черной копировальной бумаги, типографской краски или же китайской туши. Используется также как смазочное вещество (в тех случаях, когда вследствие высокого нагрева нельзя применять масла) и в паровых котлах в качестве антинакипного средства. В последнее время применяется для изготовления графитовых блоков «атомных котлов» и изготовления космической техники. Из графита получают искусственный алмаз. Графитовая жидкость применяется при объемном прессовании детален автомобилей. Штампы, обволакиваемые этим веществом, обеспечивают высокую чистоту поверхности стальных заготовок, что исключает их последующую обтирку на шлифовальных станках.

Месторождения

Имеются несколько граффито-носных провинций: Украинская, Уральская, Тунгусская (Ногинское, Курейское), Верхне-Саянская (Ботогольское), Уссурийская и другие.

Крупные месторождения графита имеются в Южной Корее, Мексике (штат Сонора), Малагасийской Республике, Шри-Ланке, Индии, ФРГ и Швеции.

Мир камней богат, разнообразен. Многие породы отличаются не только внешней красотой, но и уникальностью химического, физического состава. Каждый минерал по-своему ценен, используется в разных отраслях с давних времен зарождения жизни на земле. Одним из таких особенных камней считается графит, модификация углерода, внешне напоминающий обычный уголь. Увидев камень впервые, складывается впечатление, что он похож на обычный черный уголь, зато узнав о свойствах, минерал причисляют ближе к алмазу .

Уже в глубокой древности при первых находках камня, люди заметили его удивительные свойства. Стали активно использовать природный элемент в жизни. Именно графит стал первым «мелком» для нанесения наскальных надписей, письма. Сегодня мало что изменилось, данный самородок по-прежнему ценен, широко используется во многих сферах, отличается высоким спросом, большими добычами, сравнительно низкими ценами.

Описание минерала графит

Природный материал отличается плотной структурой, но достаточно приложить легкое усилие и камень легко расколется. Мягкость природного элемента позволяет выполнять быструю обработку. Слоистая структура минерала, делает его отличным от других камней. Атомы углерода, представляют небольшие ячейки-шестиугольники, которые формируются правильными рядами. Между собой ряды связаны плохо, зато элементы рядов плотно прикреплены между собой. Именно это строение, объясняет легкое раскалывание природного камня, даже при малейших усилиях.

Черный, плотный камень добывается из недр, отличается твердостью, способностью оставлять следы на ровной поверхности. Именно поэтому минерал и был назван греками «графитом», от слова пишу – «графо». Другие народы называли породу черным свинцом, скальником, сливовиком, углистым железом. Подобные названия были связаны с тем в каком виде находили породу. Иногда, внешне минерал напоминал нависающие капли, камни, имеющие своеобразный темный оттенок, отливающий словно слива серебристым блестящим оттенком стали.

Алмаз и Графит

Такой уникальный вид природному элемент присущ за счет того, что он формируется не в чистом виде, а включает в себя другие породы. Примеси, входящие в камень различны, в нем можно отыскать даже золото. Именно поэтому приходится выполнять несколько этапов очищения, прежде чем будет получен уникальный, чистый природный материал.

Удивительно, но металлурги знают, что раскаленный чугун, при остывании способен выделять большое количество искусственного графита, который практически не уступает по свойствам природному собрату. Поэтому сегодня вполне реально получить искусственный заменитель незаменимого природного материала.

Месторождение и добыча

Отыскать графитовые залежи можно во многих уголках планеты. Общее число ресурсов колеблется в пределах 600 миллионов тонн. Ежегодно добывается чуть выше 600 тысяч тонн минерала. Добыча производится в Китае, Чехии, Мексике, Южной Кореи, Бразилии, Украине, Канаде, России, других странах.

Зарождение природного ископаемого располагается по соседству с другими породами. Нередко залежи натурального графита располагаются рядом с известковыми, гранитными породами, гнейсом, слюдой. Представляют собой волокнистые, кристаллические вкрапления.

Крупные скопления минерала представляют собой непрозрачные, земляные, серые, чешуйчатые массы, их форма меняется в зависимости от месторождения. Отсюда собственно и оттенок камня, который меняется от серого, стального, до смолянисто черного. Кусками минерал добывают подземными способами, открытыми способами ведется добыча графитовой руды.

  • литейную;
  • элементную;
  • электроугольную;
  • аккумуляторную;
  • карандашную;
  • смазочную форму графита.

Кроме того, особо ценной считается специальная марка, предназначенная исключительно для ядерных реакторов. Производство основано на общих требованиях к предъявляемой продукции в соответствии с назначением.

Физические и химические свойства

Графит отличается плотностью, диамагнитностью, хорошей теплопроводимостью, которая выше кирпичной в пять раз. Минерал поддается плавлению при температуре 3 845-3 890 °С. Закипает при 4 200 °С, тепло выделяемое при сжигании достигает предела 7 832 ккал.

