Анализ математический. Методическая разработка на тему: математические исследования на уроках математики

Метод проектов, обладающий огромными возможностями по формированию уневерсальных учебных действий, находит все более широкое распространение в системе школьного образования.Но "уместить" метод проектов в класснно-урочную систему достаточно трудно. Я включаю мини исследования в обычный урок. Такая форма работы открывает большие возможности для формирования познавательной деятельности и обеспечивает учет индивидуальных особенностей учащихся, готовит почву для развития навыков над большими проектами.

Скачать:


Предварительный просмотр:

«Если ученик в школе не научился сам ничего творить, то и в жизни он будет только подражать, копировать, так как мало таких, которые бы, научившись копировать, умели сделать самостоятельное приложение этих сведений». Л.Н.Толстой.

Характерной чертой современного образования является резкое увеличение объема информации, которую необходимо усвоить учащимся. A степень развития обучающегося измеряется и оценивается его способностью самостоятельно приобретать новые знания и использовать их в учебной и практической деятельности. Современный педагогический процесс требует использования инновационных технологий в обучении.

ФГОС нового поколения требует использования в образовательном процессе технологий деятельностного типа, методы проектно-исследовательской деятельности определены как одно из условий реализации основной образовательной программы.

Особая роль отводится такой деятельности на уроках математики и это не случайно. Математика является ключом к познанию мира, базой научно-технического прогресса и важной компонентой развития личности. Она призвана воспитать в человеке способность понять смысл поставленной перед ним задачи, умение логично рассуждать, усвоить навыки алгоритмического мышления.

Уместить метод проектов в классно-урочную систему достаточно трудно. Я пытаюсь разумно совмещать традиционную и личностно-ориентированную систему путем включения элементов исследования в обычный урок. Приведу ряд примеров.

Так при изучении темы «Окружность» мы проводим с учащимися следующее исследование.

Математическое исследование «Окружность».

  1. Подумайте, как построить окружность, какие инструменты для этого необходимы. Обозначение окружности.
  2. Для того чтобы дать определение окружности посмотрим, какими свойствами обладает эта геометрическая фигура. Соединим центр окружности с точкой принадлежащей окружности. Измерим длину этого отрезка. Повторим эксперимент три раза. Сделаем вывод.
  3. Отрезок, соединяющий центр окружности с любой ее точкой, называется радиусом окружности. Это определение радиуса. Обозначение радиуса. Пользуясь этим определением, постройте окружность с радиусом равным 2см5мм.
  4. Постройте окружность произвольного радиуса. Постройте радиус, измерьте его. Запишите результаты измерений. Постройте еще три различных радиуса. Сколько радиусов можно провести в окружности.
  5. Попытаемся, зная свойство точек окружности, дать ее определение.
  6. Постройте окружность произвольного радиуса. Соедините две точки окружности так, чтобы этот отрезок проходил через центр окружности. Этот отрезок называется диаметром. Дадим определение диаметра. Обозначение диаметра. Постройте еще три диаметра. Сколько диаметров имеет окружность.
  7. Постройте окружность произвольного радиуса. Измерьте диаметр и радиус. Сравните их. Повторите эксперимент еще три раза с различными окружностями. Сделайте вывод.
  8. Соедините две любые точки окружности. Полученный отрезок называется хордой. Дадим определение хорды. Постройте еще три хорды. Сколько хорд имеет окружность.
  9. Является ли радиус хордой. Докажите.
  10. Является ли диаметр хордой. Докажите.

Работы исследовательского характера могут носить пропедевтический характер. Исследовав окружность можно рассмотреть ряд интересных свойств, которые учащиеся могут сформулировать на уровне гипотезы, а потом уже доказать эту гипотезу. Например, следующее исследование:

«Математическое исследование»

  1. Построй окружность радиуса 3 см и проведи ее диаметр. Соедини концы диаметра с произвольной точкой окружности и измерь угол образованный хордами. Проведи те же построения еще для двух окружностей. Что ты замечаешь.
  2. Повтори эксперимент для окружности произвольного радиуса и сформулируй гипотезу. Можно ли считать ее доказанной с помощью проведенных построений и измерений.

