Чем мутантный аллель отличается от полиморфного. Полиморфизм и ферменты. Разве это так же, как мутация

ЛЕКЦИЯ № 17

По медицинской биологии и генетике

Для студентов 1 курса

Лечебного, медико-профилактического и медико-диагностического

Факультетов

Тема: «ПОПУЛЯЦИОННО - ВИДОВОЙ УРОВЕНЬ

ОРГАНИЗАЦИИ ЖИВОГО.

ГЕНЕТИЧЕСКИЙ ПОЛИМОРФИЗМ ПОПУЛЯЦИИ ЧЕЛОВЕКА».

Время - 90 мин.

Учебные и воспитательные цели:

1. Знать экологическую и генетическую характеристики популяций.

2. Ознакомить с особенностями популяционной структуры человечества.

3. Указать на влияние элементарных эволюционных факторов на популяцию человека.

4. Ознакомить с частотой наследственных заболеваний в человеческих популяциях.

ЛИТЕРАТУРА:

1. Бекиш О.-Я. Л. Медицинская биология. Курс лекций для студентов мед. ВУЗов. - Витебск, 2000 с. 296-309.

2. Биология /Под ред.В.Н. Ярыгина/ 1-я книга - М.: Вш,1997. с. 32-49.

3. О.-Я. Л. Бекиш, Л.А. Храмцова. Практикум по мед. биологии. - Изд. «Белый Ветер», 2000 - с. 135-141.

МАТЕРИАЛЬНОЕ ОБЕСПЕЧЕНИЕ

1. Мультимедийная презентация.


РАСЧЕТ УЧЕБНОГО ВРЕМЕНИ


Слайд 3

Виды живых организмов представлены популяциями. Популяция – достаточно многочисленная совокупность особей одного вида в течение длительного времени населяющих определенную территорию, внутри которой осуществляется свободное скрещивание и которая изолирована от соседних совокупностей особей.

Популяция представляет экологическое, морфофизиологическое и генетическое единство особей вида. В эволюционном процессе она является неделимой единицей, т.е. является самостоятельной эволюционной структурой. Популяция является элементарной эволюционной единицей.



Эволюционируют не особи, а группы особей - популяции. Это самая мелкая из групп, способная к самостоятельной эволюции. Популяции характеризуются экологическими и генетическими особенностями.

Слайд 4

Экологическаяхарактеристика - величина занимаемой территории, плотность, численность особей, возрастная и половая структура, популяционная динамика.

Слайд 5

Генетическая характеристика - генофонд популяции (полный набор генов популяции). Генофонд описывают в частотах встречаемости аллельных вариантов генов или концентрации.

Слайд 6

Генофонд популяции характеризуется:

1) Единством . Единство генофонда популяции заключается в стремлении вида, как закрытой системы, сохранять свою однородность по наследственным свойствам.

2) Генетическим полиморфизмом. Природные популяции гетерогенны, они насыщены мутациями. При отсутствии давления внешних факторов эта гетерогенность находится в определенном равновесии.

3) Динамическим равновесием генов .

Слайд 7

В популяцию входят особи как с доминантными так и рецессивными признаками, не находящимися под контролем естественного отбора. Однако, доминантная аллель не вытесняет рецессивную. Обнаруженная закономерность называется законом Харди-Вайнберга для идеальной популяции. Это популяция с большой численностью, свободным скрещиванием (панмиксия), отсутствием мутаций, миграций и естественного отбора.

В идеальной популяции соотношение генотипов доминантных гомозигот АА , гетерозигот Аа и рецессивных гомозигот аа остаются постоянным:

Слайд 8

Если частота гена А равна р , а частота гена а равна q , то их концентрация Ар + аq = 1.

Сочетание гамет дает распределение генотипов по формуле:

♀ ♂ Ар (0,5) аq (0,5)
Ар (0,5) АА р 2 0,25 Аа рq 0,25
аq (0,5) Аа рq 0,25 аа q 2 0,25

Формула закона Харди-Вайнберга:

(Ар + аq)(Ар + аq) = АА р 2 + 2Аа рq + ааq 2 = (Ар + аq) 2 = 1

Величины р 2 , 2рq и q 2 - остаются постоянными этим объясняется тот факт, что особи с рецессивными признаками сохраняются наряду с доминантными. Соотношение гомо- и гетерозигот не меняется при разных вариантах реципрокных скрещиваний:

Закон Харди-Вайнберга:

«В панмиксной большой популяции, где нет отбора, мутаций, миграций, наблюдается постоянство распределения гомо- и гетерозигот. Зная частоту рецессивного гена, можно по формуле определить частоту доминантного аллеля и наоборот».

Слайд 9

В генетике человека, популяция – это группа людей, занимающих определенную территорию и свободно вступающих в брак. По численности они бывают большие и малые. Крупные популяции человека состоят не из одной, а нескольких антропологических групп, отличающихся по происхождению и рассеянных на больших территориях. Такие популяции включают более 4 тыс. человек. Человеческая популяция не является панмиксной, а представляет огромную совокупность многочисленных замкнутых групп.

Слайд 10

Эволюционные факторы, действующие на популяции людей, приводят к изменению генофонда. Влияние элементарных эволюционных факторов на изменение генофонда человеческих популяций сводится к действию мутационного процесса, миграциям, дрейфу генов, естественному отбору.

Слайд 11

Мутационный процесс является постоянно действующим элементарным эволюционным фактором. Он обеспечивает изменчивость популяции по отдельным генам. Мутации являются элементарным эволюционным материалом. Частота возникновения отдельных спонтанных мутаций находится в пределах 10 -4 - 10 -8 . Давление мутационного процесса определяется изменением частоты аллеля по отношению к другому. Мутационный процесс постоянно поддерживает гетерогенность популяции, однако численность преобладания гетерозигот Аа над гомозиготами аа существенна, так как большинство патологических мутаций рецессивно. Учитывая большое количество генов у человека, следует предположить, что до 10% его гамет несут мутантные гены. Доминантные мутации проявляются уже в первом поколении и подвергаются действию естественного отбора сразу. Рецессивные - накапливаются, проявляются фенотипически только в гомозиготном состоянии. Накопление мутантных аллелей создает гетерогенность популяции и способствует комбинативной изменчивости. Средняя степень гетерозиготности у человека составляет 6,7%, а в целом у позвоночных - 6,0%. Учитывая, что у человека имеется около 32000 структурных генов, то это означает, что каждый человек гетерозиготен более чем по 2000 локусам. При этом, теоретически возможное число различных типов гамет составляет 2 2150 . Такое число гамет не может образоваться не только у отдельного человека, но и у всего человечества за все время его существования. Это значение значительно больше числа протонов и нейтронов во Вселенной.