Материал по отношению к любой жидкости, газу, твердым веществам, остается инертным. В расплавленных металлах, температура плавления которых выше самого камня, полностью растворяется. Допускается взаимодействие с другими веществами в период плавления.

Плотность породы 2,23 г/ см3, она легко сгибается, разрезается. Плотность по шкале Мооса не превосходит число 1. Оставаясь эластичным, пластичным, жирным, графит нашел широкое применение в промышленности, используется как смазочный компонент.

Сравнение свойств графита и алмаза

Несмотря на то, что графит и алмаз считаются подвидами углерода, минералы имеют существенное отличие. Плотность графита в отличие от алмаза на 9 единиц ниже, по шкале Мооса. Основное отличие в расположении атомной решетки. Атом углерода алмаза, соединяется с четырьмя расположенными рядом. Однако, если графит поместить в среду выше 1 500 °С, то его кристаллическая решетка может плавно перейти по строению схожему с алмазной. Именно поэтому иногда можно услышать шуточное высказывание о том, что графит можно считать братом алмазов и угля.

Область применения

Основной особенностью графита можно считать его широкомасштабную сферу применения. Используется данный минерал в том или ином виде не только в промышленных сферах, но и быту, каждый человек практически ежедневно пользуется предметами, которые изготавливают на основе графита. Графитовые изделия, вещества, отличаются высоким качеством, долгим сроком эксплуатации, поэтому остаются востребованными, порой даже незаменимыми. Формирование разного рода деталей выполняется за счет высокой пластичности материала. В твердом состоянии природный элемент остается максимально доступным к обработке.

В литейном деле, графитовый порошок используется как смазочный компонент для форм при литье. Металлургическая отрасль, на основе уникального минерала изготавливает тугоплавкие ковши, производит формы для разных сплавов, своеобразные емкости для кристаллизации разных веществ. Минерал стал «ингредиентом» огнеупорного кирпича, красок, карандашей, шлифовальных, полировочных паст, пластмассы. Краска на основе такого компонента обладает антикоррозийными свойствами, используется при окрашивании металла, бетона, чугуна. Незаменим графит при изготовлении электродов, электропроводов. Благодаря графиту, производят искусственные формы алмаза.

Машиностроительная сфера использует минерал при изготовлении поршневых, подшипников, при обработке дверных петлей, велосипедных, мотоциклетных цепей, автомобильных рессоров. Даже медицина оценила природный минерал, найдя применение при лечении кожных патологий. Считается, что вещество способно ускорять заживление, рассасывание рубцов, предотвращать появление спаек, улучшает обменные функции организма. Обладая такими лечебными свойствами, графит стал чуть ли не основным составляющим многих высокоэффективных медикаментозных препаратов.

В таблице представлены физические свойства графита в интервале температуры от 20 до 800 °С.

Свойства указаны в направлении, как параллельно, так и перпендикулярно главной оси кристаллов графита.

Теплопроводность графита указана для следующих типов: кристаллический, естественный, прессованный искусственный. По данным таблицы видно, что теплопроводность графита при увеличении его температуры снижается.

Удельная (массовая) теплоемкость углерода при комнатной температуре составляет величину 710 Дж/(кг·град) и при нагревании увеличивается. Плотность углерода находится в диапазоне от 1400 до 1750 кг/м 3 .

Даны следующие физические свойства графита различной плотности:

  • теплопроводность графита, Вт/(м·град);
  • сопротивление разрыву, МН/м 2 ;
  • модуль упругости графита, МН/м 2 ;
  • удельная (массовая) теплоемкость, кДж/(кг·град);
  • удельное электрическое сопротивление, Ом·м;
  • коэффициент теплового линейного расширения (КТлР), 1/град.

Свойства углерода (графита) в зависимости от температуры

В таблице представлены теплофизические свойства углерода (графита) в зависимости от температуры.
Свойства углерода в таблице указаны при температуре от 100 до 2000К в направлении вдоль (параллельно), так и перпендикулярно главной оси кристаллов углерода.

Приведены следующие свойства углерода (графита):

  • коэффициент теплового линейного расширения (КТлР), 1/град;
  • удельная (массовая) теплоемкость, Дж/(кг·град);
  • коэффициент теплопроводности, Вт/(м·град).

В таблице представлены значения теплопроводности графита различной плотности при температуре 20 °С. Теплопроводность графита указана при направлении теплового потока вдоль главной оси кристаллов и в размерности .

По данным таблицы видно, что теплопроводность графита с увеличением плотности заметно увеличивается. Плотность графита в таблице приведена в размерности 10 3 ·кг/м 3 , то есть в т/м 3 . Плотность графита изменяется в интервале от 1400 до 1750 кг/м 3 .