При изучении темы «Взаимное расположение прямых на плоскости» проводится математическое исследование в группах.

Задания для групп:

  1. группа.

1.В одной системе координат построить графики функции

У = 2х, у = 2х+7, у = 2х+3, у = 2х-4, у = 2х-6.

2.Ответьте на вопросы, заполнив таблицу:

В истории математики условно можно выделить два основных периода: элементарной и современной математики. Рубежом, от которого принято вести отсчет эпохи новой (иногда говорят - высшей) математики, стал XVII век – век появления математического анализа. К концу XVII в. И. Ньютоном, Г. Лейбницем и их предшественниками был создан аппарат нового дифференциального исчисления и интегрального исчисления, составляющий основу математического анализа и даже, пожалуй, математическую основу всего современного естествознания.

Математический анализ – это обширная область математики с характерным объектом изучения (переменной величиной), своеобразным методом исследования (анализом посредством бесконечно малых или посредством предельных переходов), определенной системой основных понятий (функция, предел, производная, дифференциал, интеграл, ряд) и постоянно совершенствующимся и развивающимся аппаратом, основу которого составляют дифференциальное и интегральное исчисления.

Попробуем дать представление о том, какая математическая революция произошла в XVII в., чем характеризуется связанный с рождением математического анализа переход от элементарной математики к той, что ныне составляет предмет исследований математического анализа и чем объясняется его фундаментальная роль во всей современной системе теоретических и прикладных знаний.

Представьте себе, что перед вами прекрасно выполненная цветная фотография набегающей на берег штормовой океанской волны: могучая сутуловатая спина, крутая, но чуть впалая грудь, уже наклоненная вперед и готовая упасть голова с терзаемой ветром седой гривой. Вы остановили мгновение, вам удалось поймать волну, и вы можете теперь без спешки внимательно изучать ее во всех подробностях. Волну можно измерить, и, пользуясь средствами элементарной математики, вы сделаете много важных выводов об этой волне, а значит, и всех ее океанских сестрах. Но, остановив волну, вы лишили ее движения и жизни. Ее зарождение, развитие, бег, сила, с которой она обрушивается на берег, - все это оказалось вне вашего поля зрения, потому что вы не располагаете пока ни языком, ни математическим аппаратом, пригодными для описания и изучения не статических, а развивающихся, динамических процессов, переменных величин и их взаимосвязей.

«Математический анализ не менее всеобъемлющ, чем сама природа: он определяет все ощутимые взаимосвязи, измеряет времена, пространства, силы, температуры». Ж. Фурье

Движение, переменные величины и их взаимосвязи окружают нас повсюду. Различные виды движения и их закономерности составляют основной объект изучения конкретных наук: физики, геологии, биологии, социологии и др. Поэтому точный язык и соответствующие математические методы описания и изучения переменных величин оказались необходимыми во всех областях знания примерно в той же степени, в какой числа и арифметика необходимы при описании количественных соотношений. Так вот, математический анализ и составляет основу языка и математических методов описания переменных величин и их взаимосвязей. В наши дни без математического анализа невозможно не только рассчитать космические траектории, работу ядерных реакторов, бег океанской волны и закономерности развития циклона, но и экономично управлять производством, распределением ресурсов, организацией технологических процессов, прогнозировать течение химических реакций или изменение численности различных взаимосвязанных в природе видов животных и растений, потому что все это - динамические процессы.

Элементарная математика была в основном математикой постоянных величин, она изучала главным образом соотношения между элементами геометрических фигур, арифметические свойства чисел и алгебраические уравнения. Ее отношение к действительности в какой-то мере можно сравнить с внимательным, даже тщательным и полным изучением каждого фиксированного кадра киноленты, запечатлевшей изменчивый, развивающийся живой мир в его движении, которого, однако, не видно на отдельном кадре и которое можно наблюдать, только посмотрев ленту в целом. Но как кино немыслимо без фотографии, так и современная математика невозможна без той ее части, которую мы условно называем элементарной, без идей и достижений многих выдающихся ученых, разделенных порой десятками столетий.