Насыщенность популяции рецессивными генами снижает приспособленность особей и называется генетическим грузом. Наличием генетического груза в человеческих популяциях объясняется появлением 5% потомков с генетическими дефектами.

Слайд 12

Дрейф генов - это колебания частот генов в ряду поколений, вызываемые случайными причинами, например малочисленностью популяций. Дрейф генов – процесс совершенно случайный и относится к особому классу явлений, называемых ошибками выборки. Общее правило состоит в том, что величина ошибки выборки находится в обратной зависимости от величины выборки . Применительно к живым организмам это означает, что чем меньше число скрещивающихся особей в популяции, тем больше изменений, обусловленных дрейфом генов, будут претерпевать частоты аллелей.

Случайный рост частоты одной какой-либо мутации обычно обусловливается преимущественным размножением в изолированных популяциях. Это явление называется «эффектом родоначальника» . Он возникает, когда несколько семей создают новую популяцию на новой территории. В ней поддерживается высокая степень брачной изоляции, что способствует закреплению одних аллелей и элиминацию других. Последствия «эффекта» - неравномерное распределение наследственных заболеваний человеческих популяций на земле.

Случайные изменения частот аллелей, подобные тем, которые обусловлены «эффектом родоначальника», возникают и в случае, если в популяции в процессе эволюции происходит резкое сокращение численности.

Дрейф генов приводит к:

1) изменению генетической структуры популяций: усилению гомозиготности генофонда;

2) уменьшению генетической изменчивости популяций;

3) дивергенции популяций.

Слайд 13

Изоляция - это ограничение свободы скрещивания. Она способствует дивергенции - разделению популяций на отдельные группы и изменению частот генотипов. В человеческих популяциях более существенной является эколого-этологическая изоляция. Она включает религиозные, морально-этические ограничения браков, сословное, клановое, имущественное, профессиональное и другие. Изоляции популяций приводят к родственным бракам - инбридингу и дрейфу генов. Родственные браки бывают:

1) инцестные (запретные) - между родственниками первой степени;

2) кровнородственные - между родственниками второй и третьей степенью.

Они приводят к проявлению рецессивных патологических генов в гомозиготном состоянии, что способствует смертности.

Слайд 14

Эффект близкородственных браков в Японии по данным W. J. Schull и J. V. Neel

Слайд 15

Миграция или поток генов - это перемещение особей из одной популяции в другую и скрещивание иммигрантов с представителями местной популяции. Поток генов не изменяет частот аллелей у вида в целом, однако в локальных популяциях они могут измениться, если исходные частоты аллелей в них различны. Достаточно даже незначительной миграции, такой как одна особь на тысячу за поколение, для предотвращения дифференциации популяций умеренной величины.

Слайд 16

Естественный отбор выполняет в человеческих популяциях функцию стабилизации генофонда, а также поддержания наследственного разнообразия. Основное назначение действия естественного отбора сохранение особей с полезными и гибель с вредными признаками, а также дифференциальное размножение (вклад особи в генофонд популяции при избирательном размножении).

Частота некоторых генов в популяции человека меняется под влиянием отбора. Подтверждением действия отбора в популяциях человека служат факты спонтанных абортов и перинатальной смертности у человека. Так более 42% спонтанных абортов происходит вследствие летального эффекта хромосомных аномалий. Хромосомные аномалии вызывают спонтанные аборты, которые достигают в течение первого триместра беременности 70%, во втором – 30%, в третьем – 4%. Перинатальная смертность в 6,2% случаев обусловлена хромосомной патологией. Среди мертворождений - 6% имеют летальные хромосомные аномалии.

Действие отбора обеспечивает способность организма вносить вклад в генетический состав будущего поколения. Это осуществляется двумя путями:

1) отбор на выживаемость;

2) использование генетических факторов, влияющих на размножение.

Изменение в генофондах популяций всегда происходит под влиянием сложного комплекса эволюционных факторов. Важное значение имеет соотношение отбора и давлений мутаций. Если данный аллель поддерживается отбором, тогда носители этого аллеля, как более приспособленные, характеризуются преимущественным размножением. В результате отбор вытесняет все другие аллели. Естественный отбор в человеческих популяциях действует как против гомозигот (доминантных и рецессивных), так и гетерозигот.

Слайд 17

Слайд 18

Влияние элементарных эволюционных факторов на генетическое разнообразие популяций.

Слайд 19

Генетический полиморфизм популяций человека.

Полиморфизм (многоформность) - любое разнообразие форм одного и того же вида организмов. Полиморфизм является наиболее универсальным явлением жизни. Дж. Б.С. Холдейн назвал человека самым полиморфным видом на Земле. У человека полиморфны практически все признаки (цвет глаз, волос, форма носа и черепа, группа крови и т.д.). Полиморфизм может быть результатом как дискретной внутрипопуляционной изменчивости наследственного характера, так и может определяться нормой реакции.

Слайд 20

Генетический полиморфизм возникает благодаря закреплению в популяции разных мутаций. Поэтому его классифицируют на: генный, хромосомный и геномный.

Слайд 21

Генный полиморфизм обусловлен наличием двух или более аллелей. Например, способность людей ощущать вкус фенилтиомочевины определяется доминантным аллелем (ТТ, Тt ), рецессивные гомозиготы (tt ) – его не ощущают. Наследование групп крови определяют три аллели - А, В, О. Хромосомный полиморфизм связан с хромосомными аберрациями, а геномный - с изменением наборов хромосом в кариотипе (гетероплоидия).

