Дешифровка снимков. Теория дешифрирования аэро- и космических снимков. Давление грунта на сооружения

Необходимая для исследований информация (предметно-содержательная и геометрическая) извлекается из снимков двумя основными методами, это дешифрирование и фотограмметрические измерения.

Дешифрирование, которое должно дать ответ на основной вопрос - что изображено на снимке, позволяет получать предметную, тематическую (в основном качественную) информацию об изучаемом объекте или процессе, его связях с окружающими объектами. В визуальном дешифрировании обычно выделяют чтение снимков и их интерпретацию (толкование). Умение читать снимки базируется на знании дешифровочных признаков объектов и изобразительных свойств снимков. Глубина же интерпретационного дешифрирования существенно зависит от уровня подготовки исполнителя. Чем лучше знает дешифровщик предмет своего исследования, тем полнее и достовернее информация, извлекаемая из снимка.

Дешифрирование - это процесс распознавания: объектов, их свойств, взаимосвязей по их изображениям на снимке. Это и метод изучения и исследования объектов, явлений и процессов на земной поверхности, который заключается в распознавании объектов по их признакам, определении характеристик, установлении взаимосвязей с другими объектами.

В зависимости от условий и места выполнения дешифрирование радиолокационных снимков может быть подразделено на полевое, аэровизуальное, камеральное и комбинированное.

Полевое дешифрирование

При полевом дешифрировании дешифровщик непосредственно на местности ориентируется по характерным и легко опознаваемым объектам местности и, сравнивая контуры объектов с их радиолокационными изображениями, наносит результаты опознавания условными знаками на снимок или топографическую карту. При полевом дешифрировании попутно, непосредственными измерениями, определяются числовые и качественные характеристики объектов (характеристики растительности, водоемов, сооружений при них, характеристики населенных пунктов и т. д.). При этом на снимок или карту могут быть нанесены объекты, не изобразившиеся на снимке вследствие своих малых размеров или потому, что они не существовали в момент съемки. При полевом дешифрировании специально или попутно создаются эталоны (ключи), с помощью которых в дальнейшем в камеральных условиях облегчается опознавание объектов однотипной местности. Недостатками полевого дешифрирования снимков являются его трyдоемкость по времени и затратам и сложность его организации.

Аэровизуальное дешифрирование аэрокосмоснимков

В последнее время в практике аэрофотографических работ все большее применение получает аэровизуальный метод дешифрирования аэрофотоснимков. Этот метод с успехом может быть применен при дешифрировании радиолокационных изображений местности. Сущность аэровизуального метода заключается в опознавании изображений объекта с самолета или вертолета. Наблюдение может вестись через оптические и инфракрасные приборы. Аэровизуальное дешифрирование радиолокационных изображений позволяет увеличить производительность и снизить стоимость работ полевого дешифрирования. Полученные в результате дешифрирования данного снимка данные позволят определить местоположение источников загрязнений и оценить их интенсивность.

Камеральное дешифрирование аэрокосмоснимков

При камеральном дешифрировании снимков опознавание объектов и их интерпретация производится без сличения изображений с натурой, путем изучения изображений объектов по их дешифровочным признакам. Камеральное дешифрирование снимков широко применяется при составлении контурных радиолокационных карт, обновлении топографических карт, геологических исследованиях, при исправлении и дополнении картографических материалов в труднодоступных районах.

Однако камеральное дешифрирование обладает существенным недостатком - невозможно полностью получить все необходимые сведения о местности. Кроме того, результаты камерального дешифрирования снимков соответствуют не времени выполнения дешифрирования, а моменту съемки. Поэтому представляется весьма целесообразным сочетание камерального и полевого или аэровизуального дешифрирования снимков, т. е. их комбинирование.

При комбинированном дешифрировании снимков основная работа по обнаружению и опознаванию объектов выполняется в камеральных условиях, а в поле или в полете выполняются и опознаются те объекты или их характеристики которые невозможно опознать камерально.

Министерство образования и науки РФ
Федеральное агентство по образованию

Пензенский государственный университет
архитектуры и строительства

Кафедра «Землеустройство и геодезия».

РЕФЕРАТ
на тему
«Общие вопросы дешифрирования снимков»

Специальность: «Земельный кадастр»

Обозначение: 120301 Группа: ЗМК-31

Руководители работы: Пресняков В.В.
Тюкленкова Е. П.

Работа защищена: Оценка:

Пенза 2010

Введение
Технологии оперативного доступа и обработки космической информации для ведения мониторинга природных ресурсов, промышленно-хозяйственной деятельности и чрезвычайных ситуаций претерпели за последнее время серьезные изменения. Уникальная информация о состоянии земной поверхности стала доступна региональным структурам, в круг обязанностей которых входит проведение мониторинговых наблюдений и принятие решений по результатам анализа складывающейся в регионах обстановки. Развитие коммуникационных сетей дало возможность вовлечь в процесс обработки дистанционной информации различных специалистов и сделать доступными обширные архивы материалов космической съемки. Подобный информационный скачок явился стимулом развития методологии и технологии обработки и применения данных космического зондирования земли в традиционных сферах: геологическом картографировании, оценке лесов, мониторинге земель, прогнозировании и мониторинге чрезвычайных и аварийных ситуаций, экологическом мониторинге, оценке метеообстановки, ледовой разведки. Кроме того, что не менее важно, стали появляться новые направления использования оперативной космической информации в отраслях, которые принято характеризовать, как находящиеся "на стыке различных направлений". К таковым следует отнести картографирование местообитаний редких и ценных видов животных (в том числе оценка мест предполагаемых кормовых участков, гнездований, коридоров миграции) для последующего планирования природоохранных и промысловых мероприятий, выявление массивов уникальных растительных группировок и ареалов редких видов растений (мониторинг площадей старовозрастных лесов севера Европейской части России). По материалам регулярных разносезонных съемок из космоса стал возможным оперативный анализ социально-экономических особенностей, отражающихся в структуре и динамике ресурсопользования, проведение исторических реконструкций для целого ряда административных территорий в различных ландшафтных зонах.

1. Этапы дешифрирования.
Детальное дешифрирование рекомендуется проводить в три этапа – предварительный (предполевой), полевой и окончательная камеральная обработка материалов.
Предполевой этап . После получения геологического задания на проведение геологосъемочных или другого вида тематических исследований составляется проект и смета на их проведение, подбирается состав исполнителей. В составе группы, занимающейся дешифрированием, должен быть геолог, хорошо знающий геологическое строение данной территории, геоморфолог, или геолог, знающий геоморфологию, топограф и техник для выполнения технических и графических работ.
После укомплектования партии исполнителями, техническими средствами, топокартами и аэрокосмоматериалами, проводятся подготовительные работы предшествующие дешифрированию. К ним относится сбор опубликованных и фондовых материалов по району работ – как текстовых, так и графических.
Если масштаб результативных карт 1:50000, то дешифрирование ведется на АС масштаба 1:25000, которых заказывают два комплекта. На одном комплекте выполнят геоморфологическое дешифрирование (элементы геоморфологии отрисовывают тушью на четных или нечетных по нумерации снимках), вторая же, оставшаяся половина комплекта, используется для составления фотосхемы, на которой проводится структурное и геологическое дешифрирование. Второй комплект снимков является контрольным.
Результаты геоморфологического дешифрирования со снимков переносят на прозрачную основу в масштабе фотосхемы (т.е. не изменяя масштаба АС).
Параллельно с проведением геоморфологического дешифрирования, графический фондовый материал – тематические карты, структурные планы, результативные карты геофизических исследований – трансформируются в масштаб фотосхемы на прозрачную основу. Собранный и подготовленный таким образом геолого-геофизический материал используется при проведении геологического дешифрирования в качестве накладок.
Как уже отмечалось ранее, детальное дешифрирование начинается с переноса на рабочую фотосхему элементов разрывной и пликативной тектоники с карты результатов регионального дешифрирования. Если в пределах исследуемого района есть детально изученные участки (бурением, горными выработками), то они могут служить эталонными при установлении ландшафтных индикаторов разрывной и пликативной тектоники, оруденения и т.д.
Затем, сопоставляя особенности ландшафта и геолого-геофизический материал на прозрачных накладках, проводят структурное или геологическое дешифрирование начиная с дизъюнктивной тектоники, а затем устанавливают и пликативные формы, определяют элементы залегания слоев и отрисовывают карту предварительного дешифрирования в масштабе 1:25000.
Полевой этап . В процессе предполевого геоморфологического и геологического дешифрирования возникают вопросы, решить которые в камеральный период не представляется возможным. Все они могут быть решены только при непосредственном наблюдении объекта, т.е. в полевых условиях. В предполевой период составляется перечень таких неясностей и составляются маршруты для их разрешения. Во время полевых маршрутов легко уточняются на местности некоторые геоморфологические индикаторы: суффозионно-карстовые и собственно карстовые формы, эрозионные уступы и останцы, эллювиальные развалы, речные террасы разбраковываются на пойменные и надпойменные, для последних устанавливается номер террасы.
Результаты маршрутных исследований записываются в полевой журнал и наносятся на отдешифрированные ранее АС после окончания маршрута.
В комплекс полевых исследований входят и аэровизуальные наблюдения (с самолета или вертолета), которые условно можно подразделить на региональные и детальные.
Региональные наблюдения проводятся с высоты 0,5 км-1-2 км. Они позволяют в короткий срок ознакомится с исследуемой территорией и получить представления о геологических и геоморфологических особенностях района. В этом случае они выполняют роль рекогносцировочных работ. Наблюдения с воздуха дают возможность одновременно наблюдать значительную площадь земной поверхности и помогают уточнить и выявлять зоны тектонических нарушений, региональные уступы, поверхности выравнивания, интенсивность расчленения рельефа, изучать речные террасы, выявлять аномальные участки речных долин, взаимосвязь отдельных морфоструктур и т.д.
Детальные аэровизуальные наблюдения выполняют, в основном, те же функции, что и региональные, но в более детальном масштабе. Высота облета обычно 200-300 м.
Время проведения аэровизуальных наблюдений в начале или конце полевого сезона.
Окончательная камеральная обработка результатов дешифрирования – в этот этап вносятся окончательные коррективы в результаты дешифрирования, схемы и карты приводятся в отчетный масштаб, проводится окончательная увязка геологических и аэрофотогеологических результатов.
Пишется текстовая часть отчета, отчетные карты выполняются в чистовом варианте, затем следует защита отчета и процедура сдачи его в фонды.