В таблице представлены значения теплопроводности графита плотностью 1650…1720 кг/м 3 в зависимости от температуры.

Теплопроводность графита указана при направлении теплового потока, как вдоль, так и поперек главной оси кристаллов, указано также отношение теплопроводности в этих направлениях (оно постоянно и равно приблизительно 1,5).

Значения теплопроводности графита приведены в интервале температуры от 20 до 1800 °С. По значениям в таблице видно, что теплопроводность графита с увеличением температуры уменьшается .

Теплопроводность реакторного графита плотностью 1700 кг/м 3 в зависимости от температуры

В таблице представлены значения теплопроводности реакторного графита плотностью 1700 кг/м 3 в зависимости от температуры.
Теплопроводность указана в направлении теплового потока, идущего, как параллельно, так и перпендикулярно прессованию графитовых стержней.
Значения теплопроводности реакторного графита приведены в интервале температуры от 100 до 1700 К.

Теплопроводность измельченного графита

В таблице дана теплопроводность измельченного графита (углерода) в зависимости от размера частиц при температуре 20 °С.
Размер частиц определялся в зависимости от количества отверстий в сите на 1 квадратный сантиметр (3, 6, 16 отв/см 2 и сухая сажа).

Теплопроводность графита указана в размерности Вт/(м·град). Плотность графита в таблице указана в 10 3 ·кг/м 3 , то есть в т/м 3 .

Теплопроводность слоя графитовых частиц в зависимости от его пористости

В таблице представлены значения теплопроводности слоя графитовых частиц (частиц углерода) при пористости от 0,4 до 0,7. Следует отметить, что при увеличении пористости слоя его теплопроводность снижается.

Коэффициент теплового расширения (КТР) углерода (графита) в зависимости от температуры

В таблице указаны значения коэффициента линейного теплового расширения (КТР) углерода (графита) в зависимости от температуры.
КТР в таблице приводится для различных сортов графита: пиролитический графит, графит на основе нефтяного кокса, графит на основе .
Коэффициент линейного теплового расширения графита приведен в интервале температуры от 100 до 700 °С в размерности 1/град.

Теплоемкость углерода в зависимости от температуры

В таблице представлены значения теплоемкости углерода в зависимости от температуры. Удельная теплоемкость углерода (графита) указана в интервале температуры от 200 до 2000 К.

Теплоемкость углерода в таблице дана массовая и выражена в размерности кДж/(кг·град). По данным в таблице видно, что теплоемкость углерода с увеличением температуры растет.

Теплоемкость природного углерода (графита) при низких температурах

В таблице даны значения атомной (на 1 моль вещества) и удельной теплоемкости углерода при низких температурах. Теплоемкость углерода (графита) указана в интервале температуры от -260 до 17 °С.

Атомная теплоемкость углерода выражена в размерности Дж/(моль·град). Удельная теплоемкость углерода (массовая — на 1 кг массы) выражена в размерности кДж/(кг·град).

По значениям в таблице хорошо видно, что атомная и удельная теплоемкости углерода (графита) с увеличением температуры растут и при очень низких отрицательных температурах.

Источники:
1. Агроскин А.А., Глейбман В.Б. Теплофизика твердого топлива. М., Недра, 1980 — 256 с.
2.
3. .
4. Промышленные печи. Справочное руководство для расчетов и проектирования. 2–е издание, дополненное и переработанное, Казанцев Е.И. М., «Металлургия», 1975.- 368 с.

Графит – уникальный самородный минерал, аллотропная модификация элемента углерода, наиболее устойчивая в земной коре. Свойства графита хорошо изучены и находят широкое применение. Образуется графит в результате вулканической деятельности при высоких температурах, поэтому и находят его в природе в магматических горных породах, где содержание кристаллического графита может доходить до 50%. Встречается графит также совместно с вольфрамитом - в кварценосных жилах, совместно с другими минералами – в полиметаллических среднетемпературных месторождениях, а в таких метаморфических породах, как мраморы, гнейсы, сланцы, графит распространен очень широко. Крупное графитовое месторождение находится в Тунгусском каменноугольном бассейне, образовавшееся в результате высокотемпературного воздействия на уголь – так называемая скрытокристаллическая форма графита, содержание которого лежит в пределах от 60 до 80%.

Структура графита

В кристаллической структуре графита различаются две ее модификации: гексагональную, или а-модификцию, и ромбоэдрическую, или β-модификацию. В альфа-графите каждый атом углерода связан с тремя соседними атомами sp-3-гибридными облаками, образуя кристаллический слой, состоящий из правильных шестигранников. Каждый слой удерживается с другим, параллельным ему слоем, за счет ван-дер-вальсовских сил. Причем, центры шестигранников верхнего и каждого нижнего слоев совпадают, однако слои смещены относительно друг друга на 0,1418 нм в горизонтальном направлении и в порядке «через один». Слоистая структура объясняет многие свойства графита.

