Эдс самоиндукции в катушке пропорциональна. Эдс самоиндукции

Изобретение относится к электротехнике, в частности к конструкциям индукционных генераторов тока, и может быть использовано в электромагнитных установках и электрических машинах, таких как двигатели, генераторы, трансформаторы, в частности, в качестве повышающего трансформатора. Технический результат состоит в повышении эдс на выходе за счет использования импульсных напряжений на вторичной обмотке и осуществления конструкции вторичной обмотки, которая бы позволяла производить непосредственный съем с генератора возникающего импульсного напряжения, и одновременно суммарной мощности первичной и вторичной обмоток. 6 з.п. ф-лы, 2 ил.

Рисунки к патенту РФ 2524387

Изобретение относится к электротехнике, в частности к конструкциям импульсных индукционных генераторов тока.

Назначением данного изобретения является использование импульсного генератора ЭДС самоиндукции для обеспечения импульсного энергопитания различных электромагнитных установок и электрических машин, что позволяет существенно расширить арсенал импульсных источников энергии. Из уровня техники известен «Индукционный синхронный генератор», Заявка RU 9811934 7, опубл. 10.09.2000, МПК H02K 21/14, использующий токи обмотки статора, на якоре которого токи пульсируют, и индуктор (ротор), выполненный защищенным от магнитного поля токов обмотки якоря статора. Позволяет расширить режимы работы генератора. Однако в генераторе присутствуют вращающиеся части, а следовательно, он обладает всеми недостатками таких генераторов, т.е. не решены проблемы, связанные с коммутацией электроэнергии. В предложенной конструкции невозможно получение требуемого высокого напряжения.

Известен «Генератор электрической энергии», заявка RU 9402533 5, опубл. 10.06.1996, МПК H02K 19/16, содержащий составные кольцевые обмотки с сердечником, индукционную катушку и обмотку возбуждения. Позволяет увеличить производительность генератора электрической энергии, уменьшить индуктивное сопротивление статорной обмотки, уменьшить затраты на механическую работу при преобразовании механической энергии в электрическую и повысить КПД. Однако генератор в силу особенностей конструкции не позволяет использовать ЭДС самоиндукции. В генераторе присутствуют вращающиеся части, а, следовательно, он обладает всеми недостатками таких генераторов, т.е. не решены проблемы, связанные с коммутацией электроэнергии.

Известна полезная модель «Комбинированная электромагнитная обмотка», патент RU 96443, опубл. 27.07.2010, МПК H01F 5/00, в которой имеется два или более проводника с выводами, и проводники разделены диэлектриком. Позволяет расширить режимы работы. Однако оба проводника применяются в качестве первичной обмотки, отсутствует вторичная обмотка высокого напряжения, что не позволяет обмотку использовать в трансформаторах высокого напряжения, а также не обеспечивает съем и использование ЭДС индукции от вторичной обмотки.

Наиболее близкой заявкой на изобретение является «Индуктивно-статический способ генерации электрической энергии и устройство для его осуществления», RU 2004124018, опубл. 27.01.2006, МПК H01F 1/00, в соответствии с которым имеется первичная и вторичная обмотки, образующие катушку индуктивности с переходом свободной магнитной энергии в индуктивно-зависимое состояние, и происходит наведение ЭДС индукции и получение уплотнения магнитных потоков, пропорциональное увеличению электрической мощности. Позволяет использовать вторичную обмотку с меньшей на величину уплотнения магнитных потоков индуктивностью, чем достигается пропорциональное уплотнение и увеличение электрической мощности генератора. В способе используют индукционный и, одновременно, статический способы генерации. Однако не предложена конструкция вторичной обмотки генератора, которая позволяет производить непосредственный съем с генератора возникающее импульсное напряжение и ток ЭДС самоиндукции.

Также наиболее близким решением является классическая электрическая схема для проведения опытов по демонстрации электромагнитной индукции при размыкании цепи. Эта схема (устройство) функционально является импульсным генератором ЭДС самоиндукции. В связи с вышесказанным, в качестве прототипа принимаем установку, показанную на чертеже - рис.424 стр.231, учебник: Курс физики, часть вторая, изд. «Наука», Москва 1970 г. Авторы: Л.С. Жданов, В.А. Маранджан.