2. МЕТОДЫ ДЕШИФРИРОВАНИЯ
Различают прямой, контрастно-аналоговый и ландшафтно-индикацион-ный методы .
Прямой метод дешифрирования применяется только в геологически открытых районах, где коренные породы выходят на поверхность. Фототоновые различия, а также особенности структуры и рисунки изображения на снимках этих районов обусловлены геологическими телами, их окраской, вещественным составом, условиями залегания. Поэтому здесь возможно непосредственное отождествление выделенных на снимках объектов с геологическими телами и прямое сопоставление геолого-геофизических материалов с данными дешифрирования.
Прямой метод дешифрирования позволяет устанавливать поля развития горных пород различного состава и генезиса, границы стратиграфических подразделений осадочных и вулканогенных пород, характер их залегания, тектонические нарушения (пликативные и дизъюнктивные). Например, слоистые толщи образуют на снимках полосчатый рисунок, по которому можно судить о форме залегания отложений, переслаивании пород различного состава; по их выраженности в рельефе – об относительной устойчивости к процессам денудации.
По смещению слоев, маркирующих горизонтов, резкой смене фототона и рисунка изображения, вызванных сменой геоморфологического и геологического строения, дешифрируются разрывные нарушения. Особенно высок эффект применения дистанционных материалов в районах со сложным геологическим строением, где горные породы резко различаются по физико-механическим свойствам и устойчивости к выветриванию. Опытным путем установлено, что в открытых районах в результате полевых работ подтверждается до 90-100% выявленных при дешифрировании объектов.
Контрастно-аналоговый (или контурно-геологический) метод дешифрирования используют как в геологически открытых, так и в геологически закрытых районах при работе с аэрофотоматериалами и космическими снимками всех уровней генерализации.
Замечено, что геологические объекты, аналогичные по строению и истории развития, имеют сходные изображения на снимках. На снимках эталонных участков проводится дешифрирование неоднородностей фототона и рисунков фотоизображения. Затем наземными полевыми исследованиями устанавливается геологическая природа отдешифрированных объектов, т.е. проводится их интерпретация. На основании результатов этих исследований составляются таблицы дешифровочных признаков. Таким образом получают эталоны геологических объектов с их типичным фотоизображением, т.е. их «фотопортреты». При дешифрировании новых площадей задача сводится к отысканию объектов, сходных с «фотопортретом» эталонной геологической структуры.
Применяя этот метод дешифрирования, необходимо помнить, что одинаковые или сходные, особенно древние геологические образования могут иметь различное проявление в ландшафте. Кроме того, необходимо учитывать, что при переходе от высоко- к средне- и низкоразрешимым КС происходит переход геометрической (рисунок и структура изображения) группы признаков в фотометрические (фототон). Для крупномасштабных снимков достоверным признаком является рисунок фотоизображения. Для КС масштаба 1:2500000 значение рисунка изображения объекта и фототона примерно одинаково, а для телеснимков того же масштаба, но более низкого разрешения, основной дешифровочный признак – фототон.
Дешифровочные признаки изменяются в зависимости от уровней генерализации КС, технических и природных условий съемки, и это накладывает определенные ограничения на диапазон их экстраполяции. Дешифровочные признаки, установленные для геологических объектов на КС одного уровня генерализации, нельзя механически использовать при работе с КС иного уровня генерализации.
Ландшафтно-индикационный метод дешифрирования применяют с геологически закрытых районах при работе с АС и КС среднего и высокого разрешения.
Ландшафт – это однородная по происхождению и развитию территория, обладающая единым геолого-тектоническим строением, однотипным рельефом, общими характеристиками подземных и поверхностных вод, почв, общим климатом, растительными и животными сообществами.
Индикатор – это наблюдаемый на снимке признак, который позволяет установить труднонаблюдаемый или скрытый геологический объект.
Индикационные связи – это связи явных (прямых) физиономичных компонентов ландшафта со скрытыми геологическими структурами.
В основе ландшафтно-индикационного метода дешифрирования лежат связи между дешифровочными признаками (прямыми и косвенными), выявленными на снимках с геологическими объектами данной территории. В этом случае косвенные признаки (растительность, линеанементы и т.д.) являются индикаторами поверхностных или погребенных геологических структур.

3.Классификация объектов дешифрирования
Свойства объектов и изображений, такие как размер, используют для дешифрирования, другие, вследствие невозможности или нецелесообразности их определения, например, массу, звук, запах - нет. Свойства объектов или изображений, определяемые и используемые для классификации при дешифрировании, называют признаками. Исходя из предварительно принятых понятий искомых объектов и дешифрируемых изображений, сформулируем: признаки - это классификационные свойства объектов или изображений. С помощью признаков можно не только различать объекты (изображения), но и однотипные объединять в группы. Последнее положение обусловливает два пути сужения области поиска во множестве объектов (изображений): объединением имеющих данный признак либо исключением не имеющих его. Из совокупности признаков объекта (изображения), известных дешифровщику, у него складывается соответствующий образ. Классификации объектов (изображений) и их признаков не совпадают (один признак может быть присущ многим объектам), но классификация признаков неразрывно свя-зана с классификацией объектов (изображений). Это обстоятельство надо учитывать при систематизации изображений, объектов и признаков. Признаки объектов называют демаскирующими, а изображений - дешифровочными. Демаскирующие и дешифровочные признаки могут совпадать или различаться. Например, форма может быть присуща объекту и изображению, а при мелком масштабе изображения - только объекту. Некоторые свойства объектов, не являясь обычно демаскирующими признаками (например, спектрозональные излучения), не только служат носителями для передачи изображений, но при преобразовании в изображения сами становятся дешифровочными признаками. Качественные признаки служат для сравнения изображений (объектов) по их свойствам (например, есть - нет, больше - меньше, светлее - темнее и т. п.), а количественные, кроме того, численно выражают это сравнение. Прямые признаки являются свойствами дешифрируемого изображения (объекта), которые определяют путем его наблюдения и измерения. Косвенные признаки выражают взаимосвязи дешифрируемого изображения с окружающими. Эти признаки определяют путем изучения взаимосвязей, наблюдения и измерения изображений (объектов) как дешифрируемых, так и окружающих их. В данном случае изображения (объекты), окружающие, дешифрируемые и известные дешифровщику, сами становятся признаками. По достаточному количеству косвенных признаков можно отдешифрировать объект, изображения которого нет на снимке. Прямые и косвенные признаки изображений могут быть первичными и вторичными. Первичные признаки определяют путем наблюдения и измерения изображений, вторичные - путем обработки первичных признаков. Существуют и другие разновидности признаков, причем с развитием средств получения и обработки изображений их количество увеличивается. Разделение признаков целесообразно учитывать при их систематизации с целью создания банков признаков и формализации операций дешифрирования. С учетом сущности понятия «признак» уточним понятия «объект» и «изображение» в топографическом дешифрировании.
Объект - это единица классифицированного множества объектов местности, состоящая из совокупности демаскирующих признаков. Изображение - это единица классифицированного множества изображений объектов местности, состоящая из совокупности дешифровочных признаков. Примеры классификации признаков имеются в. Желательно, чтобы классификация признаков способствовала автоматизации и оптимизации процесса дешифрирования. С учетом принятых формулировок понятий объектов, изображений и признаков установим сущность процесса дешифрирования. По общности целей и действий дешифрирование относится к процессам определения свойств объектов по источникам информации, которыми могут быть: сам объект, его описание, музыкальные образы и т. д. Особенностью, выделяющей дешифрирование из этих процессов, является то, что в качестве источников информации о наличии свойств объектов используются изображения, их признаки. В этом заключается сущность дешифрирования. Общность целей и действий обусловливает целесообразность учета возможности применения для формализации дешифрирования известных детерминированных и вероятностных методов обработки указанных выше источников информации. Чтобы техническими средствами решать интеллектуальные задачи обработки изображений, надо уяснить действия дешифровщика с позиции возможности их формализации. Дешифровщик, обрабатывая изображения, определяет известные ему признаки и по ним отбирает изображения, которые соответствуют объектам, интересующим потребителей, классифицирует отдешифрированные изображения и приводит их к форме, понятной потребителю. При этом дешифровщик сопоставляет совокупность выявленных признаков с классификацией признаков изображений объектов и самих объектов, а затем по совпадающим признакам устанавливает соответствие изображений объектам.

