Формула пуассона примеры. Распределение и формула пуассона

Теорема Пуассона . При неограниченном увеличении числа n независимых испытаний в каждом из которых может наступить некоторое событие с одной и той же вероятностью стремящейся к нулю при этом вероятность того, что событие наступит m, приближенно равна:

(3.22)

Формулу (3.22) называют формулой Пуассона. Эта приближенная формула дает незначительные погрешности, если Значения функции Пуассона находят в таблице, приведенной в приложении 3 , на пересечении соответствующих значений и

Пример 3.40. Известно, что на 10000 выпущенных деталей приходится 10 бракованных. Какова вероятность того, что четыре случайно выбранные детали окажутся бракованными?

По условию задачи Вероятность случайного выбора бракованной детали Так как значение велико, а − мало и воспользуемся (3.22) и найдем значение функции Пуассона из таблицы (приложение 3 ) для значений и

Контрольные вопросы

1. Сформулировать определения понятий: случайного события, несовместных и независимых событий. Привести примеры.

2. Какое событие называется суммой и произведением событий?

3. В чем заключается статистический подход к понятию вероятности?

4. В чем заключается классический подход к понятию вероятности?

5. В чем заключается геометрический подход к понятию вероятности?

6. Сформулировать аксиоматическое определение понятия вероятности?

7. Чему равна вероятность суммы несовместных событий?

8. Чему равна вероятность произведения независимых событий?

9. Чему равна вероятность произведения зависимых событий?

10. Записать формулу полной вероятности и формулу Байеса. Привести примеры их применения для решения задач.

11. Записать формулу Бернулли. Привести примеры её применения для решения задач.

12. Записать локальную формулу Муавра

13. Записать интегральную формулу Муавра Лапласа. Привести примеры её применения для решения задач.

14. Записать формулу Пуассона. Привести примеры её применения для решения задач.

Предельные теоремы в схеме Бернулли.

Предположим, что мы хотим определить вероятность выпадения ровно 5100 «гербов» при 10000 бросаний монеты. Ясно, что при таком большом числе испытаний использование формулы Бернулли весьма затруднительно с точки зрения вычислений. В таких случаях пользуются асимптотическими формулами Пуассона и Муавра-Лапласа.

Асимптотические формулы Муавра-Лапласа.

Теорема 1. Локальная теорема Муавра-Лапласа. Если вероятность р появления события А в каждом испытании постоянна и отлична от нуля и единицы, а число независимых испытаний п достаточно велико, то вероятностьP n (k) того, что событие А появиться в n испытаниях ровно k раз приближенно равна

где . Причем это равенство тем точнее, чем больше n.

Имеются специальные таблицы, в которых помещены значения функции (функция Гаусса), соответствующие положительным значениям аргумента х . Для отрицательных значений аргумента пользуются теми же таблицами, так как функция четна, т. е. . При

Пример 1. Найти вероятность того, что событие А наступит ровно 80 раз в 400 испытаниях, если вероятность появления этого события в каждом испытании равна 0,2.

Решение. По условию, n = 400; k = 80; р = 0,2; q = 0,8. Вос­пользуемся асимптотической формулой Лапласа:

Вычислим х: . По таблице находим = 0,3989. Искомая вероятность

.

Формула Бернулли приводит примерно к такому же результату:

.

Пример 2. Вероятность поражения мишени стрелком при одном выстреле р = 0,75. Найти вероятность того, что при 10 выстрелах стрелок поразит мишень 8 раз.

Решение. По условию, n =10; k = 8; р = 0,75; q = 0,25. Воспользуемся асимптотической формулой Лапласа:

Вычислим х: . По таблице находим = 0,3739. Искомая вероятность

Формула Бернулли приводит к иному результату, а, именно . Столь значительное расхождение ответов объясняется тем, что в настоящем примере п имеет малое значение (формула Муавра-Лапласа дает достаточно хорошие приближения лишь при достаточно больших значениях п ).