В бетта-графите атомы слоев связаны между собой точно так же, но чередование горизонтального смещения происходит через два слоя. Ромбоэдрическая структура считается нестабильной, разрушающейся при температуре более 2230о, но в природных графитах с гексагональной структурой встречается до 30% β-модификации графита.

Физические свойства графита

Цвет графита варьирует от железо-черного до стального серого с характерным металлическим блеском. На ощупь минерал жирный, скользкий, пачкает пальцы и бумагу, при механическом воздействии расслаивается на отдельные чешуйчатые частицы. Именно это свойство графита позволяет применять его в карандашах.

По сравнению с алмазом графит обладает меньшей твердостью и плотностью, а также графит электропроводен. Его теплопроводность зависит от степени нагрева и колеблется в пределах от 278,4 до 2435 Вт/(м*К).

Графит обладает чрезвычайной огнеупорностью, его температура сгорания - 38500С.

Химические свойства графита

Графит химически малоактивен: в кислотах не растворяется, с некоторыми солями и щелочными металлами образует соединения наподобие включений. С кислородом воздуха реагирует только при очень высокой температуре, образуя углекислый газ. Возможно фторирование графита с образованием (CF)x.

Применение графита

Техническое применение минерала чрезвычайно разнообразно и обусловлено свойствами графита, главным образом его огнеупорностью и электропроводностью. Так, в металлургии графит используется для производства тугоплавких тиглей, чехлов для термопар, емкостей для кристаллизации. В литейном производстве графитовый порошок используется в качестве антипригарной присыпки, а также для смазывания литейных форм.

Из коллоидно-графитовых смесей таких как графит С-1 изготавливают шлифовальные и полировочные пасты.

Хорошие электропроводящие позволяют использовать его для производства электродов и контактов некоторых электрических приборов. Кроме производства карандашей, графит используется для изготовления красок и термостойких смазочных материалов, для наполнения пластмасс.

Даже в атомной энергетике замечательные свойства графита находят свое применение, в первую очередь, это его способность замедлять электроны в реакторах. В ракетостроении сопла ракетных двигателей и многие элементы теплозащиты также производятся с применением графита.

Смесь, состоящая из тонких чередующихся пластинок феррита и цементита)
Сорбит (дисперсный перлит)
Троостит (высокодисперсный перлит)
Бейнит (устар: игольчатый троостит) - ультрадисперсная смесь кристаллов низкоуглеродистого мартенсита и карбидов железа

Физические свойства

Электрическая проводимость монокристаллов графита анизотропна , в направлении, параллельном базисной плоскости, близка к металлической, в перпендикулярном - в сотни раз меньше. Минимальное значение проводимости наблюдается в интервале 300-1300 К, причём положение минимума смещается в область низких температур для совершенных кристаллических структур. Наивысшую электрическую проводимость имеет рекристаллизованный графит.

Применение

Использование графита основано на ряде его уникальных свойств.

  • для изготовления плавильных тиглей, футеровочных плит - применение основано на высокой температурной стойкости графита (в отсутствие кислорода), на его химической стойкости к целому ряду расплавленных металлов.
  • электродов , нагревательных элементов - благодаря высокой электропроводности и химической стойкости к практически любым агрессивным водным растворам (намного выше, чем у благородных металлов).
  • Для получения химически активных металлов методом электролиза расплавленных соединений. В частности, при получении алюминия используются сразу два свойства графита:
  1. Хорошая электропроводность, и как следствие - его пригодность для изготовления электрода
  2. Газообразность продукта реакции, протекающей на электроде - это углекислый газ . Газообразность продукта означает, что он выходит из электролизёра сам, и не требует специальных мер по его удалению из зоны реакции. Это свойство существенно упрощает технологию производства алюминия .

Единственными в России производителями синтетического графита в промышленных масштабах являются предприятия ООО «Донкарб Графит», дочернее общество АО «ЭНЕРГОПРОМ», входящее в состав ГК «РЕНОВА» Виктора Вексельберга и ООО «ГрафитЭл - Московский электродный завод». Принадлежность к предприятиям полного цикла определяется способностью исполнять все этапы технологического процесса производства графита.

Литература

  • Графит / Р. В. Лобзова // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров . - 3-е изд. - М. : Советская энциклопедия, 1969-1978.
  • // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). - СПб. , 1890-1907.
  • Klein, Cornelis and Cornelius S. Hurlbut, Jr. (1985) Manual of Mineralogy: after Dana 20th ed.