Однако в классической схеме сердечник из электротехнической стали конструктивно не способен выполнять в устройстве одновременно две функции: электропроводящей обмотки и классического, как на рис.424 прототипа, магнитопровода, т.е сердечника (М) индукционной катушки. Прототип не позволяет производить непосредственный съем и использование ЭДС самоиндукции, возникающей в сердечнике классической индукционной катушки.

Задачей предложенного изобретения является использование импульсных напряжений и осуществление конструкции вторичной обмотки генератора, которая бы позволяла производить непосредственный съем с генератора возникающего импульсного напряжения.

Техническим результатом, который обеспечивает предложенное техническое решение, является существенное расширение арсенала средств для импульсного генерирования и преобразования электроэнергии. Заявленный технический результат обеспечен за счет того, что импульсный генератор ЭДС самоиндукции конструктивно исполнен в виде первичной и вторичной обмоток однофазного повышающего трансформатора в стандартном техническом исполнении (с учетом того, что вторичная обмотка является одновременно функционально электропроводником и магнитопроводом, то предлагается рассматривать представленную конструкцию как простейшую индукционную катушку с сердечником, конструктивно исполненным в виде спиральной катушки с возможностью съема с него ЭДС самоиндукции) и они снабжены двумя или более проводниками, которые разделены диэлектриком и каждый проводник имеет выводы. Генератор отличается тем, что первичная обмотка (проводник) низкого напряжения выполнена спирально-ленточной и имеет по меньшей мере 2 витка, намотанных плотно или с небольшим зазором, виток к витку, лента обмотки выполнена шириной от 120 до 200 мм и толщиной от 1 до 2 мм; вторичная обмотка (проводник) высокого напряжения также выполнена спирально-ленточной, лента обмотки выполнена из электротехнической стали, покрытой электроизоляцией, и имеет по меньшей мере 100 витков, намотанных плотно или с небольшим зазором, виток к витку, лента выполнена шириной от 120 до 200 мм и толщиной не более 0,1 мм. Первичная обмотка электрически соединена с аккумуляторной батареей низкого напряжения через ключ-прерыватель с образованием замкнутой электрической цепи, где вторичная обмотка является одновременно электропроводящей обмоткой и магнитопроводом. При этом витки первичной обмотки расположены снаружи витков вторичной обмотки таким образом, что обе обмотки образуют повышающий трансформатор, в котором вторичная обмотка является индукционной катушкой трансформатора высокого напряжения, обеспечивая электропроводность за счет ленты из электротехнической стали, изолированной внешним слоем изоляции и, одновременно, выполняет функцию сердечника для первичной обмотки, ЭДС снимают посредством проводников, электрически подсоединенных к концам ленты вторичной обмотки, и получают за счет периодического срабатывания ключа-прерывателя, причем обеспечивают за счет частоты срабатывания ключа-прерывателя расчетные импульсное напряжение и ток, возникающие во вторичной обмотке, по формуле

где - где L - индуктивность цепи или коэффициент пропорциональности между скоростью изменения силы тока в контуре и возникающей вследствие этого ЭДС самоиндукции,

- скорость изменения силы тока в электрической цепи

В частных случаях первичная обмотка может быть выполнена из медного или алюминиевого проводника, может иметь 3 витка и более, количество витков ограничено трансформаторным отношением: отношение количества витков вторичной обмотки к количеству витков первичной обмотки, что определяет коэффициент трансформации, т.е. насколько напряжение во вторичной обмотке больше, чем в первичной. Например, аккумуляторная батарея низкого напряжения может быть рассчитана на 12-24 вольт и она является источником постоянного тока. В частности, периодическое срабатывание ключа-прерывателя осуществляют с промышленной частотой переменного тока 50 Гц. При этом частоты могут быть любые технически возможные для осуществления, но лучше 50 Гц, так как ее проще преобразовать либо потреблять с помощью имеющихся стандартных преобразователей или электроприборов. Расчетная ЭДС самоиндукции во вторичной обмотке обеспечивается, в частности, геометрией контура и магнитными свойствами сердечника для первичной обмотки. Так она может быть выполнена с формой контура, который выполнен круглым с диаметром 150 мм и более, что зависит от коэффициента трансформации, который и определит диаметр вторичной обмотки в зависимости от применяемой толщины электротехнической стали, или круглой спиральной формой. Поскольку вторичная обмотка является обмоткой высокого напряжения и выполнена из электротехнической стали, то это значит, что ее магнитные свойства определены самим материалом (т.е собственно магнитными свойствами электротехнической стали).