Теорема 2. Интегральная теорема Муавра-Лапласа. Если вероятность р наступления события А в каждом испытании постоянна и отлична от нуля, и единицы, а число независимых испытаний п достаточно велико, то вероятность Р п (k l , k 2 ) того, что событие А появится в п испытаниях от k 1 до k 2 раз (не менее k 1 и не более k 2 ), приближенно равна определенному интегралу



(2)

где и . Причем это равенство тем точнее, чем больше n.

При решении задач, требующих применения интегральной теоремы Муавра-Лапласа, пользуются специальными таблицами, так как неопределенный интеграл не выражается через элементарные функции. В таблице даны значения функции Лапласа дляположительных значений х и для х = 0; для х < 0 пользуются той же таблицей, функция Ф (x ) нечетна, т.е. . В таблице приведены значения интеграла лишь до х = 5, так как для х > 5 можно принять Ф (х ) = 0,5.

Для того чтобы можно было пользоваться таблицей функции Лапласа, преобразуем соотношение (2) так:


Итак,вероятность того, что событие А появится в п независимых испытанияхот k 1 до k 2 раз,

где и .

Пример. Вероятность того, что деталь не прошла проверку ОТК, равна р = 0,2. Найти вероятность того, что среди 400 случайно отобранных деталей окажется непроверенных от 70 до 100 деталей.

Решение. По условию, р = 0,2; q = 0,8; n = 400; k 1 = 70; k 2 =100. Воспользуемся интегральной теоремой Лапласа. Вычислим нижний и верхний пределы интегрирования:

Таким образом, имеем

Р 400 (70, 100)=Ф(2,5) - Ф (- 1,25) = Ф (2,5) + Ф (1,25). По таблице находим:

Ф (2,5) = 0,4938; Ф (1,25) = 0,3944.

Искомая вероятность

Р 400 (70, 100)=0,4938 + 0,3944=0,8882.

Замечание. С помощью функции Лапласа можно найти вероятность отклонения относительной частоты от вероятности р в п независимых испытаниях, используя формулу: , где - некоторое число.

Асимптотическая формула Пуассона.

Пусть число испытаний п в схеме Бернулли неограниченно увеличивается, а вероятность успеха р в одном испытании неограниченно уменьшается, причем их произведение = пр . сохраняет постоянное значение. Это означает, что среднее число появлений события в различных сериях испытаний, т.е. при различных значениях п , остается неизменным. Тогда Р п (k ) определяется по приближенной формуле (формула Пуассона)

.

Замечание 1. Имеются специальные таблицы, пользуясь которыми можно найти Р п (k ), зная и k.

Замечание 2. Формулу Пуассона применяют, когда вероятность успеха крайне мала, т.е. сам по себе успех является редким событием (например, выигрыш автомобиля по лотерейному билету), но количество испытаний велико, среднее число успехов = пр незначительно. ().

Замечание 3. Формула Пуассона справедлива также по отношению к числу неудач, если число испытаний п в схеме Бернулли неограниченно увеличивается, а вероятность неудачи q в одном испытании неограниченно уменьшается причем сохраняет постоянное значение.

Пример. Завод отправил на базу 5000 доброкачественных изделий Вероятность того, что в пути изделие повредится, равна 0,0002. Найти вероятность того, что на базу прибудут 3 негодных изделия.

Решение. По условию, п = 5000, р = 0,0002, k = 3. = пр = 5000 *0,0002 = 1.

По формуле Пуассона искомая вероятность приближенно равна

.

Формула Пуассона находит широкое применение в теории массового обслуживания. Ее можно считать математической моделью простейшего потока событий.

Определение 1. Потоком событий называют последовательность событий, которые наступают в случайные моменты времени . Примерами потоков служат: поступление вызовов на АТС, на пункт неотложной медицинской помощи, прибытие самолетов в аэропорт, клиентов на предприятие бытового обслуживания, последовательность отказов элементов и многие другие. События, образующие поток, в общем случае могут быть различными, но мы будем рассматривать только поток однородных событий, различающихся только моментами появления. Такой поток можно изобразить как последовательность точек на числовой оси .