Математика едина, и «высшая» ее часть связана с «элементарной» примерно так же, как следующий этаж строящегося дома связан с предшествующим, и ширина горизонтов, которые математика открывает нам в окружающий мир, зависит от того, на какой этаж этого здания нам удалось подняться. Родившийся в XVII в. математический анализ открыл нам возможности для научного описания, количественного и качественного изучения переменных величин и движения в широком смысле этого слова.

Каковы же предпосылки появления математического анализа?

К концу XVII в. сложилась следующая ситуация. Во-первых, в рамках самой математики за долгие годы накопились некоторые важные классы однотипных задач (например, задачи измерения площадей и объемов нестандартных фигур, задачи проведения касательных к кривым) и появились методы их решения в различных частных случаях. Во-вторых, оказалось, что эти задачи теснейшим образом связаны с задачами описания произвольного (не обязательно равномерного) механического движения, и в частности с вычислением его мгновенных характеристик (скорости, ускорения в любой момент времени), а также с нахождением величины пройденного пути для движения, происходящего с заданной переменной скоростью. Решение этих проблем было необходимо для развития физики, астрономии, техники.

Наконец, в-третьих, к середине XVII в. трудами Р. Декарта и П. Ферма были заложены основы аналитического метода координат (так называемой аналитической геометрии), позволившие сформулировать разнородные по своему происхождению геометрические и физические задачи на общем (аналитическом) языке чисел и числовых зависимостей, или, как мы теперь говорим, числовых функций.

НИКОЛАЙ НИКОЛАЕВИЧ ЛУЗИН
(1883-1950)

Н. Н. Лузин – советский математик, основоположник советской школы теории функций, академик (1929).

Лузин родился в Томске, учился в томской гимназии. Формализм гимназического курса математики оттолкнул от себя талантливого юношу, и лишь способный репетитор смог раскрыть перед ним красоту и величие математической науки.

В 1901 г. Лузин поступил на математическое отделение физико-математического факультета Московского университета. С первых лет обучения в круг его интересов попали вопросы, связанные с бесконечностью. В конце XIX в. немецкий ученый Г. Кантор создал общую теорию бесконечных множеств, получившую многочисленные применения в исследовании разрывных функций. Лузин начал изучать эту теорию, но его занятия были прерваны в 1905 г. Студенту, принимавшему участие в революционной деятельности, пришлось на время уехать во Францию. Там он слушал лекции виднейших французских математиков того времени. По возвращении в Россию Лузин окончил университет и был оставлен для подготовки к профессорскому званию. Вскоре он вновь уехал в Париж, а затем в Геттинген, где сблизился со многими учеными и написал первые научные работы. Основной проблемой, интересовавшей ученого, был вопрос о том, могут ли существовать множества, содержащие больше элементов, чем множество натуральных чисел, но меньше, чем множество точек отрезка (проблема континуума).

Для любого бесконечного множества, которое можно было получить из отрезков с помощью операций объединения и пересечения счетных совокупностей множеств, эта гипотеза выполнялась, и, чтобы решить проблему, нужно было выяснить, какие еще есть способы конструирования множеств. Одновременно Лузин изучал вопрос, можно ли представить любую периодическую функцию, даже имеющую бесконечно много точек разрыва, в виде суммы тригонометрического ряда, т.е. суммы бесконечного множества гармонических колебаний. По этим вопросам Лузин получил ряд значительных результатов и в 1915 г. защитил диссертацию «Интеграл и тригонометрический ряд», за которую ему сразу присудили ученую степень доктора чистой математики, минуя существовавшую в то время промежуточную степень магистра.