Классификации признаков изображений объектов и самих объектов, используемые дешифровщиком, как правило, совпадают с классификацией признаков объектов для потребителей. Признаки изображений и объектов, используемые при дешифрировании, как правило, не совпадают по количеству и содержанию со свойствами определяемых объектов. В процессе дешифрирования признаки изображений объектов обязательно используются и являются основными, а признаки объектов могут и не использоваться.
Исходя из изложенного, примем формулировку: дешифрирование - это процесс определения объектов и их свойств с использованием признаков изображений. Для краткости рассматриваемый процесс
и т.д.................

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Основные понятия дешифрирования

1. Сущность и задачи дешифрирования фотоснимков

Аэрофотоснимок является основным источником информации о местности. Но, для непосвященного человека, т. е. не имеющего специальной подготовки и опыта работы с ними, даже самого лучшего качества фотоснимок мало что дает. Подготовленный специалист сможет воспользоваться процессом, называемым дешифрирование фотоснимка. Это один из способов добывания информации о местности по фотоизображению.

Учитывая то, что ни один вид работ, будь то создание топографических карт; обновление топографических карт; оперативное исправление карт; изготовление фотодокументов местности; полевая подготовка фотоснимков; ориентирование на местности войск и т. д., не обходится без фотоснимков, можно сделать вывод, что дешифрирование фотоснимков имеет большую значимость при производстве практически всех видов топографических работ.

Дешифрированием фотоснимков называется процесс обнаружения, распознавания объектов, а также определения количественных и качественных характеристик по их фотоизображениям.

Результаты дешифрирования регистрируются в графической, цифровой или текстовой формах.

В его сущности можно вычленить три этапа этого процесса.

I этап. Обнаружение - начальный этап дешифрирования (его низший уровень).

Оно состоит в поиске на снимке участков, где вероятнее всего изображены объекты местности. Оператор-дешифровщик в результате обнаружения отмечает для себя: «Здесь что-то есть».

II этап. Распознавание - второй этап дешифрирования, его средний уровень. Оно заключается в определении сущности изображенных на снимке и обнаруженных объектов. Это сложный процесс. В результате распознавания можно либо распознать, либо не распознать (распознать неверно) изучаемый объект.

III этап. Определение характеристик вскрытых объектов - третий этап дешифрирования, его высший уровень. В ходе этого этапа осуществляется анализ и обобщение количественных и качественных характеристик объектов с целью установления их состояния, значимости и возможностей в конкретной обстановке.

Количественные и качественные характеристики объектов местности определяются путем измерения параметров фотоизображений: геометрических размеров, параллаксов, плотностей и т. д. В результате оценки удается выяснить состав леса, характер грунта, материал покрытия дорог, линейные размеры объектов, расстояние между объектами и т. д.

Все три этапа имеют важное значение для успешного дешифрирования. Однако особенно важен этап распознавания.

Дешифрирование аэрофотоснимков выполняется с различными целями. Возникает ряд задач, которые можно условно разделить на две группы:

1) задачи по получению обобщенной информации о поверхности Земли;

2) задачи по определению характеристик отдельных совокупностей объектов, располагающихся на земной поверхности и в атмосфере.

Первая группа задач включает:

Региональное и типологическое районирование земной поверхности;

Вскрытие системы гидрографии, дорожной сети, населенных пунктов, растительности и других элементов местности, установление взаимосвязей;

Составление и обновление топографических карт и т. п.

Вторая группа задач. Перечень их обширен. Вот некоторые из них:

Геологическое картирование;

Поисковая и эксплуатационная разведка месторождений полезных ископаемых;

Таксация леса;

Метеорологические исследования;

Разведка военных объектов и т. д.

В последние годы в связи с бурным развитием космических исследований появились новые задачи по дешифрированию снимков других планет Солнечной системы.

Все вышеперечисленные задачи могут конкретизироваться в зависимости от района работ, времени их производства, установленных сроков выполнения и т. п.

2. Основные виды, методы и способы дешифрирования

В зависимости от назначения и задач, решаемых в ходе дешифрирования аэрофотоснимков (рис. 1.10), различают два вида дешифрирования:

1) общегеографическое;

2) отраслевое (специальное).

Общегеографическое дешифрирование аэрофотоснимков решает первую группу задач (получение обобщенной информации) и включает две разновидности дешифрирования:

Топографическое;

Ландшафтное.

Классификация видов и разновидностей дешифрирования

Размещено на http://www.allbest.ru/

Топографическое дешифрирование является одним из основных проце с сов технологической схемы создания и обновления карт.

По данным профессора М.Д. Коншина, удельный вес стоимости топогр а фического дешифрирования при съемках карт масштаба 1: 25 000 составл я ет около одной третьей, а при обновлении карт масштабов 1: 25 000 - 1: 100 000 - до половины стоимости их создания.

производится с целью обнаружения, распознавания и получения характеристик объектов, которые должны быть изображены на составляемой или обновляемой топографической карте.

Ландшафтное дешифрирование аэрофотоснимков имеет целью реги о нальное или типологическое районирование местности. Это имеет большое значение как для изучения поверхности Земли, так и для решения специальных технических задач, например, для планирования аэросъемки.

Отраслевое (специальное) дешифрирование производится различными организациями для решения ведомственных задач, отнесенных ко второй гру п пе, и имеет много разновидностей.

Виды и разновидности дешифрирования аэрофотоснимков не являются какими-то резко отличными и не связанными друг с другом. Это, в частности, проявляется в единстве методов и способов выполнения работ, применяемых во всех видах дешифрирования.

Из принятой классификации видов дешифрирования для военных топ о графов наибольший интерес представляют две разновидности:

Топографическое дешифрирование;

Военное дешифрирование.

Топографическое дешифрирование фотоснимков - это обнаружение и распознавание, а также получение характеристик тех объектов, которые дол ж ны быть изображены на топографической карте.

Военное дешифрирование - это процесс обнаружения и распознавания военных объектов, а также определения тактических свойств местности по их фотографическим изображениям.

Результаты дешифрирования доводятся до войск в графической, цифровой или текстовой формах.

В зависимости от принципов организации работ и условий выполнения различают четыре метода дешифрирования аэрофотоснимков (рис. 1.11):

Полевое дешифрирование предусматривает выполнение работ непосредственно на местности. В результате полевого дешифрирования выявляются все объекты, которые необходимо нанести на топографическую карту, в том числе и не изобразившиеся на фотоснимке. Опознанные объекты и их характеристики вычерчиваются на фотоснимке в условных знаках.

Размещено на http://www.allbest.ru/

Рис. 1.11. Методы и способы дешифрирования

дешифрование снимок фотоизображение

Полевое дешифрирование аэрофотоснимков может быть полным и не полным.

При полном производится распознавание всех подробностей, подлеж ащих вскрытию (например, распознаются все элементы местности, изображаемые на топографической карте).