Слайд 22

Полиморфные генетические системы по их предполагаемой природе включают в себя три группы полиморфизмов: транзиторный, нейтральный, балансированный.

Слайд 23

Транзиторный полиморфизм объясняется сменой генетического состава популяции по рассматриваемому локусу. Один новый аллель в изменившихся условиях среды становится более выгодным и заменяет "исходный". Такой полиморфизм не может быть стабильным потому, что благодаря естественному отбору рано или поздно "исходный" аллель будет вытеснен новым и популяция будет мономорфной по "новому" аллелю. Скорость такого процесса нельзя заметить на протяжении жизни одного поколения.

Слайд 24

При нейтральном полиморфизме из-за случайных стохастических процессов (дрейф генов, эффект основателя) происходит случайное изменение частот аллелей. Например, возникновения различий в адаптивно-индифферентных признаках (приросшая или свободная мочка уха). Изменения генных частот по этим признакам осуществляется по механизму дрейфа генов, чем и объясняется нейтральный тип их эволюции.

Слайд 25

Балансированный полиморфизм - это полиморфизм, обусловленный сложным балансом между отбором против обеих гомозигот в пользу гетерозиготы. Рецессивный генотип подвергается более сильной элиминации, чем доминантный. Различия в скорости элиминации двух этих генотипов поддерживают постоянное, стабильное равновесное существование в популяции обеих аллелей с собственной для каждого частотой. Этим и объясняется стабильность такого полиморфизма. Наиболее полно изучены системы сбалансированного полиморфизма, связанные с отбором по малярии - аномальных гемоглобинов, талассемии, недостаточности эритроцитарного фермента глюкозо-6-фосфатдегидрогеназы. Стабильность этих полиморфизмов исчезает в связи с успехами борьбы с малярией. Балансированный полиморфизм превращается в транзиторный. Однако для снижения генных частот теперь уже полностью патологических генов, поскольку нет нужды в защите от малярии, должно пройти несколько десятков поколений.

Большое число открытых к настоящему времени полиморфных систем у человека со значительным числом аллелей приводит к тому, что практически каждый человек обладает уникальным набором генов, что позволяет говорить о биохимической и иммунологической индивидуальности личности. Это имеет большое значение в медицинской практике, особенно в судебной экспертизе.

Обычно наследственная предрасположенность носит мультифакториальный характер и определяется множеством генов с преобладающим эффектом одного или нескольких генов. Для установления этих генов пользуются биохимическими и иммунологическими методами антропогенетики. В настоящее время описано более 130 полиморфных генных локусов, кодирующих полиморфные белки. Это белки-ферменты, антигены, транспортные белки и т.д. Высказываются суждения, что около одной трети структурных генов человека должны иметь множественные аллели, т.е. кодировать полиморфные продукты метаболизма. В таком большом выборе для генетической рекомбинации заложена возможность возникновения индивидов с неблагоприятными сочетаниями генов, определяющих наследственную предрасположенность к заболеваниям. Учитывая генетический полиморфизм, для конкретного определения генетического фактора предрасположения к болезни сравнивают частоту встречаемости тех или иных полиморфных белков (антигенов) при данной болезни и в контрольной группе здоровых людей. Имеются многочисленные сведения по ассоциациям болезней с иммунологическими маркерами - антигенами групп крови АВО , системы HLA, с гаптоглобинами крови и с секретором. В частности, установлена предрасположенность людей со 2 группой (А ) крови к раку желудка, толстой кишки, яичника, шейки матки, ревматизму, ишемической болезни сердца, тромбоэмболиями и т.д. Люди с 1 группой крови (О ) предрасположены к заболеваниям язвенной болезни желудка и 12-перстной кишки и т.д.

Под генетическим полиморфизмом понимается состояние дли­тельного разнообразия генотипов, когда частота даже наиболее редко встречающихся генотипов в популяциях превышают 1%. Генетиче­ский полиморфизм поддерживается за счет мутаций и рекомбинаций генетического материала. Как показывают многочисленные исследо­вания, генетический полиморфизм широко распространен. Так, по теоретическим расчетам в потомстве от скрещивания двух особей, различающихся лишь по десяти локусам, каждый из которых пред­ставлен 4 возможными аллелями, окажется около 10 млрд. особей с различными генотипами.

Чем больше запас генетического полиморфизма в данной популя­ции, тем легче ей адаптироваться к новой среде и тем быстрее протекает эволюция. Однако, оценить количество полиморфных аллелей посредством традиционных генетических методов практически невозможно, поскольку сам факт присутствия какого-либо гена в генотипе устанавливается путем скрещивания особей, обладающих различными формами фенотипа, определяемого этим геном. Зная, какую долю в популяции составляют особи с различными фенотипами, можно выяснить, сколько аллелей участвуют в формировании данного признака.

Начиная с 60-х годов XX столетия для определения генетического полиморфизма стал широко применяться метод электрофореза белков (в том числе и ферментов) в геле. С помощью этого метода можно вызвать перемещение белков в электрическом поле в зависимости от их размера, конфигурации и суммарного заряда в разные участки ге­ля, а затем по расположению и числу проявляющихся при этом пятен проводить идентификацию исследуемого вещества. Для оценки сте­пени полиморфизма тех или иных белков в популяциях обычно ис­следуют около 20 и более локусов, а потом математическим путем определяют количество аллельных генов, соотношение гомо - и гетерозигот. Как показывают исследования, одни гены, как правило, бы­вают мономорфными, а другие - чрезвычайно полиморфными.

Различают переходный и сбалансированный полиморфизм, что зависит от селективной ценности генов и давления естественного отбора.