В 1917 г. Лузин стал профессором Московского университета. Талантливый преподаватель, он привлекал к себе наиболее способных студентов и молодых математиков. Своего расцвета школа Лузина достигла в первые послереволюционные годы. Ученики Лузина образовали творческий коллектив, который шутливо называли «лузитанией». Многие из них получили первоклассные научные результаты еще на студенческой скамье. Например, П. С. Александров и М. Я. Суслин (1894-1919) открыли новый метод конструирования множеств, что послужило началом развития нового направления - дескриптивной теории множеств. Исследования в этой области, проводившиеся Лузиным и его учениками, показали, что обычных методов теории множеств недостаточно для решения многих возникавших в ней проблем. Научные предвидения Лузина полностью подтвердились в 60-е гг. XX в. Многие ученики Н. Н. Лузина стали впоследствии академиками и членами-корреспондентами АН СССР. Среди них П. С. Александров. А. Н. Колмогоров. М. А. Лаврентьев, Л. А. Люстерник, Д. Е. Меньшов, П. С. Новиков. Л. Г. Шнирельман и другие.

Современные советские и зарубежные математики в своих работах развивают идеи Н. Н. Лузина.

Стечение этих обстоятельств и привело к тому, что в конце XVII в. двум ученым – И. Ньютону и Г. Лейбницу – независимо друг от друга удалось создать для решения названных задач математический аппарат, подытоживший и обобщивший отдельные результаты предшественников, среди которых и ученый древности Архимед и современники Ньютона и Лейбница – Б. Кавальери, Б. Паскаль, Д. Грегори, И. Барроу. Этот аппарат и составил основу математического анализа – нового раздела математики, изучающего различные развивающиеся процессы, т.е. взаимосвязи переменных величин, которые в математике называют функциональными зависимостями или, иначе, функциями. Кстати, сам термин «функция» потребовался и естественно возник именно в XVII в., а к настоящему времени он приобрел не только общематематическое, но и общенаучное значение.

Начальные сведения об основных понятиях и математическом аппарате анализа даны в статьях «Дифференциальное исчисление» и «Интегральное исчисление».

В заключение хотелось бы остановиться только на одном общем для всей математики и характерном для анализа принципе математического абстрагирования и в этой связи объяснить, в каком виде математический анализ изучает переменные величины и в чем секрет такой универсальности его методов для изучения всевозможных конкретных развивающихся процессов и их взаимосвязей.

Рассмотрим несколько поясняющих примеров и аналогий.

Мы порой уже не отдаем себе отчета в том, что, например, математическое соотношение , написанное не для яблок, стульев или слонов, а в отвлеченном от конкретных объектов абстрактном виде, - выдающееся научное завоевание. Это математический закон, который, как показывает опыт, применим к различным конкретным объектам. Значит, изучая в математике общие свойства отвлеченных, абстрактных чисел, мы тем самым изучаем количественные соотношения реального мира.

Например, из школьного курса математики известно, что , поэтому в конкретной ситуации вы могли бы сказать: «Если мне для перевозки 12 т грунта не выделят два шеститонных самосвала, то можно запросить три четырехтонки и работа будет выполнена, а если дадут только одну четырехтонку, то ей придется сделать три рейса». Так привычные теперь для нас отвлеченные числа и числовые закономерности связаны с их конкретными проявлениями и приложениями.

Примерно так же связаны законы изменения конкретных переменных величин и развивающихся процессов природы с той абстрактной, отвлеченной формой-функцией, в которой они появляются и изучаются в математическом анализе.

Например, абстрактное соотношение может быть отражением зависимости кассового сбора у кинотеатра от количества проданных билетов, если 20 – это 20 копеек – цена одного билета. Но если мы едем по шоссе на велосипеде, проезжая 20 км в час, то это же соотношение можно истолковать как взаимосвязь времени (часов) нашей велосипедной прогулки и покрытого за это время расстояния (километров)., вы всегда можете утверждать, что, например, изменение в несколько раз приводит к пропорциональному (т.е. во столько же раз) изменению величины , а если , то верно и обратное заключение. Значит, в частности, для увеличения кассового сбора кинотеатра в два раза вам придется привлечь вдвое больше зрителей, а для того, чтобы на велосипеде с той же скоростью проехать вдвое большее расстояние, вам придется ехать вдвое дольше.