Неполное полевое дешифрирование обеспечивает распознавание только тех объектов, которые не могут быть надежно отдешифрированы камерально.

Полевой метод дешифрирования аэрофотоснимков применяется при:

- съемке и обновлении карт на районы, имеющие особо важное хозяйс твенное и оборонное значение;

Геодезических работах;

Полевой подготовке снимков;

Создании фотоснимков - эталонов дешифрирования на ключевые участки.

Недостатком полевого метода является его трудоемкость и значительные материальные затраты. Кроме того, полевое дешифрирование сложно в организационном отношении.

Камеральный метод дешифрирования фотоснимков предусматривает распознавание объектов и получение их характеристик без выхода в поле путем изучения свойств фотоизображений.

Основой для принятия решения при камеральном дешифрировании служат дешифровочные признаки объектов, определенным образом изобразившихся на снимке.

Камеральный метод дешифрирования аэрофотоснимков является в настоящее время основным во всех видах дешифрирования и используется при стереотопографическом методе аэрофототопографической съемки. Недостаток метода состоит в том, что он не может обеспечить 100%-ную полноту и достоверность полученной информации.

Аэровизуальный метод заключается в распознавании объектов с самолета или вертолета. Этот метод позволяет увеличить производительность и снизить стоимость работ в труднодоступных и малообжитых районах.

Например, стоимость аэровизуального дешифрирования в труднодоступных районах составляет около 40% от затрат, необходимых для выполнения полевого дешифрирования.

Вместе с тем, аэровизуальный метод дешифрирования требует специальной подготовки операторов по быстрому ориентированию и распознаванию объектов за сравнительно ограниченные сроки.

Комбинированный метод предусматривает сочетание камерального и полевого дешифрирования, причем, в поле или в полете выявляются и распознаются только те объекты или их характеристики, которые невозможно вскрыть камерально, то есть основная работа по дешифрированию выполняется в камеральных условиях.

Вопрос о том, должно ли камеральное дешифрирование предшествовать полевому (аэровизуальному) или наоборот, решается в зависимости от конкретных условий.

Во всех без исключения методах дешифрирования применяются три способа выполнения работ:

Визуальный;

Машинный (автоматический);

Комбинированный (человек и машина).

Визуальный способ дешифрирования снимков является основным. В дальнейшем, даже в случае развития машинного способа, он будет чаще применяться в полевом и аэровизуальном методах.

Восприятие и обработку информации снимка осуществляет глаз и мозг оператора дешифровщика. Если глаз не вооружен, говорят о непосредственном визуальном дешифрировании.

Однако, как правило, человек использует технические средства, расширяющие возможности глаза. В этом случае говорят об инструментальном визуальном дешифрировании.

Для успешного решения задач дешифрирования часто применяют снимки, на которых показан пример дешифрирования. Такие снимки носят название аэрофотоснимков - эталонов, а способ дешифрирования - визуальное дешифрирование по эталонам.

Машинный (автоматический) способ дешифрирования предусматривает выполнение всех этапов дешифрирования с помощью специальных устройств. Различают следующие разновидности машинного способа:

Микрофотометрический;

Фотоэлектронный;

Пространственной фильтрации.

Микрофотометрический способ дешифрирования аэрофотоснимков основан на установлении и использовании корреляционных связей между свойствами объектов и статистическими характеристиками их фотоизображений. Для этих целей пригодны фотометрические (средняя плотность, ее дисперсия, асимметрия и эксцесс, корреляционные функции оптической плотности и т. п.), геометрические (средние размеры, кривизна, частота пересечений контурных линий и т. д.) и другие характеристики фотоизображений.

Фотоэлектронный способ дешифрирования аэрофотоснимков аналогичен микрофотометрическому. Однако, в отличие от микрофотометрического способа, здесь информация считывается одновременно с некоторой площади изображения и обрабатывается параллельно.

Способ пространственной фильтрации основан на прямом и обратном преобразовании Фурье и корреляционных связях между свойствами объектов и спектрами пространственных частот их фотоизображений.

Комбинированный способ дешифрирования предусматривает тесную связь оператора - дешифровщика с автоматизированной системой, которая должна давать максимум сведений, необходимых человеку для принятия решения по распознаванию.

Вид и разновидность дешифрирования накладывает свой отпечаток на состав распознаваемых на снимке объектов, а также на свойства объектов.

Наиболее представительной является группа топографических объектов:

Гидрография;

Различные угодья;

Населенные пункты;

Дорожная сеть, линии ЛЭП;

Границы и т. п.

Разновидности тематического (отраслевого) дешифрирования направлены на изучение внутреннего содержания объектов.

«Происхождение» объекта определяет не только его внешний облик и положение, но и методику дешифрирования.

Объектам естественного происхождения характерны произвольность формы контура и отсутствие строгой упорядоченности в расположении. Внешний вид характеризуется структурой изображения.

Объектам искусственного происхождения характерны часто стандартные формы, постоянство состава, типовые размеры.

В зависимости от абсолютных значений и соотношений линейных размеров объекты делятся на три группы:

Компактные (имеют исключительно малые размеры);

Линейные (это те, у которых длина более чем в три раза превосходит ширину);

Площадные (имеют большие размеры).

В зависимости от состава и предназначения элементов объекта выделяются две группы:

Простые (одиночные);

Сложные (групповые).

Простой - это элемент сложного.

Сложный - это упорядоченная совокупность простых объектов, объединенная целевым назначением.

Объекты по-разному отражают падающую на них солнечную радиацию и поэтому разделяются по контрасту:

Малоконтрастные;

Контрастные;

Высококонтрастные.

Длительность существования объектов и их признаков делит объекты на динамичные и стационарные.

Динамичные объекты меняют свои свойства или вообще пропадают в сравнительно короткие сроки - часы, сутки, недели.

Стационарные - меняют свои характеристики, но в течение сезона, нескольких лет.

Размещено на Allbest.ru

Подобные документы

    Методы дешифрирования, применяемые в зависимости от технологии топографических работ, характера и изученности района. Назначение и способы составления фотосхемы. Особенности и пример графического оформления результатов дешифрирования способом индексов.

    презентация , добавлен 02.11.2015

    дипломная работа , добавлен 15.02.2017

    Способы стереоскопического наблюдения. Приемка и оценка летно-съемочного материала. Критерии качества результатов аэрофотосъемки, информативность и дешифрируемость исходных снимков. Технология визуального дешифрирования и его автоматизированные методы.

    реферат , добавлен 18.05.2012

    Причины использования метода дешифрирования снимков. Влияние ледников на природу планеты. Оценка снежно-ледовых ресурсов Земли из космоса. Значение космических снимков. Этапы программы "космической помощи". Необходимость применения рекреационных карт.

    реферат , добавлен 17.11.2011

    Дешифрирование - анализ материалов аэро- и космических съемок с целью извлечения из них информации о поверхности Земли. Получение информации путем непосредственных наблюдений (контактный способ), недостатки способа. Классификация дешифрирования.

    презентация , добавлен 19.02.2011

    Природно-территориальные комплексы: понятие, причины и этапы формирования. Ландшафт как основная исходная единица в системе ПТК. Выявление объективно существующих границ пространственно обособленных комплексов как задача ландшафтного дешифрирования.

    реферат , добавлен 15.05.2011

    Прикладные задачи, решаемые с помощью методов и средств дистанционного зондирования. Расчет параметров съемки в целях землеустройства и земельного кадастра. Основные требования к точности результатов дешифрирования при создании базовых карт земель.

    контрольная работа , добавлен 21.08.2015

    Процесс извлечения информационных данных из фотоизображений земной поверхности. Распознавание объектов, определение их географической сущности, установление их качественных и количественных характеристик. Гляциальные рельефообразующие процессы.

    реферат , добавлен 09.02.2012

    Особенности дешифрования данных дистанционного зондирования для целей структурно-геоморфологического анализа. Генетические типы зон нефтегазонакопления и их дешифрирование. Схема структурно-геоморфологического дешифрирования Иловлинского месторождения.

    реферат , добавлен 24.04.2012

    Ориентирование на местности при помощи компаса. Основные факторы генерализации. Назначение, тематика и типы карты. Обобщение качественных и количественных характеристик картографируемого явления. Основные количественные показатели отбора: ценз, норма.

