Выражение угла в радианах. Перевод градусов в радианы и обратно: формулы, примеры

Углы измеряются в градусах или в радианах. Важно понимать связь между этими единицами измерения. Понимание этой связи позволяет оперировать углами и осуществлять переход от градусов к радианам и обратно. В данной статье выведем формулу для перевода градусов в радианы и радианов в градусы, а также разберем несколько примеров из практики.

Yandex.RTB R-A-339285-1

Связь между градусами и радианами

Чтобы установить связь между градусами и радианами, необходимо узнать градусную и радианную меру какого-либо угла. Например, возьмем центральный угол, который опирается на диаметр окружности радиуса r. Чтобы вычислить радианную меру этого угла необходимо длину дуги разделить на длину радиуса окружности. Рассматриваемому углу соответствует длина дуги, равная половине длины окружности π · r . Разделим длину дуги на радиус и получим радианную меру угла: π · r r = π рад.

Итак, рассматриваемый угол равен π радиан. С другой стороны, это развернутый угол, равный 180 ° . Следовательно 180 ° = π рад.

Связь градусов с радианами

Связь между радианами и градусами выражается формулой

π радиан = 180 °

Формулы перевода радианов в градусы и наоборот

Из формулы, полученной выше, можно вывести другие формулы для перевода углов из радианов в градусы и из градуов в радианы.

Выразим один радиан в градусах. Для этого разделим левую и правую части радиуса на пи.

1 р а д = 180 π ° - градусная мера угла в 1 радиан равна 180 π .

Также можно выразить один градус в радианах.

1 ° = π 180 р а д

Можно произвести приблизтельные вычисления величин угла в радианах и наоборот. Для этого возьмем значения числа π с точностью до десятитысячных и подставим в полученные формулы.

1 р а д = 180 π ° = 180 3 , 1416 ° = 57 , 2956 °

Значит, в одном радиане примерно 57 градусов

1 ° = π 180 р а д = 3 , 1416 180 р а д = 0 , 0175 р а д

Один градус содержит 0,0175 радиана.

Формула перевода радианов в градусы

x р а д = х · 180 π °

Чтобы перевести угол из радианов в градусы, нужно значение угла в радианах умножить на 180 и разделить на пи.

Примеры перевода градусов в радианы и радианов в градусы

Рассмотрим пример.

Пример 1. Перевод из радианов в градусы

Пусть α = 3 , 2 рад. Нужно узнать градусную меру этого угла.

Градусы в радианы. Друзья, данный пост короткий, но для многих полезный. Как вы знаете, школьный курс математики знакомит нас с двумя основными мерами углов: градусной и радианной. С использованием этих мер решаются практически все задачи, как в математике, так и в физике.

Понимать как они взаимосвязаны между собой — крайне необходимо. Хорошо если вы легко оперируете вычислениями с использованием любой из этих мер. Но с лёгкостью это могут делать далеко не все.

Для осуществления расчётов (различных преобразований) с использованием радианной меры необходима хорошая практика. Например, хорошего навыка требует выделение периода из дроби при решении тригонометрических выражений. Для кого-то будет проще и понятнее решать задачи используя градусную меру. Для половины учащихся проблемы перевода градусов в радианы (или наоборот) не существует. Если же вам необходимо это повторить, то этот материал для вас.

Таблица соответствия угловых мер


Итак, базовая информация, которая необходима. Это соответствие нужно уяснить и запомнить раз и навсегда!


Примеры перевода радиан в градусы:

Если угол задан в радианной мере, и в его выражении имеется число Пи, то подставляем его градусный эквивалент, то есть 180 градусов и вычисляем:

Если же радианы даны в виде целого числа, дроби либо целого числа с дробной частью, то решаем через пропорцию. Про неё я писал в о задачах на проценты. Например, определим, сколько в градусной мере составляют 2 радиана и 5 радиан. Составляем пропорцию:


Примеры перевода градусной меры в радианную.