Математика изучает и простейшую зависимость , и другие, значительно более сложные зависимости в отвлеченном от частной интерпретации, общем, абстрактном виде. Выявленные в таком исследовании свойства функции или методы изучения этих свойств будут носить характер общих математических приемов, заключений, законов и выводов, применимых к каждому конкретному явлению, в котором встречается изученная в абстрактном виде функция, независимо от того, к какой области знания это явление относится.

Итак, математический анализ как раздел математики оформился в конце XVII в. Предметом изучения в математическом анализе (как он представляется с современных позиций) являются функции, или, иначе, зависимости между переменными величинами.

С возникновением математического анализа математике стало доступно изучение и отражение развивающихся процессов реального мира; в математику вошли переменные величины и движение.

Использование статистических методов для количественной и качественной оценки;

ФОРМА ПРЕДСТВАВЛЕНИЯ НИР.

АННОТАЦИЯ - краткое изложение сущности изученного источника и выводов

РЕФЕРАТ - краткое изложение содержания литературного источника с

освещением: цели исследования, объекта, предмета, гипотезы

методики,результатов, выводов исследования, критической

НАУЧНАЯ СТАТЬЯ- это научный труд ограниченный по объему условиями издателя обычно 5-7 листов, в котором излагается введение с освещением актуальности проблемы темы или вопроса, цель, объект, методы, организация исследования, их обсуждение, сравнение с литературными данными, в конце представляется спискм использованной.

ДИССЕРТАЦИЯ- Кандидатская и докторская диссертации. Диссертация (от лат. iisscrtatio - рассуждение, исследование) - квалификационный Научный труд, подготовленный для публичной защиты и получе­нии ученой степени кандидата или доктора наук.

Демонстративный материал к лекции.

Глоссарий-наука –sains- ҒАЛЫМ НИРС –SSWS-ҒҒЖС УИРС- SSWS - СҒЖС СНО –SSR СҒ

НАУКА - это сфера человеческой деятельности и вид познания,

формирующие систему научных понятий о законах природы и

общества.

Руководство НИР в вузе Ректор

П р о р е к т о р по Н И Р (НИР,НИРС, УИРС)

Факультеты (декан,руководительНИР) Научно-методический отдел

↕ организация конференций, конкурсов,

Зав.кафедрами издание научно-методической литературы

Зам.заведующего по НИР← отчеты

НИР преподавателей, СНК,

с т у д е н т ы НИРС-

→ СНК, ↔ СНО (руководитель во вузу,

председатели СНО и СНК), : УИРС-

доклады, конференции, курсовые, дипломные работы,

научные семинары предметные олимпиады

научные факультетские

республиканские конкурсы

Лекция 2 Виды научной продукции (1 час).

1. Курсовая, дипломная работа, реферат, научный обзор.

2. Научная статья, аннотация, монография, диссертация магистерская, кандидатская, докторская, научный доклад.

3. Вопросы, научно обоснованные ответы, научные круглые столы, конференции формы проведения.

Дипломная работа должна содержать элемент новизны и выявить общенаучную, специальную подготовленность студента, em эрудицию, исследовательские навыки, умение мыслить и увязывать теоретические знания с практикой. За принятые в дипломной работе решения и за правильность всех данных отвечает студент автор дипломной работы. Тематика дипломных работ должна быть, актуальной, соответствовать современному состоянию и перспективам развития физической культуры и спорта. Она формируется выпускающими кафедрами, рассматривается и утверждается ученым советом факультета и объявляется студентам не менее чем за год до начала аттестации. Как правило, тема дипломной работы является продолжением исследований, проводимых в процессе



Курсовые работы. Студенту предоставляется право выбо­ра выпускной квалификационной работы. В то же время он может предложить свою тему с необходимым обоснованием целесообразности ее разработки. Однако возможность самостоятельного выбора темы не означает, что в этом случае можно пренебрежением. советами и консультациями опытных преподавателей. Та­кие консультации весьма полезны и оказывают положительное Минине на окончательный выбор темы .