Изобретение в наиболее обобщенном виде иллюстрируется чертежами. Конкретное конструктивное исполнение не ограничивается показанными на чертежах вариантами исполнения.

На Фиг.1 показана схема расположения первичной и вторичной обмоток и аккумуляторная батарея с ключом-прерывателем.

На Фиг.2 - показано сечение А-А по соединенным вторичной и первичной обмоткам.

Данное техническое решение иллюстрируется чертежом, который не охватывает всех возможных конструктивных вариантов исполнения представленной схемы подключения.

Устройство Импульсного генератора ЭДС самоиндукции показано на фиг.1 и фиг.2 (в разрезе), и это устройство конструктивно исполнено в виде однофазного повышающего трансформатора (а также конструктивно является простейшей индукционной катушкой), который состоит из первичной (1) спирально-ленточной обмотки (медный или алюминиевый проводник), 2-3 витка толщиной 1-2 мм, шириной 120 мм, подключенной к аккумуляторной батарее (2) низкого напряжения 12-24 в - источник постоянного тока через ключ-прерыватель (3), образующих замкнутую электрическую цепь.

Вторичная спирально-ленточная обмотка высокого напряжения (4) из электротехнической стали, покрытой электроизоляцией, имеет количество витков от 100 и более, толщина ленты 0,1 мм, ширина 120 мм.

Вторичная обмотка (4) из электротехнической стали выполняет в конструкции две функции одновременно: электропроводящей обмотки и магнитопровода.

В качестве электропроводника вторичная обмотка (4) является индукционной катушкой высокого напряжения повышающего трансформатора.

В качестве магнитопровода вторичная обмотка (4) является сердечником для первичной обмотки (2) классической индукционной катушки.

Первичная (1) и вторичной (4) обмотки однофазного повышающего трансформатора и снабжены двумя или более проводниками (5), проводники вторичной обмотки имеют вывод (6) - т.е. ЭДС снимают посредством проводников (5, 6), электрически подсоединенных к концам ленты вторичной обмотки, и получают за счет периодического срабатывания ключа-прерывателя (3). Причем токи, возникающие во вторичной обмотке, рассчитывают по формуле

где L - индуктивность цепи или коэффициент пропорциональности между скоростью изменения силы тока в контуре первичной обмотки (1) и возникающей вследствие этого ЭДС самоиндукции во вторичной обмотке (2),

- скорость изменения силы тока в электрической цепи первичной обмотки (1) за счет ключа-прерывателя (3).

Периодическое срабатывание ключа-прерывателя (3) осуществляют с промышленной частотой переменного тока 50 Гц. Расчетную ЭДС самоиндукции во вторичной обмотке (4) обеспечивают геометрией контура вторичной обмотки (4) и магнитными свойствами сердечника (4) для первичной обмотки (1).

Форма контура, полученного первичной (1) и вторичной (4) обмотками, в представленном варианте выполнена круглой диаметром 150 мм и более.

Устройство работает следующим образом.

При замыкании ключом (3) электрической цепи первичной обмотки (1) возникает магнитное поле, энергия которого запасается в магнитном поле вторичной обмотки (4).

Размыкание ключа (3) цепи первичной обмотки (1) образует убывающий ток, который по правилу Ленца стремится поддержать ЭДС наведенной индукции вторичной обмотки (4).

В результате запасенная в магнитном поле вторичной обмотки (4) энергия преобразуется в дополнительную энергию тока самоиндукции первичной обмотки (1), запитавшей электрическую цепь вторичной обмотки (4).

В зависимости от количества запасенной в цепи вторичной обмотки (4) магнитной энергии мощность тока самоиндукции может быть различной и определяется по известной формуле:

Таким образом, данным изобретением достигается технический результат, состоящий в том, что конструкция, материал и двойное функциональное назначение вторичной обмотки устройства позволяет снимать и эффективно использовать возникающую ЭДС самоиндукции.