Определение 2. Поток событий называется регулярным, если события следуют одно за другим через строго определенные промежутки времени.

Определение 3. Стационарным называется поток событий, который характеризуется тем, что вероятность появления k событий на промежутке времени длительностью зависит только от числа k и от длительности промежутка и не зависит от того, где на числовой оси расположен этот участок, т.е. вероятность появления k событий за промежуток времени, длительности t есть функция, зависящая только от k и t. Следовательно, среднее число событий, появляющихся в единицу времени (интенсивность потока ) есть величина постоянная.

Определение 4. Поток событий называется потоком без последействия, если для любых непересекающихся участков времени число событий, попадающих на один из них, не зависит от числа событий, попадающих на другие.

Определение 5. Поток событий называется ординарным, если вероятность попадания на бесконечно малый участок двух или более событий пренебрежимо мала по сравнению с вероятностью попадания одного события.(события появляются не группами, а по одиночке)

Определение 6. Простейшим (стационарным пуассоновским) называют поток событий, который обладает свойствами стационарности, отсутствия последействия и ординарности.

Замечание. Установлено что если поток представляет собой сумму очень большого числа независимых стационарных потоков, влияние каждого из которых на всю сумму (суммарный поток) ничтожно мало, то суммарный поток (при условии его ординарности) близок к простейшему..

Можно доказать, что если постоянная интенсивность потока известна, то вероятность появления k событий простейшего потока за время длительностью t определяется формулой Пуассона.

Эта формула отражает все свойства простейшего потока.

Пример. Среднее число вызовов, поступающих на АТС в одну минуту, равно двум. Найти вероятности того, что за 5 мин поступит: а) 2 вызова; б) менее двух вызовов; в) не менее двух вызовов. Поток вызовов предполагается простейшим.

Решение. По условию Воспользуемся формулой Пуассона.

Б) События не поступило ни одного вызова и поступил один вызов несовместны, поэтому по формуле сложения искомая вероятность

В) События поступило менее 2 вызовов и поступило не менее 2 вызовов противоположны, поэтому

Спасибо, что читаете и делитесь с другими

При большом числе испытаний $n$ и малой вероятности $р$ формулой Бернулли пользоваться неудобно, например, $0.97^{999}$ вычислить трудно.

В этом случае для вычисления вероятности того, что в $n$ испытаниях ($n$ – велико) событие произойдет $k$ раз, используют формулу Пуассона :

$$ P_n(k)=\frac{\lambda^k}{k!}\cdot e^{-\lambda}, \qquad \lambda=n \cdot p. $$

Здесь $\lambda=n \cdot p$ обозначает среднее число появлений события в $n$ испытаниях.

Эта формула дает удовлетворительное приближение для $p \le 0,1$ и $np \le 10$. При больших $np$ рекомендуется применять формулы Лапласа (Муавра-Лапласа). Cобытия, для которых применима формула Пуассона, называют редкими , так как вероятность их осуществления очень мала (обычно порядка 0,001-0,0001).

На сайте есть бесплатный онлайн-калькулятор для формулы Пуассона

Примеры решений

Пример. Устройство состоит из 1000 элементов, работающих независимо один от другого. Вероятность отказа любого элемента в течении времени Т равна 0,002. Найти вероятность того, что за время Т откажут ровно три элемента.

Решение. По условию дано: .

Искомая вероятность

Пример. Завод отправил на базу 500 изделий. Вероятность повреждения изделия в пути 0,004. Найти вероятность того, что в пути повреждено меньше трех изделий.

Решение. По условию дано: .

По теореме сложения вероятностей

Пример. Магазин получил 1000 бутылок минеральной воды. Вероятность того, что при перевозке бутылка окажется разбитой, равна 0,003. Найти вероятность того, что магазин получит более двух разбитых бутылок.

Решение. По условию дано: .

Получаем:

Подробную статью о формуле с примерами, онлайн калькулятор и расчетный файл к видеоролику вы найдете тут.