Дешифрирование – отвечает на вопрос, что находится в данном месте снимка (какой объект), т.е. возможность получения предметной информации об объекте. Единый процесс дешифрирования включает стадии: обнаружение, распознавание и интерпретацию, а также определение качественных и количественных характеристик объектов и представление результатов дешифрирования в графической, цифровой или текстовой форме. Различают дешифрирование снимков военное, топографическое, геологическое, сельскохозяйственное и др. При географическом дешифрировании прежде всего приходится давать ответ на вопрос о том, что изображено на снимке. В зависимости от целей аэрокосмических исследований содержание этого ответа может быть достаточно простым (лес, водоем, ледник) или более сложным (кедровый лес, сильно поврежденный сибирским шелкопрядом; участки водоема с различной концентрацией взвесей и фитопланктона). Технологии классификации: кластарная (на основании формальных признаков, которые мы задаем, программа распределяет пиксели по классам), классификация с обучением (дешифровщик задает эталоны (обучает программу)) Под дешифрированием всегда понималось извлечение качественнойгеоинформации со снимков при их непосредственном рассматривании. В настоящее время это основной и наиболее распространенный способ извлечения информации из снимков. При визуальном дешифрировании изучаемый локальный объект или явление всегда рассматривается в пространственной взаимосвязи с его окружением, что дает важную дополнительную информацию, которая обычно ускользает при компьютерной обработке. Поэтому стратегия совершенствования способов получения тематической информации по аэрокосмическим снимкам заключается в интеграции визуального и компьютерного дешифрирования, каждое из которых имеет свои достоинства и ограничения. Так, визуальное дешифрирование снимков на экране компьютера с успехом дополняется автоматизированной обработкой по специальным программам, позволяющим улучшить дешифровочные свойства снимка, либо быстро и с большой детальностью выделить четко изобразившиеся объекты. Для разделения объектов разного типа, определения границ между ними используются методы компьютерной классификации (кластеризации). Компьютер позволяет анализировать большие объемы цифровой информации, что необходимо, например, при обработке гиперспектральных снимков. Примечательно, что для суждения о достоверности результатов компьютерной обработки снимков нередко приходится использовать визуальные оценки.

№34 Количественное, инструментальное, автоматизированное и автоматическое дешифрирование. Сложности компьютерного дешифрирования.

Результаты визуального дешифрирования нередко носят субъективный характер, поэтому важно объективизировать этот метод получения информации, вводя в него меру и число. При применении наблюдательных и измерительных приборов говорят об инструментальном и измерительном дешифрировании; если результат дешифрирования получен на основе числовых характеристик изображения, то дешифрирование называют количественным. Всегда стремились автоматизировать в целом эвристический процесс дешифрирования, поэтому в учебных пособиях по дисциплине встречаются термины - автоматизированное и даже полностью автоматическое дешифрирование, которое по праву относится к фундаментальному научному направлению - распознаванию образов.

С распространением персональных компьютеров дешифрирование стали чаще подразделять на визуальное, при котором, как и прежде, результат достигается человеком, использующим свою зрительную систему и интеллект, и компьютерное, когда это поручается (как правило, частично) электронно-вычислительной машине.

Задача компьютерного дешифрирования снимков сводится к классификации -- последовательной «сортировке» всех пикселов цифрового снимка на несколько групп.

Для этого предложены алгоритмы классификации двух видов -- с обучением и без обучения (кластеризации - от англ. «скопление, группа»).

При классификации с обучением пикселы многозонального снимка группируются на основе сравнения их яркостей в каждой спектральной зоне с эталонными значениями.

При кластеризации же все пикселы разделяют на группы-кластеры по какому-либо формальному признаку, не прибегая к обучающим данным. Затем кластеры, полученные в результате автоматической группировки пикселов, дешифровщик относит к тем или иным объектам.

Недостаток метода:

* результаты не всегда объективны (достоверность всего 60-80%);

* метод не совсем самостоятельный (часто помогает и дополняет исполнитель).

№35 Разрешающая способность снимков и пространственное разрешение.

Для характеристики детальности аэрокосмических снимков предложено несколько количественных показателей. Среди дешифровщиков наибольшее распространение получили два показателя: пространственное разрешение и разрешающая способность, которая используется для оценки фотографических материалов.

Разрешающая способность. –возможность раздельного воспроизведения слоем мелких близко расположенных деталей изображения. Ее определяют по фотоизображению специального стандартного тест-объекта - миры. Штриховая мира состоит из элементов с различным числом штрихов, приходящихся на один погонный миллиметр. Штрихи миры делают абсолютно белыми и абсолютно черными, т.е. их визуальный контраст Кв= 1. В настоящее время в качестве единицы измерения приняты миллиметры в минус первой степени (мм-1). Когда говорят,

что фотоматериал имеет разрешающую способность 50 линий на миллиметр (50 мм-1), то это значит, что он может раздельно воспроизвести на одном погонном миллиметре 50 черных штрихов миры шириной в 0,01 мм и 50 белых штрихов.

Разрешающая способность:

Аэрофотоснимков (10-40мм^-1)

Космических (в 2-3р. выше)

Пространственное разрешение – величина, хар-щая размер наименьших объектов, различимых на изображении.

№36 Сопоставительное дешифрирование. Дешифрирование разновременных снимков. Полевое и камеральное дешифрирование. Эталонное дешифрирование. Индикационное.

Сопоставительное дешифрирование - основано на использовании спектральных образов изобразившихся на снимке объектов. Спектральный образ объекта на фотографическом снимке определяется визуально по тону его изображения на серии зональных черно-белых снимков. По полученным данным строится кривая спектрального образа, отражающая изменение оптической плотности изображения на снимках в разных спектральных зонах. При этом откладываемые по оси ординат значения оптической плотности отпечатков D, вверх по оси убывают, чтобы кривая спектрального образа соответствовала кривой спектральной яркости. Схема сопоставительного дешифрирования: определение по снимкам спектрального образа объекта - сопоставление с известной спектральной отражательной способностью - опознавание объекта.

На каждом из зональных снимков по тону изображения разделяются определенные совокупности объектов, причем на снимках в различных зонах эти совокупности разные. Сопоставление зональных снимков позволяет разделить эти совокупности и выделить индивидуальные объекты, в данном случае. Такое сопоставление может быть реализовано совмещением («вычитанием») схем дешифрирования зональных снимков на каждой из которых выделены разные совокупности объектов.

Дешифрирование разновременных снимков. Разновременные снимки обеспечивают качественное изучение изменений исследуемых объектов и косвенное дешифрирование объектов по их динамическим признакам.

Исследования динамики. Для выявления изменений по разновременным снимкам их нужно сопоставить между собой, что осуществляется путем поочередного (раздельного) или одновременного (совместного) наблюдения. Технически визуальное сопоставление разновременных снимков осуществляется наиболее просто их поочередным наблюдением. Очень старый способ «миганий» (фликер-способ) позволяет, достаточно просто обнаружить вновь появившийся отдельный объект быстрым поочередным рассматриванием двух разновременных снимков. Из серии снимков изменяющегося объекта может быть смонтирована иллюстративная кинограмма. Так, например, если получаемые через 0,5 ч с геостационарных спутников в одном и том же ракурсе снимки Земли смонтировать в анимационный файл, то возможно многократно воспроизвести на экране суточное развитие облачности.

Для выявления небольших изменений оказывается более эффективным не поочередное, а совместное наблюдение разновременных снимков, для чего используются специальные приемы:

совмещение изображений (монокулярное (на просвет) и бинокулярное (каждый снимок рассматривается одним глазом, с помощью стереоскопа)); стереоскопические наблюдения (используют при исследовании изменений вследствие движения, перемещения объектов).

Дешифрирование по динамическим признакам. Закономерности временных изменений географических объектов, для которых характерна смена состояний во времени, могут служить их дешифровочными признаками, которые называют временным образом объекта. Например, тепловые снимки, полученные в разное время суток, позволяют распознавать объекты, имеющие специфический суточный ход температуры.

Полевое и камеральное дешифрирование. При полевом дешифрировании опознавание объектов производится непосредственно на местности путем сличения объекта в натуре с его изображением на снимке. Досъемка производится глазомерным или инструментальным способом. Для этого применяются приемники спутникового позиционирования, позволяющие определять в поле координаты объектов, отсутствующих на снимке, практически с любой необходимой точностью.

При камеральном дешифрировании, которое представляет собой основной и наиболее распространенный вид дешифрирования, объект распознается по прямым и косвенным дешифровочным признакам без выхода в поле и непосредственного сличения изображения с объектом. На практике обычно комбинируют оба вида дешифрирования.