Промышленная применимость предложенного технического решения подтверждается общими правилами физики. Так, эффект самоиндукции описан в учебнике (Л.С. Жданов, В.А. Маранджян, курс физики для средних специальных заведений, ч. 2 электричество, изд. Третье, стереотипное, главная редакция физико-математической литературы, М., 1970 г., стр.231,232,233). Самоиндукция возникает при размыкании цепи, она прямо пропорциональна скорости изменения силы тока в электрической цепи. В традиционных схемах явление самоиндукции всегда сопровождается возникновением искры, возникающей в месте разрыва цепи. Поскольку в предложенной конструкции нет разрыва электрической цепи во вторичной обмотке (4) благодаря ее конструкции, в зависимости от количества запасенной в этой цепи магнитной энергии, ток размыкания не осуществляет искрение, а переходит в генерированную мощность. Таким образом, в конструкции вторичной обмотки (4) при размыкании цепи постоянного тока в первичной обмотке (1) запасенная в магнитном поле этой цепи энергия превращается в энергию тока самоиндукции в цепи вторичной обмотки (4).

Поскольку электродвижущей силой (ЭДС) называют величину, равную работе сторонних сил, в нашем случае - это изменяющееся магнитное поле первичной катушки (1), отнесенной к единице положительного заряда, это и есть ЭДС, действующая в цепи или на ее участке, в нашем случае - это вторичная обмотка (4). Сторонние силы можно охарактеризовать работой, которую они совершают над перемещающимися по цепи зарядами, и размерность ЭДС совпадает с размерностью потенциала и измеряется в тех же единицах. Поэтому векторную величину Е еще называют напряженностью поля сторонних сил. Поле сторонних сил в нашем случае возникает за счет переменного магнитного поля в первичной обмотке (1). Таким образом, ЭДС, действующая в замкнутой цепи, может быть определена как циркуляция вектора напряженности поля сторонних сил, т.е. сторонних сил, возникающих в первичной обмотке (1) за счет прерывания электрического поля ключом-прерывателем (3). Данное правило обеспечивает возникновение ЭДС индукции во вторичной обмотке (4). Это физическое явление описано в в учебнике (И.В. Савельев, Курс физики, том 2, электричество, стр.84,85, изд. Второе стереотипное, изд. Наука, главная редакция физико-математической литературы, М., 1966 г.).

Кроме сторонних сил, на заряд действуют силы электростатического поля, которые возникают непосредственно во вторичной катушке (4).

Устройство также использует явление электромагнитной индукции, описанной в (Р.А. Мустафаев, В.Г. Кривцов, учебник, физика, в помощь поступающим в ВУЗы, изд. М., Высшая школа, 1989 г.).

Таким образом, используемая в предложенном изобретении конструкция генератора как устройство позволяет эффективно генерировать, снимать и использовать ЭДС самоиндукции. Таким образом, устройство может быть изготовлено промышленным способом и внедряться в качестве перспективного эффективного импульсного генератора ЭДС самоиндукции, который позволяет расширить арсенал технических средств для импульсного генерирования и преобразования электроэнергии.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Импульсный генератор эдс самоиндукции, конструктивно исполненный в виде однофазного повышающего трансформатора, состоящего из первичной и вторичной обмоток и снабжен двумя или более проводниками, которые разделены диэлектриком, а проводник имеет выводы, отличающийся тем, что первичная обмотка низкого напряжения выполнена спирально-ленточной и имеет по меньшей мере два витка, намотанных плотно или на небольшом расстоянии друг от друга, лента обмотки выполнена шириной 120-200 мм и толщиной 1-2 мм; вторичная обмотка высокого напряжения также выполнена спирально-ленточной, лента обмотки выполнена из электротехнической стали, покрытой электроизоляцией, имеет по меньшей мере 100 витков, намотанных плотно или на небольшом расстоянии друг от друга, лента выполнена шириной 120-200 мм и толщиной не более 0,1 мм, первичная обмотка электрически соединена с аккумуляторной батареей низкого напряжения через ключ-прерыватель с образованием замкнутой электрической цепи, а вторичная обмотка является одновременно электропроводящей обмоткой и магнитопроводом, при этом витки первичной обмотки расположены снаружи витков вторичной обмотки таким образом, что обе обмотки образуют повышающий трансформатор, в котором вторичная обмотка является индукционной катушкой повышающего трансформатора, обеспечивая электропроводность за счет ленты из электротехнической стали, изолированной внешним слоем изоляции, и одновременно выполняет функцию сердечника для первичной обмотки, эдс снимают посредством проводников, электрически подсоединенных к концам ленты вторичной обмотки, и получают за счет периодического срабатывания ключа-прерывателя.