Переведём в радианы 510 градусов. Для данной операции необходимо составить пропорцию. Для этого установим соответствие. Известно, что 180 градусам соответствует Пи радиан. А 510 градусов обозначаем как х радиан (так как нам необходимо определить радианы), значит:

Переведём в радианы 340, 220, 1210 градусов:


Успеха Вам!

С уважением, Александр Крутицких

P.S: Буду вам благодарен, если расскажете о сайте в социальных сетях.

Пусть у нас имеется единичная окружность с центром в точке О. Проведем к ней вертикальную касательную в точке Р. Положим, что эта касательная числовая ось, с началом в точке Р и положительное направление пусть будет вверх. За единицу длины на числовой оси возьмем радиус нашей окружности. Теперь на числовой оси отметим несколько точек ±1, ±pi/2, ± 3, ±pi. Тут pi ≈3.1415 иррациональное число.

Что означает радианная мера

Теперь, будем мысленно наматывать числовую прямую на окружность. Тогда точки с координатами 1, pi/2, -1, -2 и другие перейдут соответственно в точки М1,М2, М3, М4 на окружности. При этом длинна дуги РМ1 будет равна 1, длинна РМ2 =pi/2 и т.д.

Мы сопоставили каждой точке на прямой некоторую точку на окружности.

В таком случае говорят, что углы измеряются в радианной мере, а угол РОМ1 считают углом в 1 радиан (1 рад).

Рассмотрим некоторую окружность с радиусом R и отметим на ней дугу РМ длинной равной R. Отметим так же угол РОМ.

Центральный угол, который опирается на дугу, длина которой равна радиусу, называется углом в один радиан (1 рад).

Вычислим градусную меру угла в 1 радиан.

Длина дуги полуокружности равна pi*R. На эту дугу опирается центральный угол равный 180 градусам. Следовательно, дуга равная по длине R стягивает угол в pi раз меньший чем 180 градусов. То есть,

1 радиан = (180/pi) градусов.

Известно, что pi≈3.14, тогда 1 рад ≈ 57.3 градуса.

Если известно что угол содержит х радиан, то для вычисления его градусной меры используют следующую формулу:

Х радиан = ((180*х)/pi) градусов.

Таблица основных углов, выраженных в радианной мере

Когда обозначают радианную меру углов, обычно наименование «рад» опускают.

Зная радианную меру угла (a), можно вычислить длину дугу (l), которую стягивает этот угол, по следующей формуле: l=a*R.

    Тригонометрические функции представляют собой элементарные функции, аргументом которых является угол . С помощью тригонометрических функций описываются соотношения между сторонами и острыми углами в прямоугольном треугольнике. Области применения тригонометрических функций чрезвычайно разнообразны. Так, например, любые периодические процессы можно представить в виде суммы тригонометрических функций (ряда Фурье). Данные функции часто появляются при решениидифференциальныхи функциональных уравнений.

    К тригонометрическим функциям относятся следующие 6 функций: синус , косинус , тангенс , котангенс , секанс и косеканс . Для каждой из указанных функций существует обратная тригонометрическая функция.

    Геометрическое определение тригонометрических функций удобно ввести с помощью единичного круга . На приведенном ниже рисунке изображен круг радиусом r = 1. На окружности обозначена точка M (x,y ). Угол между радиус-вектором OM и положительным направлением оси Ox равен α .

    Синусом угла α y точки M (x,y ) к радиусу r : sin α = y /r . Поскольку r = 1, то синус равен ординате точки M (x,y ).