Переходный полиморфизм возникает в популяции, когда проис­ходит замещение аллеля, бывшего некогда обычным, другими алле­лями, придающими своим носителям более высокую приспособлен­ность (множественный аллелизм). При переходном полиморфизме наблюдается направленный сдвиг в процентном соотношении форм генотипов. Переходный полиморфизм - это главный путь эволюции, ее динамика. Примером переходного полиморфизма может быть явление индустриального механизма. Так, в результате загрязнения атмосферы в промышленных городах Англии за последние сто лет у более чем 80 видов бабочек, появились темные формы. Например, если до 1848 г. березовые пяденицы имели бледно-кремовую окраску с черными точками и отдельными темными, пятнами, то в 1848 г. в Манчестере появились первые темнотелые формы, а к 1895 г. уже 98% пядениц стало темнотелыми. Это произошло вследствие закопчения стволов деревьев и избирательного выедания светлотелых пя­дениц дроздами и малиновками. Позже было установлено, что темная окраска тела у пядениц осуществляется мутантным меланистическим аллелем.

Сбалансированный полиморфизм характеризуется отсутствием сдвига числовых соотношений различных форм, генотипов в популя­циях, находящихся в стабильных условиях среды. При этом процент­ное соотношение форм либо из поколения в поколение остается од­ним и тем же, либо колеблется вокруг какой-то постоянной величины. В противоположность переходному, сбалансированный полиморфизм - это статика эволюции. И.И. Шмальгаузен (1940) назвал его равновесным гетероморфизмом.

Примером сбалансированного полиморфизма служит наличие двух полов у моногамных животных, поскольку они обладают равно­ценными селективными преимуществами. Их соотношение в популя­циях составляет 1:1. При полигамии селективное значение у предста­вителей разных полов может отличаться и тогда представители одно­го пола либо уничтожаются, либо в большей степени, чем особи дру­гого пола, отстраняются от размножения. Другой пример - группы крови человека по АВО-системе. Здесь частота разных генотипов в различных популяциях может варьировать, однако, в каждой конкретной популяции она остается постоянной из поколения в поколение. Это объясняется тем, что ни один генотип не обладает селективным преимуществом перед другими. Так, хотя у мужчин с первой группы крови, как показывает статистка, ожидаемая продолжительность жизни, выше, чем у мужчин с другими группами крови, у них чаше, чем у других, развивается язва двенадцатиперстной кишки, которая в случае прободения может привести к смерти.

Генетическое равновесие в популяциях может нарушаться давлением спонтанных мутаций, возникающих с определенной частотой в каждом поколении. Сохранение или же элиминация этих мутаций зависит от того, благоприятствует ли им естественный отбор или про­тиводействует. Прослеживая судьбу мутаций в той или иной популя­ции, можно говорить о ее адаптивной ценности. Последняя равна 1, если отбор не исключает ее и не противодействует распространению. В большинстве случаев показатель адаптивной ценности мутантных генов оказывается меньше 1, а если мутанты совершенно не способны размножаться, то он равен нулю. Такого рода мутации отметаются естественным отбором. Однако, один и тот же ген может неоднократ­но мутировать, что компенсирует его элиминацию, производимую отбором. В таких случаях может быть достигнуто равновесие, когда появление и исчезновение мутировавших генов становится сбаланси­рованным. Примером может служить серповидноклеточная анемия, когда доминантный мутантный ген в гомозиготе приводит к ранней гибели организма, однако, гетерозиготы по этому гену оказываются устойчивыми к заболеванию малярией. В районах, где распростране­на малярия, имеет место сбалансированный полиморфизм по гену серповидноклеточной анемии, поскольку наряду с элиминацией гомо­зигот, действует контротбор в пользу гетерозигот. В результате разновекторного отбора в генофонде популяций поддерживаются в каждом поколении генотипы, обеспечивающие приспособленность организмов с учетом местных условий. Помимо гена в серповидноклеточности, в популяциях человека есть ряд других полиморфных генов, которые как предполагают, вызывают явление гетерозиса

Рецессивные мутации (в том числе и вредные), не проявляющиеся фенотипически у гетерозигот, могут накапливаться в популяциях до более высокого уровня, чем вредные доминантные мутации.

Генетический полиморфизм является обязательным условием для непрерывной эволюции. Благодаря ему в изменяющейся среде всегда могут быть генетические варианты предаптированные к этим усло­виям. В популяции диплоидных раздельнополых организмов может храниться в гетерозиготном состоянии, не проявляясь фенотипически, огромный запас генетической изменчивости. Уровень последней, оче­видно, может быть еще более высоким у полиплоидных организмов, у которых за фенотипически проявляющимся нормальным аллелем может скрываться не один, а несколько мутантных аллелей.

Комбинация греческих слов poly (что означает несколько) и morph (значение формы), полиморфизм - это термин, используемый в генетике для описания нескольких форм одного гена, который существует у индивидуума или среди группы индивидуумов. Что такое генетический полиморфизм? Там, где мономорфизм означает наличие только одной формы и диморфизма, существуют только две формы, термин полиморфизм является очень специфическим термином в генетике и биологии, относящимся к множественным формам гена, котор

Комбинация греческих слов poly (что означает несколько) и morph (значение формы), полиморфизм - это термин, используемый в генетике для описания нескольких форм одного гена, который существует у индивидуума или среди группы индивидуумов.

Что такое генетический полиморфизм?

Там, где мономорфизм означает наличие только одной формы и диморфизма, существуют только две формы, термин полиморфизм является очень специфическим термином в генетике и биологии, относящимся к множественным формам гена, который может существовать.

Термин не распространяется на характерные черты с непрерывным изменением, такие как высота (даже если это может быть наследуемым аспектом). Вместо этого полиморфизм относится к формам, которые являются прерывистыми (имеют дискретную вариацию), бимодальными (имеющими или включающими два режима) или полимодальными (множественными режимами). Например, ушные вкладыши либо прикреплены, либо они не являются, это либо / или ситуацией, и не подобной высоте, которая не является установленным числом.

Полиморфизм изначально использовался для описания видимых форм генов, но теперь этот термин используется для включения критических режимов, таких как типы крови, которые требуют анализа крови для расшифровки. Кроме того, этот термин иногда используется неправильно для описания явно разных географических рас или вариантов, но полиморфизм относится к тому факту, что множественные формы одного гена должны одновременно занимать одно и то же место обитания (что исключает географические, расовые или сезонные морфы.)