Если вероятность появления события в отдельном испытании достаточно близка к нулю , то даже при больших значениях количества испытаний вероятность, вычисляемая по локальной теореме Лапласа, оказывается недостаточно точной. В таких случаях используют формулу, выведенную Пуассоном.

ТЕОРЕМА ПУАССОНА

Если вероятность наступления события в каждом испытании постоянна, но достаточно мала, число независимых испытаний достаточно велико, при этом сочетания меньше десяти то вероятность того, что в количестве испытаниях событие наступит ровно раз примерно равна

Для формулы Пуассона используют таблицы табулирования функции .

——————————-

Рассмотрим примеры типичных для студентов задач.

Пример 1. Автобиография писателя издается тиражом в 1000 экземпляров. Для каждой книги вероятность быть неправильно сброшюрованной равна 0,002. Найти вероятность того, что тираж содержать ровно 7 бракованных книг.

Решение. Проверим выполнение условия теоремы Пуассона. Для входных значений

что условия выполняются.
По табличным значениям функции Пуассона находим вероятность

Применения к этому событию локальную теорему Лапласа получим

Точное значение вероятности определяем по формуле Бернулли

Из анализа трех методов следует, что формула Пуассона дает более точнее приближения, чем формула Лапласа. Именно поэтому ее рекомендуют применять для отыскания вероятности в такого сорта задачах.

——————————-

Пример 2. Вероятность изготовления нестандартной детали равна 0,004. Найти вероятность того, что среди 1000 деталей окажется 5 нестандартных.

Формула Пуассона

Имеем даные , которые удовлетворяют требования теоремы Пуассона По таблице функции Пуассона при получим:

Найдем вероятность того же события по локальной теореме Лапласа.

Как сразу стали поступать запросы: «Где Пуассон? Где задачи на формулу Пуассона?» и т.п . И поэтому я начну с частного применения распределения Пуассона – ввиду большой востребованности материала.

Задача до боли эйфории знакома:

И следующие две задачи принципиально отличаются от предыдущих:

Пример 4

Случайная величина подчинена закону Пуассона с математическим ожиданием . Найти вероятность того, что данная случайная величина примет значение, меньшее, чем ее математическое ожидание.

Отличие состоит в том, что здесь речь идёт ИМЕННО о распределении Пуассона.

Решение : случайная величина принимает значения с вероятностями:

По условию, , и тут всё просто: событие состоит в трёх несовместных исходах :

Вероятность того, что случайная величина примет значение, меньшее, чем ее математическое ожидание.

Ответ :

Аналогичная задача на понимание:

Пример 5

Случайная величина подчинена закону Пуассона с математическим ожиданием . Найти вероятность того, что данная случайная величина примет положительное значение.

Решение и ответ в конце урока.

Помимо приближения биномиального распределения (Примеры 1-3), распределение Пуассона нашло широкое применение в теории массового обслуживания для вероятностной характеристики простейшего потока событий. Постараюсь быть лаконичным:

Пусть в некоторую систему поступают заявки (телефонные звонки, приходящие клиенты и т.д.). Поток заявок называют простейшим , если он удовлетворяет условиям стационарности , отсутствия последствий и ординарности . Стационарность подразумевает то, что интенсивность заявок постоянна и не зависит от времени суток, дня недели или других временнЫх рамок. Иными словами, не бывает «часа пик» и не бывает «мёртвых часов». Отсутствие последствий означает, что вероятность появления новых заявок не зависит от «предыстории», т.е. нет такого, что «одна бабка рассказала» и другие «набежали» (или наоборот, разбежались). И, наконец, свойство ординарности характеризуется тем, что за достаточно малый промежуток времени практически невозможно появление двух или бОльшего количества заявок. «Две старушки в двери?» – нет уж, увольте.

Итак, пусть в некоторую систему поступает простейший поток заявок со средней интенсивностью заявок в минуту (в час, в день или в произвольный промежуток времени). Тогда вероятность того, что за данный промежуток времени , в систему поступит ровно заявок, равна:

Пример 6

Звонки в диспетчерскую такси представляет собой простейший пуассоновский поток со средней интенсивностью 30 вызовов в час. Найти вероятность того, что: а) за 1 мин. поступит 2-3 вызова, б) в течение пяти минут будет хотя бы один звонок.