2. Импульсный генератор эдс самоиндукции по п.1, отличающийся тем, что первичная обмотка выполнена из медного или алюминиевого проводника.

3. Импульсный генератор эдс самоиндукции по п.1, отличающийся тем, что первичная обмотка имеет три витка.

4. Импульсный генератор эдс самоиндукции по п.1, отличающийся тем, что аккумуляторная батарея низкого напряжения рассчитана на 12-24 вольт и является источником постоянного тока.

5. Импульсный генератор эдс самоиндукции по п.1, отличающийся тем, что периодическое срабатывание ключа-прерывателя осуществляют с промышленной частотой переменного тока 50 Гц.

6. Импульсный генератор эдс самоиндукции по п.1, отличающийся тем, что расчетную эдс самоиндукции обеспечивают геометрией контура и магнитными свойствами сердечника для первичной обмотки.

7. Импульсный генератор эдс самоиндукции по п.1, отличающийся тем, что форма контура выполнена круглой диаметром 150 мм и более.

Самоиндукцией называется наведение ЭДС в проводнике при изменении электрического тока в этом проводнике.

Когда подается напряжение на катушку электромагнита, ток возрастает не сразу. Он увеличивается постепенно. Нарастание тока тормозится возникшим напряжением, противоположным приложенному. Это напряжение – электродвижущая сила (ЭДС) самоиндукции. Значение ЭДС постепенно уменьшается, и ток в электромагните возрастает до номинального значения.

Взаимодействие электрического и магнитного полей – причина самоиндукции

Электрическое и магнитное поля взаимосвязаны: электрический ток или меняющееся электрическое поле создает магнитное поле.

В свою очередь, меняющееся магнитное поле создает электрическое поле.

Рассмотрим процессы в проводящем контуре, когда в нем меняется электрический ток (например, его включают или выключают).

  • В проводнике, помещенном в меняющееся магнитное поле, наводится ЭДС.
  • Если в проводнике меняется величина электрического тока – возникает меняющееся магнитное поле.
  • Меняющееся магнитное поле, созданное током в проводнике, наводит ЭДС самоиндукции в этом же проводнике.

Не во всех электрических цепях возникает эффект самоиндукции. Лампочка накаливания мгновенно вспыхивает при подаче тока, и мгновенно гаснет при его отключении, а в электромагните, на который подается и выключается постоянное напряжение, процессы растянуты во времени. У лампочки и электромагнита разная инерционность.

В механике мерой инерционности является масса: чтобы привести в движение массивный предмет, нужно прикладывать усилие в течение некоторого времени.

В электротехнике мерой инерционности является величина, названная индуктивностью. Она обозначается символом L . Единица измерения индуктивности – Генри (Гн), а также производные единицы: миллиГенри (мГн), микроГенри (мкГн) и так далее. Чем больше индуктивность цепи, тем дольше и мощнее протекают переходные процессы. Лампочка накаливания имеет очень малую индуктивность, а у электромагнита индуктивность большая.

В радиотехнике и электротехнике используются дроссели – детали, имеющие нормированные значения индуктивности.

На рисунке приведена схема опыта, демонстрирующего явление самоиндукции.

Катушка, намотанная на ферритовый сердечник, имеет значительную индуктивность. Источник питания – батарейка с номиналом полтора вольта. Пока тумблер находится во включенном состоянии, лампочка горит тускло, поскольку напряжения батарейки для нее недостаточно. После размыкания тумблера лампочка вспыхивает ярко и потом гаснет.

Почему лампочка вспыхивает после отключения напряжения питания? Через нее разряжается ЭДС самоиндукции, наведенная в катушке в момент выключения напряжения.

Но почему свет не просто продолжает гореть, а вспыхивает ярче, чем при включенном тумблере? ЭДС самоиндукции превышает номинальное напряжение батарейки. Рассмотрим, от чего зависит такой эффект.

От чего зависит ЭДС самоиндукции?