Генетический полиморфизм относится к возникновению двух или более генетически определенных фенотипов в определенной популяции (в пропорциях, при которых самые редкие характеристики не могут поддерживаться только повторной мутацией). Полиморфизм способствует разнообразию и сохраняется в течение многих поколений, потому что ни одна форма не имеет общего преимущества или недостатка по сравнению с другими с точки зрения естественного отбора.

Разве это так же, как мутация?

Мутации сами по себе не классифицируются как полиморфизмы. Полиморфизм - это вариация последовательности ДНК, которая является общей для населения. С другой стороны, мутация представляет собой любое изменение последовательности ДНК вдали от нормы (подразумевая, что нормальная аллель протекает через популяцию и что мутация меняет этот нормальный аллель на редкий и ненормальный вариант.)

В полиморфизм, существуют две или более одинаково приемлемые альтернативы и классифицируются как полиморфизм, наименьшая общая аллель должна иметь частоту 1% или более в популяции. Если частота ниже этого, аллель считается мутацией.

Полиморфизм и ферменты

Исследования секвенирования генов, как это сделано для проекта генома человека, показали, что на уровне нуклеотидов ген, кодирующий специфический белок, может иметь ряд различий в последовательности.Эти различия не изменяют общий продукт, достаточно значительный для получения другого белка, но могут оказывать влияние субстратной специфичности и удельной активности (для ферментов), эффективности связывания (для факторов транскрипции, мембранных белков и т. Д.) Или других функций и функций, Например, в человеческой расе существует много различных полиморфизмов CYP 1A1, одного из многих ферментов цитохрома P450 печени.

Хотя ферменты в основном представляют одну и ту же последовательность и структуру, полиморфизмы в этом ферменте могут влиять на то, как люди метаболизируют наркотики. Полиморфизмы CYP 1A1 у людей, где в экзоне 7 аминокислота Isoleucine заменена Валином, была связана с курением, связанным с курением.

Использование генетических полиморфизмов было одной из сильных сторон deCODE Genetics, компании, которая сосредоточилась на определении генетических факторов риска для различных заболеваний.

Источники:

Форд, Э. Б. 1975. Экологическая генетика (4-е изд.). Лондон: Chapman & Hall

Форд, Э. Б. (1940). «Полиморфизм и таксономия». В Джулиане Хаксли (ред.). Новая систематика . Оксфорд: Clarendon Pr. С. 493-513. ISBN 1-930723-72-5.

Шеппард, Филипп М. 1975. Естественный отбор и наследование (4-е изд.) Лондон: Хатчинсон.

Под генетическим полиморфизмом понимается состояние дли­тельного разнообразия генотипов, когда частота даже наиболее редко встречающихся генотипов в популяциях превышают 1%. Генетиче­ский полиморфизм поддерживается за счет мутаций и рекомбинаций генетического материала. Как показывают многочисленные исследо­вания, генетический полиморфизм широко распространен. Так, по теоретическим расчетам в потомстве от скрещивания двух особей, различающихся лишь по десяти локусам, каждый из которых пред­ставлен 4 возможными аллелями, окажется около 10 млрд. особей с различными генотипами.

Чем больше запас генетического полиморфизма в данной популя­ции, тем легче ей адаптироваться к новой среде и тем быстрее протекает эволюция. Однако, оценить количество полиморфных аллелей посредством традиционных генетических методов практически невозможно, поскольку сам факт присутствия какого-либо гена в генотипе устанавливается путем скрещивания особей, обладающих различными формами фенотипа, определяемого этим геном. Зная, какую долю в популяции составляют особи с различными фенотипами, можно выяснить, сколько аллелей участвуют в формировании данного признака.

Начиная с 60-х годов XX столетия для определения генетического полиморфизма стал широко применяться метод электрофореза белков (в том числе и ферментов) в геле. С помощью этого метода можно вызвать перемещение белков в электрическом поле в зависимости от их размера, конфигурации и суммарного заряда в разные участки ге­ля, а затем по расположению и числу проявляющихся при этом пятен проводить идентификацию исследуемого вещества. Для оценки сте­пени полиморфизма тех или иных белков в популяциях обычно ис­следуют около 20 и более локусов, а потом математическим путем определяют количество аллельных генов, соотношение гомо - и гетерозигот. Как показывают исследования, одни гены, как правило, бы­вают мономорфными, а другие - чрезвычайно полиморфными.

Различают переходный и сбалансированный полиморфизм, что зависит от селективной ценности генов и давления естественного отбора.

Переходный полиморфизм возникает в популяции, когда проис­ходит замещение аллеля, бывшего некогда обычным, другими алле­лями, придающими своим носителям более высокую приспособлен­ность (множественный аллелизм). При переходном полиморфизме наблюдается направленный сдвиг в процентном соотношении форм генотипов. Переходный полиморфизм - это главный путь эволюции, ее динамика. Примером переходного полиморфизма может быть явление индустриального механизма. Так, в результате загрязнения атмосферы в промышленных городах Англии за последние сто лет у более чем 80 видов бабочек, появились темные формы. Например, если до 1848 г. березовые пяденицы имели бледно-кремовую окраску с черными точками и отдельными темными, пятнами, то в 1848 г. в Манчестере появились первые темнотелые формы, а к 1895 г. уже 98% пядениц стало темнотелыми. Это произошло вследствие закопчения стволов деревьев и избирательного выедания светлотелых пя­дениц дроздами и малиновками. Позже было установлено, что темная окраска тела у пядениц осуществляется мутантным меланистическим аллелем.

Сбалансированный полиморфизм х арактеризуется отсутствием сдвига числовых соотношений различных форм, генотипов в популя­циях, находящихся в стабильных условиях среды. При этом процент­ное соотношение форм либо из поколения в поколение остается од­ним и тем же, либо колеблется вокруг какой-то постоянной величины. В противоположность переходному, сбалансированный полиморфизм - это статика эволюции. И.И. Шмальгаузен (1940) назвал его равновесным гетероморфизмом.