Решение : используем формулу Пуассона:

а) Учитывая стационарность потока, вычислим среднее количество вызовов за 1 минуту:
вызова – в среднем за одну минуту.

По теореме сложения вероятностей несовместных событий:
– вероятность того, что за 1 минуту в диспетчерскую поступит 2-3 вызова.

б) Вычислим среднее количество вызов за пять минут:

вероятностью p = 0.7 . Найти наиболее вероятное числоm 0 людей, которые придут на собрание, и соответствующую вероятностьP n (m 0 ) .

Решение. Поскольку P 50 (m 0 )= C 50 m 0 (0,7)m 0 (0,3)50 − m 0 , то задача состоит в отыскании неотрицательного целого числаm 0 ≤ 50 ,доставляющего максимум функцииP 50 (m 0 ) . Мы видели выше, что такое число дается формулой (6.4). В

P 50 (35)= C 50 35 (0.7)35 (0.3)15 ≈ 0.123.

6.4. Формула Пуассона

Формулы (6.1) и (6.3) дают точныезначениявероятностей, связанных со схемой независимых испытаний Бернулли. Однако вычисления по этим формулам, особенно при больших значениях n иm , весьма затруднительны. Представляет большой практический интерес получение достаточно простых приближенных формул для вычисления соответствующих вероятностей. Впервые подобную формулу вывел в 1837 году французский математик и физик Симон Пуассон (1781–1840). Ниже дается формулировка результата Пуассона.

Рассмотрим схему независимых испытаний Бернулли, в которой число испытаний n «относительно велико», вероятность «успеха»p «относительно мала», а произведение λ= np «не мало и не велико»41 . При этих условиях справедлива формула

Это – знаменитое пуассоновское приближение для биномиального распределения. Доказательство формулы (6.6) будет дано в дополнении к настоящему параграфу.

41 Точный смысл взятых в кавычки терминов будет объяснен ниже, в частности, в § 6д.

Функция, стоящая в правой части формулы (6.6), называется

распределением Пуассона:

При таком обозначении p (k , λ) будет приближенным выражением для вероятностиb (k ;n , λn ), когдаn «достаточно велико».

Прежде, чем обсуждать формулу (6.6), приведем весьма показательные примеры ее использования.

Значения биномиального распределения и значения распределения Пуассона при n = 100,p = 0.01, λ= 1 представлены в табл. 6.2. Как мы видим, точность приближенной формулы достаточно высока.

Чем больше n , тем выше точность формулы Пуассона. Это наглядно представляет следующий пример. Вычислим вероятностьp k того, что в обществеиз500человекровноk человекродилисьводинитотжеконкретный день года. Если эти 500 человек выбраны наугад, то можно применить схему Бернулли изn = 500 испытаний с вероятностью «успеха»p = 1365 . Вычисления по точной формуле (6.1) и приближенной формуле (6.6) при λ= 500365≈ 1,3699 представлены в табл. 6.3. Как мы видим, ошибка лишь в четвертом десятичном знаке, что вполне приемлемо для практики.

Таблица 6.2

b (k ; 100, 1.100)

p (k ; 1)

Таблица 6.3.

b (k ; 500,1/ 365)

p (k , λ)

Рассмотрим следующий типичный пример на применение формулы

Пуассона.

Пусть известно, что вероятность «сбоя» в работе телефонной станции при каждом вызове равна 0,002. Поступило 1000 вызовов. Определить вероятность того, что при этом произойдет 7 «сбоев».

Решение. Естественно предположить, что в обычных условиях вызовы, поступающие на телефонную станцию – независимы друг от друга. Будем считать «успехом» в испытании – вызове – сбой телефонной станции. Вероятность сбоя (p = 0,002) можно считать «достаточно малой» величиной, а число вызовов (n = 1000) – «достаточно большим». Таким образом, мы находимся в условиях теоремы Пуассона. Для параметра λ получаем значение

Обсудим теперь пределы применимости формулы Пуассона. При

использовании любой приближенной формулы вопрос о пределах ее применимости возникает естественным образом. При этом мы встречаемся с двумя аспектами проблемы. Во-первых, закономерен вопрос о том, в каких реальных условиях применим закон Пуассона? Опыт показывает, что простое распределение Пуассона обладает сравнительно универсальной применимостью. Вообще, с точки зрения применений, математические теоремы бывают хорошими и плохими в следующем смысле: хорошие теоремы продолжают действовать, если даже нарушить их условия, а плохие сразу перестают быть верными при нарушении условий их вывода. Теорема Пуассона (6.6) является в этом смысле хорошей и даже превосходной. Именно, закон Пуассона продолжает действовать даже тогда, когда условия схемы Бернулли нарушаются (т.е. можно допускать переменную вероятность успеха и даже не слишком сильную зависимость результатов отдельных испытаний)42 . Можно даже утверждать, что распределение Пуассона обладает сравнительно универсальной применимостью. Это надо понимать в том смысле, что если экспериментальные данные показывают, что закон Пуассона неприменим, в то время как, сообразно со здравым смыслом, он должен был бы действовать, то естественнее подвергнуть сомнению статистическую устойчивость наших данных, чем искать какой-то другой закон распределения.Инымисловами,распределениеПуассонапредставляетсобой очень удачную математическую формулировку одного из универсальных (в рамках применимости теории вероятностей) законов природы.

Во-вторых, возникает вопрос о порядках величин тех параметров, которые входят в формулу Пуассона, и для которых выше мы использовали расплывчатые термины «относительно велико», «относительно мало», «не малоиневелико».Опятьже,разъясняющиеответыдаетпрактикаприменения формулы (6.6). Оказывается, что формула Пуассона достаточно точна для практического применения, если число испытанийn имеет порядок

42 Естественно, этими особенностями распределения Пуассона не следует злоупотреблять. Например, закон Пуассона заведомо нарушается в ситуациях сильной зависимости результатов отдельных испытаний.

нескольких десятков (лучше – сотен), а величина параметра λ = np лежит в пределах от 0 до 10.

Для иллюстрации применения формулы Пуассона, рассмотрим еще один пример .

Пусть известно, что на выпечку 1000 сладких булочек с изюмом полагается 10 000 изюмин. Требуется найти распределения числа изюмин в какой-то случайным образом выбранной булочке.

Решение. Последовательность независимых испытаний мы формируем следующим образом. Всего будет n = 10 000 испытаний (по числу изюмин), а именно: испытание с номеромk будет состоять в том, что мы определяем, попалалиизюминасномеромk внашуслучайновыбраннуюбулочку43 . Тогда, поскольку всего булочек 1000, вероятность того, что k -я изюмина попала именно в нашу булочку, естьp = 1/1000 (при условии достаточно хорошего перемешивания теста при приготовлении булочек). Применяем теперь распределение Пуассона с параметром λ= np = 10000 11000= 10. Получим:

P 10000 (k )≈ p (k ,10)= 10 k e − 10 .

В частности, вероятность того, что нам достанется булочка вовсе без изюма (k = 0) , равнаe − 10 ≈ 0,5 10− 4 . Наиболее вероятное число изюмин будет, согласно формуле (6.4), равно 10. Соответствующая вероятность

P 10000(10) ≈ 10 10 e − 10 ≈ 0,125 . 10!

Пример с булочками и изюминами, несмотря на его приземленную формулировку, носит весьма общий характер. Так, вместо изюмин в булочках можно говорить, например, о числе бактерий в капле воды, взятой из хорошо перемешанного ведра. Другой пример. Предположим, что атомы радиоактивного вещества распадаются независимо друг от друга, причем в течение данного интервала времени распад данного атома происходит с

43 Заметим, что на покупку булочки в магазине вполне можно смотреть как на случайный выбор.