Эталонное дешифрирование. Камеральное дешифрирование основано на использовании дешифровочных эталонов , создаваемых в поле на типичные для данной территории ключевые участки. Таким образом, дешифровочные эталоны представляют собой снимки характерных участков с нанесенными на них результатами дешифрирования типичных объектов, сопровождаемые характеристикой дешифровочных признаков. Далее эталоны используются при камеральном дешифрировании, которое выполняется способом географической интерполяции и экстраполяции , т. е. путем распространения выявленных дешифровочных признаков на участки между эталонами и за их пределами.

ПриИндикационном дешифрировании определяют не сам объект, который может и не изобразиться на снимке, а его указатель, индикатор. В качестве индикатора наиболее часто выступают растительный покров, а также рельеф и гидрография. Косвенные признаки лежат в основе ландшафтного метода дешифрирования, базирующегося на многосторонних связях между отдельными компонентами ландшафта, между дешифрируемым объектом и всем природным комплексом.

Пример: По растительности можно судить также о почвах и грунтах, индикаторами движения водных масс в океане, приповерхностных ветров, льда ледников часто служат массовые объекты (трассеры), в совокупности визуализирующие направление и характер

движения. Их роль могут выполнять битые льды, фитопланктон, рисунок трещин или слоистости на поверхности горного ледника

При индикационном дешифрировании составляют так называемые индикационныетаблицы, где для каждого типа или состояния индикатора указан соответствующий ему вид индицируемого объекта.

№37 Особенности наблюдения снимков на экране дисплея. Приборы и вспомогательные средства. Оформление результатов дешифрирования.

Особенности наблюдения снимков на экране компьютера. Для восприятия снимков важны характеристики экрана дисплея: наи­лучшие результаты дешифрирования достигаются на экранах боль­шого размера, воспроизводящих максимальное количество цве­тов и имеющих высокую частоту обновления изображения. Увели­чение цифрового снимка на экране компьютера близко к опти­мальному в тех случаях, когда одному пикселу экрана соот­ветствует один пиксел снимка.

Время эффективной работы при дешифрировании экранных снимков короче, чем при визуальном дешифрировании отпечат­ков. Необходимо учитывать также текущие санитарные нормы ра­боты на компьютере, регламентирующие, в частности, минималь­ное расстояние глаз дешифровщика от экрана (не менее 500 мм), длительность непрерывной работы, интенсивность электромагнит­ных полей, шума и т.д.

Приборы и вспомогательные средства. Часто в процессе визу­ального дешифрирования необходимо произвести несложные из­мерения и количественные оценки. Для этого применяют различ­ного рода вспомогательные средства: палетки, шкалы и таблицы тонов, номограммы и т.д. Для стереоскопического рас­сматривания снимков применяют стереоскопы различных конст­рукций. Лучшим прибором для камерального дешифрирования следует считать стереоскоп с двойной наблюдательной системой. Перенос результатов дешифрирования с отдельных снимков на общую картографическую основу обычно выполняют с помощью небольшого специального оптико-механического прибора.

Оформление результатов дешифрирования. Результаты визуаль­ного дешифрирования наиболее часто представляют в графиче­ской, текстовой и реже цифровой формах. Обычно в итоге дешиф­ровочных работ получают снимок, на котором графически выде­лены и обозначены условными знаками изучаемые объекты. При работе на компьютере результаты удобно пред­ставлять в виде принтерных отпечатков. По кос­мическим снимкам создаются так называемые схемы дешифриро­вания, которые по своему содержанию представляют фрагменты тематических карт, составленных в масштабе и проекции снимка.

№38 Две технологические схемы визуального дешифрирования. Этапы дешифрирования.

Технология и организация работ по дешифрированию суще­ственно зависят от его задач, территории, масштаба и вида сним­ков (фотографических или сканерных, тепловых, радиолокаци­онных и др.), от использования одиночных снимков или их серий (многозональных, разновременных). Существуют различные орга­низационно-технологические схемы дешифрирования, но все они включают следующие этапы:

2) выявление набора объектов дешифрирования (составление предварительной легенды будущей схемы дешифрирования или карты);

3) подбор снимков для дешифрирования, преобразование сним­ков для повышения их выразительности, подготовка приборов и вспомогательных средств дешифрирования. Следует иметь в виду, что снимки, оптимальные для решения одной задачи, могут ока­заться неэффективными для другой;

4) собственно дешифрирование аэрокосмических снимков и оценка его достоверности;

5) оформление результатов дешифрирования.

Центральным моментом любых работ является собственно де­шифрирование аэрокосмических снимков. Тематическое дешиф­рирование можно выполнять по двум принципиальным логиче­ским схемам. Первая схема предусматривает вначале распознава­ние объектов, а затем их графическое выделение; вторая схема - вначале графическое выделение на снимке участков с однотипным изображением, а затем их распознавание. Обе схемы завершаются этапом интерпретации, научного толкования результатов дешиф­рирования. Работая со снимками, особенно с космическими, де­шифровщик широко привлекает дополнительный материал, обыч­но картографический, который служит для уточнения дешифровочных признаков и оценки результатов дешифрирования.

Первая схема оказывается универсальной для решения боль­шинства задач; она получила широкое признание в практике ви­зуального дешифрирования. Вторая схема весьма эффективна при дешифрировании относительно простых объектов по яркостным признакам, но имеет ограниченное применение. Обе эти схемы при компьютерном дешифрировании реализуются в технологиях классификации с обучением и без обучения. ­

№ 39 Дешифровочные признаки. Прямые и косвенные (форма, размер, тон, цвет, тень). Рисунок изображения (текстура, структура).

На аэрокосмическом снимке объек­ты отличаются один от другого по ряду дешифровочных признаков. Выделяют основные признаки, которые принято делить на прямые (простые и сложные) и косвенные . Прямые простые дешифровочные признаки - форма, размер, тон (цвет) изображения и тень, а сложный (комплекс­ный) признак, объединяющий выше названные признаки, - рисунок изображения. Косвенные признаки основаны на связях между объектами, на возможности выявления не видимых на сним­ке объектов по другим объектам, хорошо изобразившимся. Кос­венными признаками служат также местоположение объекта, гео­графическое соседство, следы воздействия объекта на окружение.

Каждому объекту присущи особенности, проявляющиеся в пря­мых и косвенных дешифровочных признаках, которые в общем не постоянны, а зависят от сезона, времени и спектральных диа­пазонов съемки, масштаба снимков и т.д. На­чинающий исполнитель больше работает с прямыми дешифровочными признаками; умелое использование косвенных призна­ков - свидетельство высокой квалификации дешифровщика.

При прямом дешифрировании использу­ются прямые признаки.

Форма - результативный прямой признак при визуальном де­шифрировании. Именно в форме контура заключается основная часть информации об объекте. Антропогенные объекты имеют гео­метрически правильную, стандартную форму - по прямоуголь­ной форме выделяют сельскохозяйственные поля.

Размер - признак, используемый главным образом при рабо­те с крупномасштабными снимками. По размеру различают зда­ния разного функционального назначения, разде­ляют поля зерновых и кормовых севооборотов.

Тон изображения, определяемый ярко­стью объекта и спектральной зоной съемки, помогает разделить основные типы поверхности: снег, открытый грунт, раститель­ность.

Цвет - более информативный и надежный признак, чем тон черно-белого снимка. По цвету хорошо выделяются водные объек­ты, леса, луга, распаханные поля. Используя снимки с целенаправленно искаженной цветопередачей, разделяют раз­личные типы растительности, горных пород и т.д.

Тень можно отнести как к прямым, так и к косвенным дешифровочным признакам. Тень на деталь­ных снимках отражает силуэт заснятого объекта и позволяет оце­нить его высоту. Поскольку тень всегда имеет отно­сительный контраст, значительно больший, чем сам объект, то часто только падающая тень позволяет обнаружить на снимках малоразмерные в плане, но высокие объекты, например завод­ские трубы. В горных районах глубокие тени затрудняют дешифри­рование. Тени существенно влияют на рисунок изображения.

Рисунок изображения - устойчивый комплексный дешифровочный признак, обеспечивающий безошибочное опознавание не только таких объектов, как сельскохозяйственные поля, населен­ные пункты, но и разных типов геосистем. Каждому природно-территориальному комплексу свойствен опре­деленный рисунок на снимке, который отражает его морфологи­ческую структуру. В рисунке изображения различают текстуру - форму рисункообразующих элементов и структуру - пространственное расположение элементов текстуры. Иногда ри­сунок изображения характеризуют количественными показателя­ми, что служит основой морфометрического дешифрирования.

№ 40 Характеристики компьютерных систем для обработки снимков (аппаратное обеспечение, программное, экранная визуализация и печать снимков).

Быстродействие, Объем видеопамяти, Программное обеспечение. К пакетам программ для компьютерной обработки снимков предъявляются следующие основные требования:универсальность возможность визуализации программируемость: интегрированность: Применяют также программное обеспечение общего назначе­ния: для визуализации снимков, простой обработки иподготовки к выводу на печать - программы графической редакции (Adobe Photoshop, Corel PHOTO-PAINT), для создания описаний и отчетов - текстовые программы-редакторы (MS Word, Word Perfect), для количественного анализа снимков - программы статистичес­кой обработки данных (MS Excel), для просмотра и получения снимков по сети Интернет - сетевые программы (MS Internet Explorer, Netscape

Аппаратное обеспечение. Основные компоненты компьютера включают: центральное процессорное устройство (ЦПУ); оператив­ную память (ОП), хранящую данные и программы, используемые компьютером в текущий момент работы; жесткий диск для по­стоянного хранения данных и программ; управляющие контрол­леры различных внешних устройств для ввода, вывода и представления информации - дисководов, монитора, принтера, сканера, устройств для чтения и записи магнитных лент, устройств воспроизведения звука, цифровых камер, карманных компьютеров, приемников глобального спутникового позиционирования (ГЛОНАСС/GPS) и т. п.

Для обработки снимков наиболее важны следующие взаимо­связанные параметры компьютера:

Быстродействие, объем дисковой и оперативной памяти, объем видеопамяти.

Экранная визуализация и принтерная печать снимков. Опыт показывает, что для комфортного визуального дешиф­рирования снимка на экране важно использовать экран размером не менее 17 дюймов (43 см) по диагонали, с матрицей экрана не менее 1024x768 пикселов.

Поскольку результаты компьютерной обработки часто пред­ставляются на бумаге, немаловажен способ изготовления прин­терных отпечатков снимков. Для этого используется лазерная и струйная печать. При более распространенной струйной техноло­гии изображение создается с помощью печатающей головки прин­тера, из которой на бумагу выпрыскиваются микроскопические капельки разноцветных чернил.

При изготовлении принтерных отпечатков следует учитывать, что всегда цвета отпечатка будут отличаться от цветовой гаммы экранного снимка. Поэтому необходима взаимная калибровка принтера и экрана монитора, для которой имеются специальные компьютерные программы. Еще один важный параметр - разре­шающая способность принтера, традиционно измеряемая в dpi. Для высококачественного воспроизведения снимка необходима разрешающая способность не менее 600 dpi.

Программное обеспечение подразделяется на операционные си­стемы и прикладные программы. Первые обеспечивают работу компьютера в целом и базовые функции: доступ к файлам, запуск прикладных программ, управление порядком обращения различ­ных программ ко внешним устройствам, таким, как жесткий диск и принтер.

К пакетам программ для компьютерной обработки снимков предъявляются следующие основные требования:

а) универсальность;

б) возможность визуализации;

в) программируемость;

г) интегрированность;

№ 41Тенденции в развитии аппаратного, программного и информационного обеспечения.

Персональные компьютеры быстро совершенствуются, расширяя возможности обработки снимков. Увеличивается быстродействие процессоров, растет их количество, объемдисковой и оперативной памяти; практикуется распределенная обработка снимков на нескольких компьютерах благодаря использо­ванию локальных сетей и сети Интернет; увеличивается размер экранов и улучшается их качество; расширяются компьютерные средства для использования стереоизображений и виртуальных трехмерных моделей в процессе дешифрирования. В перспективе возможно голосовое управление программами вместо ручного ввода команд. Увеличивается объем общедоступной справочной цифровой информации, например библиотек эталонных значений спек­тральных характеристик различных объектов на земной поверхности; появляются новые цифровые топографические и тематические карты на разные районы Земли. Совершенствуются алгоритмы обработки данных и разрабатываются полуавтоматические интерактивные экспертные системы для дешифрирования снимков на основе базы знаний - совокупности решающих правил и базы справочных данных.

№ 42 Форматы хранения цифровых снимков. Компрессия – декомпрессия информации.

Форматы хранения цифровых снимков. Формат, в котором хра­нится файл снимка - это способ его записи для хранения на носителе информации (жестком диске, дискете, CD-ROM).

Существует большое разнообразие растровых графи­ческих форматов для хранения различных изображений, которые используются и для снимков, например TIFF, BMP (без потери информации), JPEG, GIF (с потерей информации). Единого об­щепринятого формата для хранения аэрокосмических снимков нет.

Большинство пакетов программ для компьютерной обработки снимков обеспечивают чтение наиболее распространенных рас­тровых форматов и перевод из одного формата в другой.

Компрессия цифровых снимков («упаковка», «сжатие») - это преобразование, направленное на уплотнение информации, на уменьшение ее объема, выражаемого в битах или байтах. Это не­обходимо для экономии памяти, требуемой для записи и хране­ния снимков, при передаче их со спутников на Землю по каналам космической связи с небольшой пропускной способностью, а также для сжатия избыточно детальных изображений, что позво­ляет быстрее обрабатывать их на компьютере или передавать по сети Интернет.

Компрессия сочетается с декомпрессией («распаковкой») - вос­становлением исходного изображения. Компрессия может произ­водиться без потерь и с потерей информации. Если на снимке при­сутствуют однотонные объекты, которые отображаются пикселами с одним и тем же значением яркости, например чистые водоемы, то компрессия без потери информации проводится путем замены повторяющихся одинаковых значений яркости одним значением с указанием числа таких пикселов. Опыт показывает, что при этом виде компрессии объем информации аэрокосмических снимков в среднем уменьшается раза в два, но изображение можно полнос­тью восстановить при декомпрессии. Обычно сжатие без потери информации осуществляют посредством широко используемого для записи изображений формата TIFF. При компрессии с потерей информации изменяющиеся в определенных пределах значения яркости пикселов однотипных участков, например лесных насаж­дений, усредняются, а затем для всех пикселов запи­сывается одно это среднее значение и число пикселов. В этом слу­чае объем информации аэрокосмического изображения удается уменьшить в десятки раз, но при декомпрессии детали изображе­ния уже не восстанавливаются. Так выполняется сжатие изобра­жения в формате JPEG, который используется для изготовления просмотровых космических снимков в Интернете.

№ 43Анализ современных источников получения аэрокосмической информации. Google Планета Земля, SASPlanet.

Google профессиональный инструмент для обработки, анализа и визуализации геоданных. Программа объединяет в себе огромное количество спутниковых фотографий, что составляет полную карту Земли. Практически вся поверхность суши покрыта изображениями, полученными от компании DigitalGlobe, и имеющими разрешение 15 м. на пиксель. Есть отдельные участки поверхности (как правило, покрывающие столицы и некоторые крупные города большинства стран мира), имеющие более подробное разрешение. Например, г. Москва снята с разрешением 0,6 м/пиксель, а многие города США c разрешением 0,15 м/пиксель. Данные о ландшафте имеют разрешение порядка 100 м. SAS.Планета / SAS.Planet / SASPlanet – свободная программа, предназначенная для просмотра и загрузки спутниковых снимков высокого разрешения и обычных карт? все скачанные вами карты останутся у вас на компьютере, и вы сможете их просматривать даже без подключения к интернету. Помимо спутниковых карт возможна работа с политической, ландшафтной, совмещенной картами, а также картой Луны и Марса. Загрузка карт осуществляется как выделением некоторой области (возможно непрямоугольной), так и в процессе перемещения по карте. Карты часто обновляются – программа позволит вам загрузить только самые новые.


| | | | | | | | | | | | | | | | 17 |

Дешифрирование I Дешифри́рование

дешифрование (от франц. déchiffrer - разбирать, разгадывать), расшифровка, чтение текста, написанного условными знаками, шифром, тайнописью; дешифровка различных систем древних письменностей, ранее не доступных для прочтения (см. Дешифровка письменности), а также Д. изображения объектов местности, имеющихся на наземных фотоснимках, аэроснимках и космических снимках (см. Дешифрирование аэроснимков).

II Дешифри́рование

аэроснимков, один из методов изучения местности по её изображению, полученному посредством аэросъёмки (См. Аэросъёмка). Заключается в выявлении и распознавании заснятых объектов, установлении их качественных и количественных характеристик, а также регистрации результатов в графической (условными знаками), цифровой и текстовой формах. Д. имеет общие черты, присущие методу в целом, и известные различия, обусловленные особенностями отраслей науки и практики, в которых оно применяется наряду с др. методами исследований.

Для получения аэроснимков с наилучшими для данного вида Д. информационными возможностями определяющее значение имеют учёт при аэрофотографировании природных условий (облика ландшафтов, освещённости местности), размерности и отражательной способности объектов, выбор масштаба, технических средств (тип аэроплёнки и аэрофотоаппарата) и режимов аэросъёмки (лётносъёмочные и фотолабораторные работы).

Эффективность Д., т. е. раскрытия содержащейся в аэроснимках информации, определяется особенностями изучаемых объектов и характером их передачи при аэросъёмке (дешифровочными признаками), совершенством методики работы, оснащённостью приборами и свойствами исполнителей Д. В ряду дешифровочных (демаскирующих) признаков различают прямые и косвенные (нередко с выделением комплексных). К прямым признакам относят: размеры, форму, тени собственные и падающие (иногда их считают косвенным признаком), фототон или цвет и сложный признак - рисунок или структуру изображения. К косвенным - указывающие на наличие или характеристику объекта, хотя он и не получил непосредственного отображения на аэроснимке в силу условий съёмки или местности. Например, растительность и микрорельеф являются индикаторами при Д. задернованных почв.

В методическом отношении для Д. характерно сочетание полевых и камеральных работ, объём и последовательность которых зависят от их назначения и изученности местности. Полевое Д. заключается в сплошном или выборочном обследовании территории с установлением необходимых сведений при непосредственном изучении дешифрируемых объектов. На труднодоступных территориях полевое Д. осуществляют с применением аэровизуальных наблюдений (См. Аэровизуальные наблюдения). Камеральное Д. заключается в определении объектов по их дешифровочным признакам на основе анализа аэроснимков с использованием различных приборов, справочно-картографических материалов, эталонов (полученных путём полевого Д. «ключевых» участков) и установленных по данному району географических взаимозависимостей объектов («ландшафтный метод»). Хотя камеральное Д. значительно экономичнее полевого, но его полностью не заменяет, т.к. некоторые данные могут быть получены только в натуре.

Ведутся разработки по автоматизации Д. в направлениях: а) отбора аэроснимков, обладающих нужной информацией, и преобразования их с целью улучшения изображения изучаемых объектов, для чего используются методы оптической, фотографической и электронной фильтрации, голографии (См. Голография), лазерного сканирования и др.; б) распознавания объектов сопоставлением при помощи ЭВМ закодированных формы, размеров данного изображения и плотности фототона данного изображения и эталонного, что может быть эффективным только при стандартизованных условиях аэросъёмки и обработки снимков. В связи с этим ближайшие перспективы автоматизации Д. связывают с применением так называемой многоканальной аэросъёмки, позволяющей получать синхронные изображения местности в различных зонах спектра.

Для Д. используются приборы: увеличительные - лупы и оптические проекторы, измерительные - параллактические линейки и микрофотометры и стереоскопические - полевые переносные и карманные Стереоскоп ы и стереоскопические очки и камеральные настольные стереоскопы, частью с бинокулярными и измерительными (например, стереометр СТД) устройствами. Стационарным прибором, разработанным специально для целей Д., является Интерпретоскоп . Д. аэроснимков проводят и на универсальных стереофотограмметрических приборах (См. Стереофотограмметрические приборы) в комплексе работ по составлению оригинала карты. В зависимости от задачи Д. может выполняться по негативам аэроснимков или их отпечаткам (на фотобумаге, стекле или позитивной плёнке), на смонтированных по маршруту или площадям фотосхемах и на точных фотопланах. Д. осуществляют в проходящем или отражённом свете с вычерчиванием (или гравированием) его результатов в одном или нескольких цветах на самих материалах аэросъёмки или наложенных на них листах прозрачного пластика.

К исполнителям Д. предъявляются особые профессиональные требования в отношении восприятия яркостных и цветовых контрастов и стереоскопичности зрения, а также способностей к эффективному опознаванию и определению объектов по их специфическому изображению на аэроснимках. Наряду с этим исполнители Д. должны знать особенности природы и хозяйства данной территории и иметь сведения об условиях её аэросъёмки.

Различают общегеографическое и отраслевое Д. К первому относят топографическое и ландшафтное Д., ко второму - все остальные его виды. Топографическое Д., характеризующееся наибольшим применением и универсальностью, имеет своими объектами гидрографическую сеть, растительность, грунты, угодья, формы рельефа, ледниковые образования, населённые пункты, строения и сооружения, дороги, местные предметы, геодезические пункты, границы. Ландшафтное Д. завершается региональным или типологическим районированием местности. Основные из отраслевых видов Д. применяются при выполнении следующих работ: геологическое - при площадном геологическом картировании и поисках полезных ископаемых, гидрогеологических и инженерно-геологических работах; болотное - при разведке торфяных месторождений; лесное - при инвентаризации и устройстве лесов, лесохозяйственных и лесокультурных изысканиях; сельскохозяйственное - при создании землеустроительных планов, учёте земель и состояния посевов; почвенное - при картировании и изучении эрозии почв; геоботаническое - при изучении распределения растительных сообществ (преимущественно в степях и пустынях), а также для индикационных целей; гидрографическое - при исследовании вод суши и площадей водосбора и исследовании морей в отношении характера течений, морских льдов и дна мелководий; геокриологическое - при изучении мерзлотных форм и явлений, а гляциологическое - ледниковых и сопутствующих им образований. Д. применяется также в метеорологических целях (наблюдения за облаками, снеговым покровом и др.), при поиске промысловых животных (особенно тюленей и рыб), в археологии, при социально-экономических исследованиях (например, контроле движения транспорта) и в военном деле при обработке материалов аэрофоторазведки (См. Аэрофоторазведка). При решении многих задач Д. носит комплексный характер (например, для целей мелиорации).

В ряде отраслей науки и практики наряду с Д. аэрофотоснимков ведутся работы по Д. космических фотоснимков, выполняемых с пилотируемых космических кораблей и орбитальных станций, а также с искусственных спутников Земли. В последнем случае получение фотоснимков полностью автоматизировано; доставка их на Землю осуществляется с помощью контейнеров или передачей изображения телевизионным путём. Благодаря снимкам из космоса обеспечивается возможность непосредственного Д. объектов глобального и регионального характера и Д. динамики природных процессов и проявлений хозяйственной деятельности сразу на значительных пространствах за короткий промежуток времени (см. Космическая съёмка). Начато (60-е гг. 20 в.) Д. снимков, полученных с обычных высот и из космоса не только при фотографической съёмке, но и при различных видах фотоэлектронной съёмки (см. Аэрометоды).

Лит.: Дешифрирование аэроснимков (топографическое и отраслевое), М., 1968 (Итоги науки. Сер. геодезия, в. 4); Смирнов Л. Е., Теоретические основы и методы географического дешифрирования аэроснимков, Л., 1967; Альтер С. П., Ландшафтный метод дешифрирования аэрофотоснимков, М. - Л., 1966; Гольдман Л. М., Вольпе Р. И., Дешифрирование аэроснимков при топографической съёмке и обновлении карт масштабов 1: 10000 и 1: 25000, М., 1968; Богомолов Л. А., Топографическое дешифрирование природного ландшафта на аэроснимках, М., 1963; Петрусевич М. Н., Аэрометоды при геологических исследованиях, М., 1962; Самойлович Г. Г., Применение аэрофотосъёмки и авиации в лесном хозяйстве, 2 изд., М., 1964; Наставление по дешифрированию аэроснимков и черчению фотопланов для целей сельского хозяйства..., ч. 1, М., 1966; Крупномасштабная картография почв, М., 1971; Виноградов Б. В., Аэрометоды изучения растительности аридных зон, М. - Л., 1966; Кудрицкий Д. М., Попов И. В., Романова Е. А., Основы гидрографического дешифрирования аэрофотоснимков, Л., 1956; Нефедов К. Е., Попова Т. А., Дешифрирование грунтовых вод по аэрофотоснимкам, Л., 1969; Протасьева И. В., Аэрометоды в геокриологии, М., 1967; Комплексное дешифрирование аэроснимков, М. - Л., 1964; Теория и практика дешифрирования аэроснимков, М. - Л., 1966; Гольдман Л. М., Дешифрирование аэрофотоснимков за рубежом (Обзор материалов 11 Международного фотограмметрического конгресса), М., 1970; Manuel of photographic interpretation, Wash., 1960 (American Society of Photogrammetry); Manuel of color aerial photography, Virginia, 1968 (American Society of Photogrammetry); Photographic aèrienne. Panorama intertéchnique, P., 1965. См. также лит. при ст. Аэрометоды .

Л. М. Гольдман.