ЭДС самоиндукции, возникающая в электрической цепи, зависит от ее индуктивности и от скорости изменения тока в цепи.

Скорость изменения тока имеет важное значение. Если он мгновенно выключается, то есть скорость изменения очень большая, то и ЭДС самоиндукции велико. Наведенное напряжение разряжается через параллельные ветви цепи (в опыте с лампочкой – через лампочку).

Самоиндукция и переходные процессы в электрических цепях

Индуктивность электрической плитки или лампочки накаливания очень мала, и ток в этих электроприборах, при включении и выключении, возникает или исчезает практически мгновенно. Индуктивность электродвигателя велика, и он «выходит на режим» в течение нескольких минут.

Если выключить ток в большом электромагните с большим значением индукции, допустив высокую скорость уменьшения тока, то между контактами выключателя вспыхивает искра, а в случае большого тока может загореться вольтова дуга. Это опасное явление, поэтому в цепях с большой индуктивностью ток снижают постепенно, используя реостат (элемент с переменным электрическим сопротивлением).

Безопасное отключение электроэнергии – серьезна проблема. На все выключатели действуют «ударные нагрузки», возникающие из-за ЭДС самоиндукции при отключении тока, и выключатели «искрят». Для каждого типа выключателей указывается максимальное значение тока, которое можно коммутировать. Если ток превышает допустимое значение, в выключателе может вспыхнуть электрическая дуга.

На опасных производствах, в угольных шахтах, хранилищах нефтепродуктов простое искрение выключателей недопустимо. Здесь применяются взрывобезопасные выключатели, надежно защищенные герметичным пластмассовым корпусом. Цена таких выключателей в десятки раз выше, чем обычных – это необходимая плата за безопасность.

Самоиндукция

Каждый проводник, по которому протекает эл.ток, находится в собственном магнитном поле.

При изменении силы тока в проводнике меняется м.поле, т.е. изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока ведет в возникновению вихревого эл.поля и в цепи появляется ЭДС индукции.

Это явление называется самоиндукцией.

Самоиндукция - явление возникновения ЭДС индукции в эл.цепи в результате изменения силы тока.
Возникающая при этом ЭДС называется ЭДС самоиндукции

Проявление явления самоиндукции

Замыкание цепи

При замыкании в эл.цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл.поле, направленное против тока, т.е в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи (вихревое поле тормозит электроны).
В результате Л1 загорается позже, чем Л2.

Размыкание цепи

При размыкании эл.цепи ток убывает, возникает уменьшение м.потока в катушке, возникает вихревое эл.поле, направленное как ток (стремящееся сохранить прежнюю силу тока) , т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи.
В результате Л при выключении ярко вспыхивает.

В электротехнике явление самоиндукции проявляется при замыкании цепи (электрический ток нарастает постепенно) и при размыкании цепи (электрический ток пропадает не сразу).

ИНДУКТИВНОСТЬ

От чего зависит ЭДС самоиндукции?

Электрический ток создает собственное магнитное поле. Магнитный поток через контур пропорционален индукции магнитного поля (Ф ~ B), индукция пропорциональна силе тока в проводнике
(B ~ I), следовательно магнитный поток пропорционален силе тока (Ф ~ I).
ЭДС самоиндукции зависит от скорости изменения силы тока в эл.цепи, от свойств проводника (размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник.
Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью.

Индуктивность - физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду.
Также индуктивность можно рассчитать по формуле:

где Ф - магнитный поток через контур, I - сила тока в контуре.

Единицы измерения индуктивности в системе СИ:

Индуктивность катушки зависит от:
числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды (возможен сердечник).


ЭДС САМОИНДУКЦИИ

ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.


ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ ТОКА

Вокруг проводника с током существует магнитное поле, которое обладает энергией.
Откуда она берется? Источник тока, включенный в эл.цепь, обладает запасом энергии.
В момент замыкания эл.цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля.