Закрепление за студентом темы дипломной работы по его личному заявлению (приложение 1) после обсуждения на кафедре оформляется приказом ректора по представлению декана факультета перед направлением студента на последнюю практику. Одно­именно этим же приказом ректора назначается научный руководитель и при необходимости, по предложению руководителя, консультант по отдельным разделам дипломной работы. Руководитель дипломной работы в соответствии с темой выдает студенту задание на дипломную работу (приложение 2), оказывает ему помощь в разработке календарного плана на весь период выполнения дипломной работы (приложение 3), рекомендует необходимую основную литературу, справочные и архивные мате­риалы и другие источники по теме; проводит систематические, целеустремленные расписанием беседы и по мере надобности контролирует студента; проверяет выполнение работы (по частям или в целом). Если есть консультант, то он проверяет раздел (часть) работы, по которому им проводились консультации.

Выпускающие кафедры должны разрабатывать и обеспечивать студентов до начала выполнения дипломной работы методическими указаниями, в которых устанавливается обязательный объем требований к дипломной работе применительно к специальности.

1.2. Курсовые работы как этап в подготовке выпускных квалификационных (дипломных) работ

Как уже указывалось выше, выпускная квалификационная работа является обобщением или продолжением ряда ранее подт­опленных и защищенных студентом курсовых работ. Но в отличие от дипломной курсовые работы могут быть: теоретическими (рефе­ративными), выполненными на основе анализа и обобщения ли­гатурных данных по выбранной теме; эмпирическими, выполнен­ными на основе изучения и обобщения передового опыта педагогов-новаторов в области физической культуры и спорта; конструк­торскими, связанными с изобретательской работой студентов и представляющими техническое описание, обоснование и назна­чение новых конструкций, тренажеров, комплекса наглядных пособий, программ для компьютеров и т.п.; экспериментальными, построенными по обоснованной постановке и проведению экспе­римента в области физической культуры и спорта. Однако следуе i отметить, что, независимо от типа, каждая курсовая работа дол­жна содержать анализ литературных источников по выбранной теме По объему курсовая работа может достигать 25 - 30 с. рукописною или машинописного текста.

Курсовая работа является одним из важнейших видов учебною процесса и выполняется студентом в соответствии с учебным планом факультета физической культуры в пределах часов, отводимых на изучение дисциплин, по которым предусмотрено выполнение этих работ.

Тематика курсовых работ ежегодно пересматривается и утверждается соответствующей кафедрой одновременно с утвержден и ем графика их выполнения. Студенту предоставляется право вы­бора темы курсовой работы. Структура курсовой работы должп,1 способствовать раскрытию избранной темы и отдельных ее вопросов. Она аналогична структуре дипломной работы, однако основная часть, в зависимости от типа курсовой работы, может не сколько варьироваться. Конкретно об этом смотри в разделе «Структура и содержание курсовых и дипломных работ».

Магистерская диссертация . Как вид выпускной квалификаци онной работы она для магистра - то же, что и дипломная работ для дипломированного специалиста. Принципиальные подходы к характеру этих работ схожи, особенности требований отражены и соответствующих государственных образовательных стандартах и Положениях о названных видах работ, которые обычно разрабатывает каждый вуз , (приложение 20, п. 3).

Кандидатская и докторская диссертации. Диссертация (от лат. iisscrtatio - рассуждение, исследование) - квалификационный Научный труд, подготовленный для публичной защиты и получе­нии ученой степени кандидата или доктора наук. Диссертация Может представлять собой специально подготовленную рукопись, Может быть выполнена в виде научного доклада, опубликованных Монографии или учебника. Все, что связано с диссертациями, Изложено в п. IV «Положения о порядке присуждения научным и научно-педагогическим работникам ученых степеней и присвое­нии научным работникам ученых званий» }