    Косинусом угла α x точки M (x,y ) к радиусу r : cos α = x /r = x

    Тангенсом угла α называется отношение ординаты y точки M (x,y ) к ee абсциссе x : tan α = y /x , x ≠ 0

    Котангенсом угла α называется отношение абсциссы x точки M (x,y ) к ее ординате y : cot α = x /y , y ≠ 0

    Секанс угла α − это отношение радиуса r к абсциссе x точки M (x,y ): sec α = r /x = 1/x , x ≠ 0

    Косеканс угла α − это отношение радиуса r к ординате y точки M (x,y ): cosec α = r /y = 1/y , y ≠ 0

    В единичном круге проекции x , y точки M (x,y ) и радиус r образуют прямоугольный треугольник, в котором x, y являются катетами, а r − гипотенузой. Поэтому, приведенные выше определения тригонометрических функций в приложении к прямоугольному треугольнику формулируются таким образом: Синусом угла α называется отношение противолежащего катета к гипотенузе. Косинусом угла α называется отношение прилежащего катета к гипотенузе. Тангенсом угла α называется противолежащего катета к прилежащему. Котангенсом угла α называется прилежащего катета к противолежащему.

    График функции синус y = sin x , область определения: x , область значений: −1 ≤ sin x ≤ 1

    График функции косинус y = cos x , область определения: x , область значений: −1 ≤ cos x ≤ 1

    График функции тангенс y = ttg x , область определения: x , x ≠ (2k + 1)π /2, область значений: −∞ < tg x < ∞

    График функции котангенс y = ctg x , область определения: x , x , область значений: −∞ < ctg x < ∞


В этой статье мы установим связь между основными единицами измерения углов – градусами и радианами. Эта связь нам в итоге позволит осуществлять перевод градусов в радианы и обратно . Чтобы эти процессы не вызывали затруднений, мы получим формулу перевода градусов в радианы и формулу перехода от радианов к градусам, после чего подробно разберем решения примеров.

Навигация по странице.

Связь между градусами и радианами

Связь между градусами и радианами будет установлена, если будет известна и градусная и радианная мера какого-нибудь угла (с градусной и радианной мерой угла можно ознакомиться в разделе ).

Возьмем центральный угол, опирающийся на диаметр окружности радиуса r . Мы можем вычислить меру этого угла в радианах: для этого нам нужно длину дуги разделить на длину радиуса окружности. Этому углу соответствует длина дуги, равная половине длины окружности , то есть, . Разделив эту длину на длину радиуса r , получим радианную меру взятого нами угла. Таким образом, наш угол равен рад. С другой стороны, этот угол развернутый, он равен 180 градусам. Следовательно, пи радианов есть 180 градусов.

Итак, выражается формулой π радианов = 180 градусов , то есть, .

Формулы перевода градусов в радианы и радианов в градусы

Из равенства вида , которое мы получили в предыдущем пункте, легко выводятся формулы перевода радианов в градусы и градусов в радианы .

Разделив обе части равенства на пи, получаем формулу, выражающую один радиан в градусах: . Эта формула означает, что градусная мера угла в один радиан равна 180/π . Если же поменять местами левую и правую части равенства , после чего разделить обе части на 180 , то получим формулу вида . Она выражает один градус в радианах.

Чтобы удовлетворить свое любопытство, вычислим приближенную величину угла в один радиан в градусах и величину угла в один градус в радианах. Для этого возьмем значение числа пи с точностью до десятитысячных, подставим его в формулы и , и проведем вычисления. Имеем и . Итак, один радиан приближенно равен 57 градусам, а один градус – 0,0175 радиана.

Наконец, от полученных соотношений и перейдем к формулам перевода радианов в градусы и наоборот, а также рассмотрим примеры применения этих формул.

Формула перевода радианов в градусы имеет вид: . Таким образом, если известна величина угла в радианах, то умножив ее на 180 и разделив на пи, получим величину этого угла в градусах.

Пример.

Дан угол в 3,2 радиана. Какова мера этого угла в градусах?

Решение.

Воспользуемся формулой перехода от радианов к градусам, имеем

Ответ:

.

Формула перевода градусов в радианы имеет вид . То есть, если известна величина угла в градусах, то умножив ее на пи и разделив на 180 , получим величину этого угла в радианах. Рассмотрим решение примера.