Энергия магнитного поля равна собственной энергии тока.
Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

Энергия магнитного поля, созданного током, прямо пропорциональна квадрату силы тока.
Куда пропадает энергия магнитного поля после прекращения тока? - выделяется (при размыкании цепи с достаточно большой силой тока возможно возникновение искры или дуги)


ВОПРОСЫ К ПРОВЕРОЧНОЙ РАБОТЕ

по теме "Электромагнитная индукция"

1. Перечислить 6 способов получения индукционного тока.
2. Явление электромагнитной индукции (определение).
3. Правило Ленца.
4. Магнитный поток (определение, чертеж, формула, входящие величины, их ед. измерения).
5. Закон электромагнитной индукции (определение, формула).
6. Свойства вихревого электрического поля.
7. ЭДС индукции проводника, движущегося в однородном магнитном поле (причина появления, чертеж, формула, входящие величины, их ед. измерения).
8. Самоиндукция (кратко проявление в электротехнике, определение).
9. ЭДС самоиндукции (ее действие и формула).
10. Индуктивность (определение, формулы, ед. измерения).
11. Энергия магнитного поля тока (формула, откуда появляется энергия м. поля тока, куда пропадает при прекращении тока).

Самоиндукцией называется появление в проводнике электродвижущей силы (ЭДС), направленной в противоположную сторону относительно напряжения источника питания при протекании тока. При этом оно возникает в момент, когда сила тока в цепи изменяется. Изменяющийся электрической ток порождает изменяющееся магнитное поле, оно в свою очередь наводит ЭДС в проводнике.

Это похоже на формулировку закона электромагнитной индукции Фарадея, где сказано:

При прохождении магнитного потока через проводник, в последнем возникает ЭДС. Она пропорциональна скорости изменения магнитного потока (мат. производная по времени).

E=dФ/dt ,

Где E – ЭДС самоиндукции, измеряется в вольтах, Ф – магнитный поток, единица измерения – Вб (вебер, он же равен В/с)

Индуктивность

Мы уже сказали о том, что самоиндукция присуща индуктивным цепям, поэтому рассмотрим явление самоиндукции на примере катушки индуктивности.

Катушка индуктивности – это элемент, который представляет собой катушку из изолированного проводника. Для увеличения индуктивности увеличивают число витков или внутрь катушки помещают сердечник из магнитомягкого или другого материала.

Единица измерения индуктивности – Генри (Гн). Индуктивность характеризует то, насколько сильно проводник противодействует электрическому току. Так как вокруг каждого проводника, по которому протекает ток, образуется магнитное поле, и, если поместить проводник в переменное поле – в нем возникнет ток. В свою очередь магнитные поля каждого витка катушки складываются. Тогда вокруг катушки, по которой протекает ток, возникнет сильное магнитное поле. При изменении его силы в катушке будет изменяться и магнитный поток вокруг неё.

Согласно закону электромагнитной индукции Фарадея, если катушку будет пронизывать переменный магнитный поток, то в ней возникнет ток и ЭДС самоиндукции. Они будут препятствовать току, который протекал в индуктивности от источника питания к нагрузке. Их еще называют экстратоки ЭДС самоиндукции.

Формула ЭДС самоиндукции на индуктивности имеет вид:

То есть чем больше индуктивность, и чем больше и быстрее изменился ток – тем сильнее будет всплеск ЭДС.

При возрастании тока в катушке возникает ЭДС самоиндукции, которая направлена против напряжения источника питания, соответственно возрастание тока замедлится. То же самое происходит при убывании – самоиндукция приведет к появлению ЭДС, которое будет поддерживать ток в катушке в том же направлении, что и до этого. Отсюда следует, что напряжение на выводах катушки будет противоположным полярности источника питания.

На рисунке ниже вы видите, что при включении/отключении индуктивной цепи ток не резко возникает, а изменяется постепенно. Об этом говорят и законы коммутации.

Другое определение индуктивности звучит так: магнитный поток пропорционален току, но в его формуле индуктивность выступает в качестве коэффициента пропорциональности.

Трансформатор и взаимоиндукция

Если расположить две катушки в непосредственной близости, например, на одном сердечнике, то будет наблюдаться явление взаимоиндукции. Пропустим переменный ток по первой, тогда её переменный поток будет пронизывать витки второй и на её выводах появится ЭДС.

Это ЭДС будет зависеть от длины провода, соответственно количества витков, а также от величины магнитной проницаемости среды. Если их расположить просто около друг друга — ЭДС будет низким, а если взять сердечник из магнитомягкой стали – ЭДС будет значительно больше. Собственно, так и устроен трансформатор.