Примером сбалансированного полиморфизма служит наличие двух полов у моногамных животных, поскольку они обладают равно­ценными селективными преимуществами. Их соотношение в популя­циях составляет 1:1. При полигамии селективное значение у предста­вителей разных полов может отличаться и тогда представители одно­го пола либо уничтожаются, либо в большей степени, чем особи дру­гого пола, отстраняются от размножения. Другой пример - группы крови человека по АВО-системе. Здесь частота разных генотипов в различных популяциях может варьировать, однако, в каждой конкретной популяции она остается постоянной из поколения в поколение. Это объясняется тем, что ни один генотип не обладает селективным преимуществом перед другими. Так, хотя у мужчин с первой группы крови, как показывает статистка, ожидаемая продолжительность жизни, выше, чем у мужчин с другими группами крови, у них чаше, чем у других, развивается язва двенадцатиперстной кишки, которая в случае прободения может привести к смерти.

Генетическое равновесие в популяциях может нарушаться давлением спонтанных мутаций, возникающих с определенной частотой в каждом поколении. Сохранение или же элиминация этих мутаций зависит от того, благоприятствует ли им естественный отбор или про­тиводействует. Прослеживая судьбу мутаций в той или иной популя­ции, можно говорить о ее адаптивной ценности. Последняя равна 1, если отбор не исключает ее и не противодействует распространению. В большинстве случаев показатель адаптивной ценности мутантных генов оказывается меньше 1, а если мутанты совершенно не способны размножаться, то он равен нулю. Такого рода мутации отметаются естественным отбором. Однако, один и тот же ген может неоднократ­но мутировать, что компенсирует его элиминацию, производимую отбором. В таких случаях может быть достигнуто равновесие, когда появление и исчезновение мутировавших генов становится сбаланси­рованным. Примером может служить серповидноклеточная анемия, когда доминантный мутантный ген в гомозиготе приводит к ранней гибели организма, однако, гетерозиготы по этому гену оказываются устойчивыми к заболеванию малярией. В районах, где распростране­на малярия, имеет место сбалансированный полиморфизм по гену серповидноклеточной анемии, поскольку наряду с элиминацией гомо­зигот, действует контротбор в пользу гетерозигот. В результате разновекторного отбора в генофонде популяций поддерживаются в каждом поколении генотипы, обеспечивающие приспособленность организмов с учетом местных условий. Помимо гена в серповидноклеточности, в популяциях человека есть ряд других полиморфных генов, которые как предполагают, вызывают явление гетерозиса

Рецессивные мутации (в том числе и вредные), не проявляющиеся фенотипически у гетерозигот, могут накапливаться в популяциях до более высокого уровня, чем вредные доминантные мутации.

Генетический полиморфизм является обязательным условием для непрерывной эволюции. Благодаря ему в изменяющейся среде всегда могут быть генетические варианты предаптированные к этим усло­виям. В популяции диплоидных раздельнополых организмов может храниться в гетерозиготном состоянии, не проявляясь фенотипически, огромный запас генетической изменчивости. Уровень последней, оче­видно, может быть еще более высоким у полиплоидных организмов, у которых за фенотипически проявляющимся нормальным аллелем может скрываться не один, а несколько мутантных аллелей.

Генетическая вариабельность, ограниченная одним видом (Homo sapiens в нашем случае), получила название генетического полиморфизма (ГП).

Геномы всех людей, за исключением однояйцевых близнецов, различны.

Выраженные популяционные, этнические и, главное, индивидуальные различия геномов как в их смысловой части (экзоны), так и в их некодирующих последовательностях (межгенные промежутки, интроны и прочее) обусловлены различными мутациями, приводящими к ГП. Последний обычно определяют как менделевский признак, встречающийся в популяции по крайней мере в 2 вариантах с частотой не менее 1 % для каждого . Изучение ГП является основной задачей быстро набирающей силы программы «Генетическое разнообразие человека» (см. табл. 1.1).

ГП может быть качественным, когда происходят замены нуклеотидов, либо количественным, когда в ДНК варьирует число нуклеотидных повторов различной протяженности. Тот и другой виды ГП встречаются как в смысловых (белок-кодирующих), так и во внегенных последовательностях молекулы ДНК.

Качественный ГП - представлен преимущественно однонуклеотидными заменами, так называемыми single nucleotide polymorphism (SNP) . Это самый частый ГП. Уже первое сравнительное изучение геномов у представителей разных рас и этнических групп показало не только глубокое генетическое родство всех людей (сходство геномов - 99,9 %), но и позволило получить ценную информацию о происхождении человека, маршрутах его расселения по планете, о путях этногенеза. Решение многих проблем геногеографии, происхождения человека, эволюции генома в филогенезе и этногенезе - вот круг фундаментальных проблем, стоящих перед этим быстро развивающимся направлением .

Количественный ГП - представлен вариациями числа тандемных повторов (STR - Short Tandem Repeats) в виде 1-2 нуклеотидов (микросателлитная ДНК) либо 3-4 и более нуклеотидов на коровую (повторяющуюся) единицу. Это так называемая минисателлитная ДНК. Наконец, повторы ДНК могут иметь большую протяженность и вариабельную по нуклеотидному составу внутреннюю структуру - так называемые VNTR (Variable Number Tandem Repeats).

Как правило, количественный ГП касается внесмысловых некодирующих (кодовых) участков генома. Исключение составляют только тринуклеотидные повторы. Чаще это CAG (citosine-adenine- guanine) - триплет, кодирующий глютаминовую кислоту. Они могут встречаться и в кодирующих последовательностях ряда структурных генов. В частности, такие ГП характерны для генов «болезней экспансии» (см. главу 3). В этих случаях по достижении определенной копий- ности тринуклеотидного (полинуклеотидного) повтора ГП перестают быть функционально нейтральными и проявляют себя как особый тип так называемых «динамических мутаций» . Последние особенно характерны для большой группы нейродегенеративных заболеваний (хорея Гентингтона, болезнь Кеннеди, спиноцеребеллярная атаксия и др.). Характерными клиническими особенностями таких заболеваний являются: поздняя манифестация, эффект антиципации (усиления тяжести заболевания в последующих поколениях), отсутствие эффективных методов лечения (см. главу 3).

Все люди, населяющие сегодня нашу планету, действительно являются генетически братьями и сестрами. Более того, межиндивидуальная вариабельность даже при секвенировании генов представителей белой, желтой и черной рас не превысила 0,1 % и обусловлена, главным образом, однонуклеотидными заменами, ОНЗ - SNP (Single Nucleotide Polymorphisms). Такие замены весьма многочисленны и встречаются через каждые 250-400 п. о. Их общее число в геноме оценивается в 10-13 миллионов (табл. 1.2). Предполагается, что около половины всех SNP (5 млн) приходится на смысловую (экспрессирующуюся) часть генома. Именно эти замены, как оказалось, особенно важны для молекулярной диагностики наследственных болезней. Им принадлежит основная роль в ГП человека .

На сегодняшний день хорошо известно, что полиморфизм характерен практически для всех генов человека. Более того, установлено, что он имеет выраженную этническую и популяционную специфику. Эта особенность позволяет широко использовать полиморфные генные маркеры в этнических и популяционных исследованиях . Полиморфизм, затрагивающий смысловые части генов, нередко приводит к замене аминокислот и к появлению белков с новыми функциональными свойствами. Существенное влияние на экспрессионную активность генов могут оказывать замены или повторы нуклеотидов в регуляторных (промоторных) областях генов. Наследуемые полиморфные изменения генов играют решающую роль в определении уникального биохимического профиля каждого человека, в оценке его наследственной предрасположенности к различным частым мультифакторным (мультифакториальным) заболеваниям. Изучение медицинских аспектов ГП составляет концептуальную и методическую основу предиктивной (предсказательной) медицины (см. 1.2.5).

Как показали исследования последних лет, однонуклеотидные замены (SNP) и короткие тандемные моно-, ди- и тринуклеотидные повторы являются доминирующими, но отнюдь не единственными вариантами полиморфизма в геноме человека. Недавно появилось сообщение о том, что около 12 % всех генов человека присутствуют более, чем в двух копиях. Следовательно, реальные различия между геномами разных людей, скорее всего, существенно превышают ранее постулируемые 0,1 % . Исходя из этого, в настоящее время считается, что близость неродственных геномов составляет не 99,9 %, как считалось ранее, а примерно равна около 99 0%. Особенно удивительным оказался факт, что варьировать в геноме могут не только число копий отдельных генов, но даже целые фрагменты хромосом размерами 0,65-1,3 Мегабаз (1 Мгб = 10 6 п. о.). В последние годы при помощи метода сравнительной геномной гибридизации на чипах, содержащих ДНК-зонды, соответствующие всему геному человека, получены удивительные данные, доказывающие полиморфизм индивидуальных геномов по большим (5-20 Мгб) фрагментам ДНК. Данный полиморфизм получил название Copy Number Variation «варьирование числа копий», его вклад в патологию человека в настоящее время активно исследуется .

Согласно современным данным, количественный полиморфизм в геноме человека представлен значительно шире, чем считалось ранее; основным качественным вариантом полиморфизма являются однонуклеотидные замены - ОНЗ (SNP).

1.2.З.1. Международный проект «Гаплоидный геном»(НарМар)

Решающая роль в изучении геномного полиморфизма принадлежит международному проекту по изучению гаплоидного генома человека - «Г аплоидная карта» - HapMap.

Проект начат по инициативе Института по изучению генома человека (США) в 2002 г. Исполнителями проекта стали 200 исследователей из 6 стран (США, Великобритания, Канада, Япония, Китай, Нигерия), образовавших Научный Консорциум. Цель проекта - получить генетическую карту следующего поколения, основу которой должно составлять распределение однонуклеотидных замен (SNP) в гаплоидном наборе всех 23 хромосом человека .

Суть проекта сводится к тому, что при анализе распределения уже известных SNP (ОНЗ) у индивидов нескольких поколений соседние или близко расположенные в ДНК одной хромосомы SNP наследуются блоками. Такой блок SNP представляет собой гаплотип - аллельный набор нескольких локусов, расположенных на одной хромосоме (отсюда и название проекта НарМар). При этом каждый из картированных SNP выступает как самостоятельный молекулярный маркер. Для создания общегеномной карты SNPs важно, однако, чтобы между двумя соседними SNP генетическое сцепление было высокодостоверным. По сцеплению таких SNP-маркеров с исследованным признаком (болезнью, симптомом) определяются наиболее вероятные места локализации генов-кандидатов, мутации (полиморфизм) которых ассоциированы с тем или иным мультифакторным заболеванием. Обычно для картирования выбирают несколько SNP, тесно сцепленных с уже известным менделирующим признаком. Такие хорошо охарактеризованные ОНЗ с частотой редких аллелей не менее 5 % получили название маркерных SNP (tagSNP). Предполагается, что в конечном счете из примерно 10 миллионов ОНЗ, присутствующих в геноме каждого человека, в процессе выполнения проекта будут отобраны только около 500 000 tagSNP.

Но и этого числа вполне достаточно, чтобы перекрыть картой ОНЗ весь геном человека. Естественно, что постепенное насыщение генома такими точечными молекулярными маркерами, удобными для общегеномного анализа, открывает большие перспективы для картирования многих еще не известных генов, аллельные варианты которых ассоциированы (сцеплены) с различными тяжелыми болезнями .

Первый этап НарМар проекта стоимостью 138 млн долларов завершился в октябре 2005 года. Проведено генотипирование свыше миллиона ОНЗ (1 007 329) у 270 представителей 4 популяций (90 американцев европейского происхождения, 90 нигерийцев, 45 китайцев и 45 японцев). Итогом работы явилась гаплоидная карта SNP, содержащая информацию о распределении и частотах маркерных SNP в изученных популяциях .

В результате выполнения второго этапа проекта HapMap, который завершился в декабре 2006 года, та же выборка индивидов (269 человек) была прогенотипирована еще по 4 600 000 SNP. На сегодняшний день генетическая карта следующего поколения (НарМар) уже содержит информацию более чем о 5,5 млн ОНЗ. В своем окончательном варианте, который, учитывая все возрастающую скорость картирования SNP, станет доступен уже в ближайшем будущем, будет информация о 9 000 000 SNP гаплоидного набора. Благодаря НарМар, которая включает не только SNP уже картированных генов с известными фенотипами, но и SNP еще не идентифицированных генов, ученые получают в руки мощный универсальный навигатор, необходимый для углубленного анализа генома каждого индивида, для быстрого и эффективного картирования генов, аллельные варианты которых предрасполагают к различным мультифакториальным заболеваниям, для проведения широкомасштабных исследований по популяционной генетике человека, фармакогенетике и индивидуальной медицине.

По словам Фрэнсиса Коллинза, директора Национального института по изучению генома человека (США): «Уже при обсуждении программы «Геном человека» 20 лет назад я мечтал о времени, когда геномный подход станет инструментом для диагностики, лечения и предупреждения тяжелых распространенных болезней, страдающие которыми больные переполняют наши больницы, клиники и кабинеты врачей. Успехи

НарМар проекта позволяют сделать серьезный шаг навстречу этой мечте уже сегодня» (http://www.the-scientist.com/2006/2/1/46/1/).

Действительно, с помощью техники НарМар удалось достаточно быстро картировать ген, ответственный за дистрофию сетчатки (macular degeneration), идентифицировать главный ген и несколько генных маркеров болезни сердца, определить участки хромосом и найти гены, ассоциированные с остеопорозом, бронхиальной астмой, диабетом первого и второго типов, а также с раком простаты . С помощью технологии НарМар можно не только вести полногеномный скрининг, но изучать отдельные части генома (фрагменты хромосом) и даже кандидатные гены. Совмещение технологии Нар- Мар с возможностями высокоразрешающих гибридизационных ДНК- чипов и специальной компьютерной программы сделало доступным общегеномный скрининг ассоциаций и совершило реальный переворот в предиктивной медицине в плане эффективной идентификации генов предрасположенности к различным МФЗ (см. гл. 8 и 9).

Учитывая, что генетический полиморфизм отнюдь не исчерпывается ОНЗ, а молекулярные вариации генома значительно более многообразны, ученые и издатели научного журнала Human Mutation Ричард Коттон (Австралия) и Хейг Казазьян (США) выступили с инициативой проекта Human Variom Project, цель которого - создание универсального банка данных, включающего в себя информацию не только по мутациям, приводящим к различным моногенным заболеваниям, но и к полиморфизму, предрасполагающему к мультифакторным болезням - http://www.humanvariomeproject.org/index.php?p = News . Учитывая достаточную условность границ между «полиморфизмом» и «мутациями», создание такой универсальной библиотеки вариаций генома можно только приветствовать.

К сожалению, приходится констатировать, что, если в случае проекта «Геном человека» в России еще предпринимались некоторые попытки участия в совместных исследованиях, то при выполнении международного проекта НарМар отечественные ученые практически не были задействованы. Соответственно, воспользоваться технологией общегеномного скрининга SNP в России при отсутствии необходимого аппаратурного и программного обеспечения, весьма проблематично Между тем, учитывая популяционные особенности генетического полиморфизма, внедрение в России технологии GWAS швершенно необходимо (см. гл. 9).

С глубоким сожалением приходится констатировать, что уже существующий колоссальный разрыв между отечественной и передовой мировой наукой в области изучения генома человека после завершения программы НарМар будет только стремительно увеличиваться.

1.2.З.2. Новые проекты по изучению генома человека

Проект НарМар далеко не единственный, хотя и наиболее продвинутый в исследованиях структурно-функциональной организации генома человека в наше время. Другой международный проект - ENCODE «Энциклопедия ДНК элементов», инициированный Национальным институтом исследования генома человека, США (НИИГЧ) (National Institute of Human Genome Research - NIHGR). Его цель - точная идентификация и картирование всех белок-синтезирующих генов и функционально значимых элементов генома человека. В качестве пилотных исследований проект предполагает многократно просеквенировать и детально изучить фрагмент генома размером до 1 % общей длины ДНК. Наиболее вероятным кандидатом является участок генома размером около 30 Мегабаз (млн п. о.) в коротком плече хромосомы 6. Именно там расположен очень сложный в структурно-функциональном отношении локус HLA, ответственный за синтез антигенов гистосовместимости. Планируется просеквенировать область HLA у 100 пациентов с аутоиммунными заболеваниями (системная красная волчанка, диабет 1 типа, рассеянный склероз, бронхиальная астма и др.) и у 100 соматически здоровых доноров, чтобы понять молекулярную природу генных особенностей при этих патологиях. Аналогичным образом предполагается провести идентификацию генов-кандидатов в локусах, обнаруживающих неслучайную ассоциацию с частыми тяжелыми заболеваниями мультифакторной природы. Результаты проекта ENCODE частично уже опубликованы, однако, HLA локус в него не включен .

Еще один проект - NIHGR «Химическая геномика» - ставит своей целью создание общедоступной библиотеки химических веществ, преимущественно органических соединений, удобных для изучения главных метаболических путей организма, непосредственно взаимодействующих с геномом и перспективных для создания новых лекарственных препаратов.

Проект Genome to Life «Геном для жизни» обращает основное внимание на особенности метаболизма и организацию геномов одноклеточных организмов, патогенных для человека. Предполагается, что итогом его выполнения будут компьютеризированные модели реакции микробов на внешние воздействия. Исследования будут сосредоточены на четырех основных направлениях: белки бактерий, регуляторные механизмы работы генов, микробные ассоциации (симбиоз), взаимодействие с организмом человека (www.genomestolife.org).

Наконец, главной организацией по финансированию научных проектов Великобритании Wellcome Trust создан Консорциум по геномике трехмерной структуры белков (Structural Genomic Consortium). Его цель - на основе данных по изучению генома человека повысить эффективность поиска и синтеза новых лекарств направленного действия.

Непосредственное отношение к предиктивной медицине и фармакогенетике имеет и разрабатываемый в США и в странах Западной Европы проект «Геном и окружающая среда» (Environmental Genome Project). Некоторые подробности данного проекта будут рассмотрены в следующей главе.