Интересно: такое взаимное влияние катушек друг на друга называют индуктивной связью.

Польза и вред

Если вам понятна теоретическая часть, стоит рассмотреть где применяется явление самоиндукции на практике. Рассмотрим на примерах того, что мы видим в быту и технике. Одно из полезнейших применений – это трансформатор, принцип его работы мы уже рассмотрели. Сейчас встречаются все реже, но ранее ежедневно использовались люминесцентные трубчатые лампы в светильниках. Принцип их работы основан на явлении самоиндукции. Её схемы вы можете увидеть ниже.

После подачи напряжения ток протекает по цепи: фаза — дроссель — спираль — стартер — спираль — ноль.

Или наоборот (фаза и ноль). После срабатывания стартера, его контакты размыкаются, тогда (катушка с большой индуктивностью) стремится поддержать ток в том же направлении, наводит ЭДС самоиндукции большой величины и происходит розжиг ламп.

Аналогично это явление применяется в цепи зажигания автомобиля или мотоцикла, которые работают на бензине. В них в разрыв между катушкой индуктивности и минусом (массой) устанавливают механический (прерыватель) или полупроводниковый ключ (транзистор в ЭБУ). Этот ключ в момент, когда в цилиндре должна образоваться искра для зажигания топлива, разрывает цепь питания катушки. Тогда энергия, запасенная в сердечнике катушки, вызывает рост ЭДС самоиндукции и напряжение на электроде свечи возрастает до тех пор, пока не наступит пробой искрового промежутка, или пока не сгорит катушка.

В блоках питания и аудиотехнике часто возникает необходимость убрать из сигнала лишние пульсации, шумы или частоты. Для этого используются фильтры разных конфигурации. Один из вариантов это LC, LR-фильтры. Благодаря препятствию роста тока и сопротивлению переменного тока, соответственно, возможно добиться поставленных целей.

Вред ЭДС самоиндукции приносит контактам выключателей, рубильников, розеток, автоматов и прочего. Вы могли заметить что, когда вытаскиваете вилку работающего пылесоса из розетки, очень часто заметна вспышка внутри неё. Это и есть сопротивление изменению тока в катушке (обмотке двигателя в данном случае).

В полупроводниковых ключах дело обстоит более критично – даже небольшая индуктивность в цепи может привести к их пробою, при достижении пиковых значений Uкэ или Uси. Для их защиты устанавливают снабберные цепи, на которых и рассеивается энергия индуктивных всплесков.

Заключение

Подведем итоги. Условиями возникновения ЭДС самоиндукции является: наличие индуктивности в цепи и изменение тока в нагрузке. Это может происходить как в работе, при смене режимов или возмущающих воздействиях, так и при коммутации приборов. Это явление может нанести вред контактам реле и пускателей, так как приводит к при размыкании индуктивных цепей, например, электродвигателей. Чтобы снизить негативное влияние большая часть коммутационной аппаратуры оснащается дугогасительными камерами.

В полезных целях явление ЭДС используется довольно часто, от фильтра для сглаживания пульсаций тока и фильтра частот в аудиоаппаратуре, до трансформаторов и высоковольтных катушек зажигания в автомобилях.

Надеемся, теперь вам стало понятно, что такое самоиндукция, как она проявляется и где ее можно использовать. Если возникли вопросы, задавайте их в комментариях под статьей!

Материалы

Физика 10-11 класс. САМОИНДУКЦИЯ

Каждый проводник, по которому протекает эл.ток, находится в собственном магнитном поле.

При изменении силы тока в проводнике меняется м.поле, т.е. изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока ведет в возникновению вихревого эл.поля и в цепи появляется ЭДС индукции.

Это явление называется самоиндукцией.
Самоиндукция - явление возникновения ЭДС индукции в эл.цепи в результате изменения силы тока.
Возникающая при этом ЭДС называется ЭДС самоиндукции

Проявление явления самоиндукции

Замыкание цепи

При замыкании в эл.цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл.поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи (вихревое поле тормозит электроны).
В результате Л1 загорается позже, чем Л2.

Размыкание цепи

При размыкании эл.цепи ток убывает, возникает уменьшение м.потока в катушке, возникает вихревое эл.поле, направленное как ток (стремящееся сохранить прежнюю силу тока) , т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи.