Теория вероятностей и основные понятия теории. Определение вероятности

Поговорим о задачах, в которых встречается фраза "хотя бы один". Наверняка вы встречали такие задачи в домашних и контрольных работах, а теперь узнаете, как их решать. Сначала я расскажу об общем правиле, а потом рассмотрим частный случай и , выпишем формулы и примеры для каждого.

Общая методика и примеры

Общая методика для решения задач, в которых встречается фраза "хотя бы один" такая:

  • Выписать исходное событие $A$ = (Вероятность того, что... хотя бы...).
  • Сформулировать противоположное событие $\bar{A}$.
  • Найти вероятность события $P(\bar{A})$.
  • Найти искомую вероятность по формуле $P(A)=1-P(\bar{A})$.

    А теперь разберем ее на примерах. Вперед!

    Пример 1. В ящике находится 25 стандартных и 6 бракованных однотипных деталей. Какова вероятность того, что среди трёх наудачу выбранных деталей окажется хотя бы одна бракованная?

    Действуем прямо по пунктам.
    1. Записываем событие, вероятность которого надо найти прямо из условия задачи:
    $A$ =(Из 3 выбранных деталей хотя бы одна бракованная).

    2. Тогда противоположное событие формулируется так $\bar{A}$ = (Из 3 выбранных деталей ни одной бракованной) = (Все 3 выбранные детали будут стандартные).

    3. Теперь нужно понять, как найти вероятность события $\bar{A}$, для чего еще раз посмотрим на задачу: говорится об объектах двух видов (детали бракованные и нет), из которых вынимается некоторое число объектов и изучаются (бракованные или нет). Это задача решается с помощью классического определения вероятности (точнее, по формуле гипергеометрической вероятности, подробнее о ней читайте в статье).

    Для первого примера запишем решение подробно, далее будем уже сокращать (а полные инструкции и калькуляторы вы найдете по ссылке выше).

    Сначала найдем общее число исходов - это число способов выбрать любые 3 детали из партии в 25+6=31 деталей в ящике. Так как порядок выбора несущественнен, применяем формулу для числа сочетаний из 31 объектов по 3: $n=C_{31}^3$.

    Теперь переходим к числу благоприятствующих событию исходов. Для этого нужно, чтобы все 3 выбранные детали были стандартные, их можно выбрать $m = C_{25}^3$ способами (так как стандартных деталей в ящике ровно 25).

    Вероятность равна:

    $$ P(\bar{A})=\frac{m}{n}=\frac{C_{25}^3 }{C_{31}^3} = \frac{23 \cdot 24\cdot 25}{29\cdot 30\cdot 31} =\frac{2300}{4495}= 0.512. $$

    4. Тогда искомая вероятность:

    $$ P(A)=1-P(\bar{A})=1- 0.512 = 0.488. $$

    Ответ: 0.488.


    Пример 2. Из колоды в 36 карт берут наудачу 6 карт. Найти вероятность того, что среди взятых карт будут: хотя бы две пики.

    1. Записываем событие $A$ =(Из 6 выбранных карт будут хотя бы две пики).

    2. Тогда противоположное событие формулируется так $\bar{A}$ = (Из 6 выбранных карт будет менее 2 пик) = (Из 6 выбранных карт будет ровно 0 или 1 пиковые карты, остальные другой масти).

    Замечание. Тут я остановлюсь и сделаю небольшое замечание. Хотя в 90% случаях методика "перейти к противоположному событию" работает на отлично, существуют случаи, когда проще найти вероятность исходного события. В данном случае, если искать напрямую вероятность события $A$ потребуется сложить 5 вероятностей, а для события $\bar{A}$ - всего 2 вероятности. А вот если бы задача была такая "из 6 карт хотя бы 5 - пиковые", ситуация стала бы обратной и тут проще решать исходную задачу. Если опять попытаться дать инструкцию, скажу так. В задачах, где видите "хотя бы один", смело переходите к противоположному событию. Если же речь о "хотя бы 2, хотя бы 4 и т.п.", тут надо прикинуть, что легче считать.

    3. Возвращаемся к нашей задаче и находим вероятность события $\bar{A}$ с помощью классического определения вероятности.

    Общее число исходов (способов выбрать любые 6 карт из 36) равно $n=C_{36}^6$ (калькулятор ).

    Найдем число благоприятствующих событию исходов. $m_0 = C_{27}^6$ - число способов выбрать все 6 карт непиковой масти (их в колоде 36-9=27), $m_1 = C_{9}^1\cdot C_{27}^5$ - число способов выбрать 1 карту пиковой масти (из 9) и еще 5 других мастей (из 27).

    $$ P(\bar{A})=\frac{m_0+m_1}{n}=\frac{C_{27}^6+C_{9}^1\cdot C_{27}^5 }{C_{36}^6} =\frac{85215}{162316}= 0.525. $$

    4. Тогда искомая вероятность:

    $$ P(A)=1-P(\bar{A})=1- 0.525 = 0.475. $$

    Ответ: 0.475.


    Пример 3. В урне 2 белых, 3 черных и 5 красных шаров. Три шара вынимают наугад. Найти вероятность того, что среди вынутых шаров хотя бы два будут разного цвета.

    1. Записываем событие $A$ =(Среди вынутых 3 шаров хотя бы два разного цвета). То есть, например, "2 красных шара и 1 белый", или "1 белый, 1 черный, 1 красный", или "2 черных, 1 красный" и так далее, вариантов многовато. Попробуем правило перехода к противоположному событию.

    2. Тогда противоположное событие формулируется так $\bar{A}$ = (Все три шара одного цвета) = (Выбраны 3 черных шара или 3 красных шара) - всего 2 варианта получилось, значит, этот способ решения упрощает вычисления. Кстати, все шары белого цвета не могут быть выбраны, так как их всего 2, а вынимается 3 шара.

    3. Общее число исходов (способов выбрать любые 3 шара из 2+3+5=10 шаров) равно $n=C_{10}^3=120$.

    Найдем число благоприятствующих событию исходов. $m = C_{3}^3+C_{5}^3=1+10=11$ - число способов выбрать или 3 черных шара (из 3), или 3 красных шара (из 5).

    $$ P(\bar{A})=\frac{m}{n}=\frac{11}{120}. $$

    4. Искомая вероятность:

    $$ P(A)=1-P(\bar{A})=1- \frac{11}{120}=\frac{109}{120} = 0.908. $$

    Ответ: 0.908.

    Частный случай. Независимые события

    Идем дальше, и приходим к классу задач, где рассматривается несколько независимых событий (стрелки попадают, лампочки перегорают, машины заводятся, рабочие болеют с разной вероятностью каждый и т.п.) и нужно "найти вероятность наступления хотя бы одного события" . В вариациях это может звучать так "найти вероятность, что хотя бы один стрелок из трех попадет в цель", "найти вероятность того, что хотя бы один автобус из двух вовремя приедет на вокзал", "найти вероятность, что хотя бы один элемент в устройстве из четырех элементов откажет за год" и т.д.

    Если в примерах выше речь шла о применении формулы классической вероятности , здесь мы приходим к алгебре событий, используем формулы сложения и умножения вероятностей (небольшая теория ).

    Итак, рассматриваются несколько независимых событий $A_1, A_2,...,A_n$, вероятности наступления каждого известны и равны $P(A_i)=p_i$ ($q_i=1-p_i$). Тогда вероятность того, что в результате эксперимента произойдет хотя бы одно из событий, вычисляется по формуле

    $$ P=1-q_1\cdot q_2 \cdot ...\cdot q_n. \quad(1) $$

    Строго говоря, эта формула тоже получается применением основной методики "перейти к противоположному событию" . Ведь действительно, пусть $A$=(Наступит хотя бы одно событие из $A_1, A_2,...,A_n$), тогда $\bar{A}$ = (Ни одно из событий не произойдет), что значит:

    $$ P(\bar{A})=P(\bar{A_1} \cdot \bar{A_2} \cdot ... \bar{A_n})=P(\bar{A_1}) \cdot P(\bar{A_2}) \cdot ... P(\bar{A_n})=\\ =(1-P(A_1)) \cdot (1-P(A_2)) \cdot ... (1-P(A_n))=\\ =(1-p_1) \cdot (1-p_2) \cdot ... (1-p_n)=q_1\cdot q_2 \cdot ...\cdot q_n,\\ $$ откуда и получаем нашу формулу $$ P(A)=1-P(\bar{A})=1-q_1\cdot q_2 \cdot ...\cdot q_n. $$

    Пример 4. Узел содержит две независимо работающие детали. Вероятности отказа деталей соответственно равны 0,05 и 0,08. Найти вероятность отказа узла, если для этого достаточно, чтобы отказала хотя бы одна деталь.

    Событие $A$ =(Узел отказал) = (Хотя бы одна из двух деталей отказала). Введем независимые события: $A_1$ = (Первая деталь отказала) и $A_2$ = (Вторая деталь отказала). По условию $p_1=P(A_1)=0,05$, $p_2=P(A_2)=0,08$, тогда $q_1=1-p_1=0,95$, $q_2=1-p_2=0,92$. Применим формулу (1) и получим:

    $$ P(A)=1-q_1\cdot q_2 = 1-0,95\cdot 0,92=0,126. $$

    Ответ: 0,126.

    Пример 5. Студент разыскивает нужную ему формулу в трех справочниках. Вероятность того, что формула содержится в первом справочнике, равна 0,8, во втором - 0,7, в третьем - 0,6. Найти вероятность того, что формула содержится хотя бы в одном справочнике.

    Действуем аналогично. Рассмотрим основное событие
    $A$ =(Формула содержится хотя бы в одном справочнике). Введем независимые события:
    $A_1$ = (Формула есть в первом справочнике),
    $A_2$ = (Формула есть во втором справочнике),
    $A_3$ = (Формула есть в третьем справочнике).

    По условию $p_1=P(A_1)=0,8$, $p_2=P(A_2)=0,7$, $p_3=P(A_3)=0,6$, тогда $q_1=1-p_1=0,2$, $q_2=1-p_2=0,3$, $q_3=1-p_3=0,4$. Применим формулу (1) и получим:

    $$ P(A)=1-q_1\cdot q_2\cdot q_3 = 1-0,2\cdot 0,3\cdot 0,4=0,976. $$

    Ответ: 0,976.

    Пример 6. Рабочий обслуживает 4 станка, работающих независимо друг от друга. Вероятность того, что в течение смены первый станок потребует внимания рабочего, равна 0,3, второй – 0,6, третий – 0,4 и четвёртый – 0,25. Найти вероятность того, что в течение смены хотя бы один станок не потребует внимания мастера.

    Думаю, вы уже уловили принцип решения, вопрос только в количестве событий, но и оно не оказывает влияния на сложность решения (в отличие от общих задач на сложение и умножение вероятностей). Только будьте внимательны, вероятности указаны для "потребует внимания", а вот вопрос задачи "хотя бы один станок НЕ потребует внимания". Вводить события нужно такие же, как и основное (в данном случае, с НЕ), чтобы пользоваться общей формулой (1).

    Получаем:
    $A$ = (В течение смены хотя бы один станок НЕ потребует внимания мастера),
    $A_i$ = ($i$-ый станок НЕ потребует внимания мастера), $i=1,2,3,4$,
    $p_1 = 0,7$, $p_2 = 0,4$, $p_3 = 0,6$, $p_4 = 0,75$.

    Искомая вероятность:

    $$ P(A)=1-q_1\cdot q_2\cdot q_3 \cdot q_4= 1-(1-0,7)\cdot (1-0,4)\cdot (1-0,6)\cdot (1-0,75)=0,982. $$

    Ответ: 0,982. Почти наверняка мастер будет отдыхать всю смену;)

    Частный случай. Повторные испытания

    Итак, у нас есть $n$ независимых событий (или повторений некоторого опыта), причем вероятности наступления этих событий (или наступления события в каждом из опытов) теперь одинаковы и равны $p$. Тогда формула (1) упрощается к виду:

    $$ P=1-q_1\cdot q_2 \cdot ...\cdot q_n = 1-q^n. $$

    Фактически мы сужаемся к классу задач, который носит название "повторные независимые испытания" или "схема Бернулли", когда проводится $n$ опытов, вероятность наступления события в каждом из которых равна $p$. Нужно найти вероятность, что событие появится хотя бы раз из $n$ повторений:

    $$ P=1-q^n. \quad(2) $$

    Подробнее о схеме Бернулли можно прочитать в онлайн-учебнике , а также посмотреть статьи-калькуляторы о решении различных подтипов задач (о выстрелах, лотерейных билетах и т.п.). Ниже же будут разобраны задачи только с "хотя бы один".

    Пример 7. Пусть вероятность того, что телевизор не потребует ремонта в течение гарантийного срока, равна 0,9. Найти вероятность того, что в течение гарантийного срока из 3 телевизоров хотя бы один не потребует ремонта.

    Решения короче вы еще не видели.
    Просто выписываем из условия: $n=3$, $p=0,9$, $q=1-p=0,1$.
    Тогда вероятность того, что в течение гарантийного срока из 3 телевизоров хотя бы один не потребует ремонта, по формуле (2):

    $$ P=1-0,1^3=1-0,001=0,999 $$

    Ответ: 0,999.

    Пример 8. Производится 5 независимых выстрелов по некоторой цели. Вероятность попадания при одном выстреле равна 0,8. Найти вероятность того, что будет хотя бы одно попадание.

    Опять, начинаем с формализации задачи, выписывая известные величины. $n=5$ выстрелов, $p=0,8$ - вероятность попадания при одном выстреле, $q=1-p=0,2$.
    И тогда вероятность того, что будет хотя бы одно попадание из пяти выстрелов равна: $$ P=1-0,2^5=1-0,00032=0,99968 $$

    Ответ: 0,99968.

    Думаю, с применением формулы (2) все более чем ясно (не забудьте почитать и о других задачах, решаемых в рамках схемы Бернулли, ссылки были выше). А ниже я приведу чуть более сложную задачу. Такие задачи встречаются пореже, но и их способ решения надо усвоить. Поехали!

    Пример 9. Производится n независимых опытов, в каждом из которых некоторое событие A появляется с вероятностью 0,7. Сколько нужно сделать опытов для того, чтобы с вероятностью 0,95 гарантировать хотя бы одно появление события A?

    Имеем схему Бернулли, $n$ - количество опытов, $p=0,7$ - вероятность появления события А.

    Тогда вероятность того, что произойдет хотя бы одно событие А в $n$ опытах, равна по формуле (2): $$ P=1-q^n=1-(1-0,7)^n=1-0,3^n $$ По условию эта вероятность должна быть не меньше 0,95, поэтому:

    $$ 1-0,3^n \ge 0,95,\\ 0,3^n \le 0,05,\\ n \ge \log_{0,3} 0,05 = 2,49. $$

    Округляя, получаем что нужно провести не менее 3 опытов.

    Ответ: минимально нужно сделать 3 опыта.

  • Краткая теория

    Для количественного сравнения событий по степени возможности их появления вводится числовая мера, которая называется вероятностью события. Вероятностью случайного события называется число, являющееся выражением меры объективной возможности появления события.

    Величины, определяющие, насколько значительны объективные основания рассчитывать на появление события, характеризуются вероятностью события. Необходимо подчеркнуть, что вероятность есть объективная величина, существующая независимо от познающего и обусловленная всей совокупностью условий, которые способствуют появлению события.

    Объяснения, которые мы дали понятию вероятности, не являются математическим определением, так как они не определяют это понятие количественно. Существует несколько определений вероятности случайного события, которые широко применяются при решении конкретных задач (классическое, геометрическое определение вероятности , статистическое и т. д.).

    Классическое определение вероятности события сводит это понятие к более элементарному понятию равновозможных событий, которое уже не подлежит определению и предполагается интуитивно ясным. Например, если игральная кость - однородный куб, то выпадения любой из граней этого куба будут равновозможными событиями.

    Пусть достоверное событие распадается на равновозможных случаев , сумма которых дает событие . То есть случаи из , на которые распадается , называются благоприятствующими для события , так как появление одного из них обеспечивает наступление .

    Вероятность события будем обозначать символом .

    Вероятность события равна отношению числа случаев , благоприятствующих ему, из общего числа единственно возможных, равновозможных и несовместных случаев к числу , т. е.

    Это есть классическое определение вероятности. Таким образом, для нахождения вероятности события необходимо, рассмотрев различные исходы испытания, найти совокупность единственно возможных, равновозможных и несовместных случаев, подсчитать общее их число n, число случаев m, благоприятствующих данному событию, и затем выполнить расчет по вышеприведенной формуле.

    Вероятность события, равная отношению числа благоприятных событию исходов опыта к общему числу исходов опыта называется классической вероятностью случайного события.

    Из определения вытекают следующие свойства вероятности:

    Свойство 1. Вероятность достоверного события равна единице.

    Свойство 2. Вероятность невозможного события равна нулю.

    Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

    Свойство 4. Вероятность наступления событий, образующих полную группу, равна единице.

    Свойство 5. Вероятность наступления противоположного события определяется так же, как и вероятность наступления события A.

    Число случаев, благоприятствующих появлению противоположного события . Отсюда вероятность наступления противоположного события равна разнице между единицей и вероятностью наступления события A:

    Важное достоинство классического определения вероятности события состоит в том, что с его помощью вероятность события можно определить, не прибегая к опыту, а исходя из логических рассуждений.

    При выполнении комплекса условий достоверное событие обязательно произойдет, а невозможное обязательно не произойдет. Среди событий, которые при создании комплекса условий могут произойти, а могут не произойти, на появление одних можно рассчитывать с большим основанием, на появление других с меньшим основанием. Если, например, в урне белых шаров больше, чем черных, то надеяться на появление белого шара при вынимании из урны наудачу больше оснований, чем на появление черного шара.

    На соседней странице рассматривается .

    Пример решения задачи

    Пример 1

    В ящике находится 8 белых, 4 черных и 7 красных шаров. Наудачу извлечены 3 шара. Найти вероятности следующих событий: – извлечен по крайней мере 1 красный шар, – есть по крайней мере 2 шара одного цвета, – есть по крайней мере 1 красный и 1 белый шар.

    Решение задачи

    Общее число исходов испытания найдем как число сочетаний из 19 (8+4+7) элементов по 3:

    Найдем вероятность события – извлечен по крайней мере 1 красный шар (1,2 или 3 красных шара)

    Искомая вероятность:

    Пусть событие – есть по крайней мере 2 шара одного цвета (2 или 3 белых шара, 2 или 3 черных шара и 2 или 3 красных шара)

    Число исходов, благоприятствующих событию:

    Искомая вероятность:

    Пусть событие – есть по крайней мере один красный и 1 белый шар

    (1 красный, 1 белый, 1 черный или 1 красный, 2 белых или 2 красных, 1 белый)

    Число исходов, благоприятствующих событию:

    Искомая вероятность:

    Ответ: P(A)=0.773;P(C)=0.7688; P(D)=0.6068

    Пример 2

    Брошены две игральные кости. Найти вероятность того, что сумма очков не меньше 5.

    Решение

    Пусть событие – сумма очков не меньше 5

    Воспользуемся классическим определением вероятности:

    Общее число возможных исходов испытания

    Число испытаний, благоприятствующих интересующему нас событию

    На выпавшей грани первого игрального кубика может появиться одно очко, два очка…, шесть очков. аналогично шесть исходов возможны при бросании второго кубика. Каждый из исходов бросания первой кости может сочетаться с каждым из исходов второй. Таким образом, общее число возможных элементарных исходов испытания равно числу размещений с повторениями (выбор с размещениями 2 элементов из совокупнности объема 6):

    Найдем вероятность противоположного события – сумма очков меньше 5

    Благоприятствовать событию будут следующие сочетания выпавших очков:

    1-я кость 2-я кость 1 1 1 2 1 2 3 2 1 4 3 1 5 1 3

    Средняя стоимость решения контрольной работы 700 - 1200 рублей (но не менее 300 руб. за весь заказ). На цену сильно влияет срочность решения (от суток до нескольких часов). Стоимость онлайн-помощи на экзамене/зачете - от 1000 руб. за решение билета.

    Заявку можно оставить прямо в чате, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.

    Примеры близких по теме задач

    Формула полной вероятности. Формула Байеса
    На примере решения задачи рассмотрены формула полной вероятности и формула Байеса, а также рассказывается, что такое гипотезы и условные вероятности.

    Теория вероятности - довольно обширный самостоятельный раздел математики. В школьном курсе теория вероятности рассматривается очень поверхностно, однако в ЕГЭ и ГИА имеются задачи на данную тему. Впрочем, решать задачи школьного курса не так уж сложно (по крайней мере то, что касается арифметических операций) - здесь не нужно считать производные, брать интегралы и решать сложные тригонометрические преобразования - главное, уметь обращаться с простыми числами и дробями.

    Теория вероятности - основные термины

    Главные термины теории вероятности - испытание, исход и случайное событие. Испытанием в теории вероятности называют эксперимент - подбросить монету, вытянуть карту, провести жеребьевку - все это испытания. Результат испытания, как вы уже догадались, называется исходом.

    А что же такое случайность события? В теории вероятности предполагается, что испытание проводится ни один раз и исходов много. Случайным событием называют множество исходов испытания. Например, если вы бросаете монету, может произойти два случайных события - выпадет орел или решка.

    Не путайте понятия исход и случайное событие. Исход - это один результат одного испытания. Случайное событие - это множество возможных исходов. Существует, кстати, и такой термин, как невозможное событие. Например, событие "выпало число 8" на стандартном игровом кубике является невозможным.

    Как найти вероятность?

    Все мы примерно понимаем, что такое вероятность, и довольно часто используем данное слово в своем лексиконе. Кроме того, мы можем даже делать некоторые выводы относительно вероятности того или иного события, например, если за окном снег, мы с большой вероятностью можем сказать, что сейчас не лето. Однако как выразить данное предположение численно?

    Для того чтобы ввести формулу для нахождения вероятности, введем еще одно понятие - благоприятные исход, т. е. исход, который является благоприятным для того или иного события. Определение довольно двусмысленное, конечно, однако по условию задачи всегда понятно, какой из исходов благоприятный.

    Например: В классе 25 человек, трое из них Кати. Учитель назначает дежурной Олю, и ей нужен напарник. Какова вероятность того, что напарником станет Катя?

    В данном примере благоприятный исход - напарник Катя. Чуть позже мы решим эту задачу. Но сначала введем с помощью дополнительного определения формулу для нахождения вероятности.

    • Р = А/N, где P - вероятность, A - число благоприятных исходов, N - общее количество исходов.

    Все школьные задачи крутятся вокруг одной этой формулы, и главная трудность обычно заключается в нахождении исходов. Иногда их найти просто, иногда - не очень.

    Как решать задачи на вероятность?

    Задача 1

    Итак, теперь давайте решим поставленную выше задачу.

    Число благоприятных исходов (учитель выберет Катю) равно трем, ведь Кать в классе три, а общих исходов - 24 (25-1, ведь Оля уже выбрана). Тогда вероятность равна: P = 3/24=1/8=0,125. Таким образом, вероятность того, что напарником Оли окажется Катя, составляет 12,5%. Несложно, правда? Давайте разберем кое-что посложней.

    Задача 2

    Монету бросили два раза, какова вероятность выпадения комбинации: один орел и одна решка?

    Итак, считаем общие исходы. Как могут выпасть монеты - орел/орел, решка/решка, орел/решка, решка/орел? Значит, общее число исходов - 4. Сколько благоприятных исходов? Два - орел/решка и решка/орел. Таким образом, вероятность выпадения комбинации орел/решка равна:

    • P = 2/4=0,5 или 50 процентов.

    А теперь рассмотрим такую задачу. У Маши в кармане 6 монет: две - номиналом 5 рублей и четыре - номиналом 10 рублей. Маша переложила 3 монеты в другой карман. Какова вероятность того, что 5-рублевые монеты окажутся в разных карманах?

    Для простоты обозначим монеты цифрами - 1,2 - пятирублевые монеты, 3,4,5,6 - десятирублевые монеты. Итак, как могут лежать монеты в кармане? Всего есть 20 комбинаций:

    • 123, 124, 125, 126, 134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256, 345, 346, 356, 456.

    На первый взгляд может показаться, что некоторые комбинации пропали, например, 231, однако в нашем случае комбинации 123, 231 и 321 равнозначны.

    Теперь считаем, сколько у нас благоприятных исходов. За них берем те комбинации, в которых есть либо цифра 1, либо цифра 2: 134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256. Их 12. Таким образом, вероятность равна:

    • P = 12/20 = 0,6 или 60%.

    Задачи по теории вероятности, представленные здесь, довольно простые, однако не думайте, что теория вероятности - это простой раздел математики. Если вы решите продолжать образование в вузе (за исключением гуманитарных специальностей), у вас обязательно будут пары по высшей математике, на которых вас ознакомят с более сложными терминами данной теории, и задачи там будут куда сложнее.

    Зная, что вероятность можно измерить, попробуем выразить ее в цифрах. Существуют три возможных пути.

    Рис. 1.1. Измерение вероятности

    ВЕРОЯТНОСТЬ, ОПРЕДЕЛЯЕМАЯ СИММЕТРИЕЙ

    Существуют ситуации, в которых возможные исходы равновероятны. Например, при бросании монеты один раз, если монета стандартная, вероятность появления «орла» или «решки» одинакова, т.е. Р(«орел») = Р(«решка»). Так как возможны лишь два исхода, то Р(«орел») + Р(«решка») = 1, следовательно, Р(«орел») = Р(«решка») = 0,5.

    В экспериментах, где исходы имеют равные шансы появления, вероятность события Е, Р (Е) равна:

    Пример 1.1. Монета брошена три раза. Какова вероятность двух «орлов» и одной «решки»?

    Для начала найдем все возможные исходы: Чтобы убедиться, все ли возможные варианты мы нашли, воспользуемся диаграммой в виде дерева (см. гл. 1 раздел 1.3.1).

    Итак, имеются 8 равновозможных исходов, следовательно, вероятность из них равна 1/8. Событие Е - два «орла и «решка - произошло три . Поэтому:

    Пример 1.2. Стандартная игральная кость брошена два раза. Какова вероят того, что сумма очков равна 9 или больше?

    Найдем все возможные исходы.

    Таблица 1.2. Общее количество очков, получаемое при двукратном бросании игральной кости

    Итак, в 10 из 36 возможных исходов сумма очков равна 9 или следовательно:

    ВЕРОЯТНОСТЬ, ОПРЕДЕЛЯЕМАЯ ЭМПИРИЧЕСКИ

    Пример с монетой из табл. 1.1 наглядно иллюстрирует механизм определ вероятности.

    При общем числе экспериментов из которых удачных, верояп требуемого результата подсчитывается так:

    Отношение есть относительная частота появления определен результата при достаточно продолжительном эксперименте. Вероятность подсчитывается либо на основе данных проведенного эксперимента, основе прошлых данных.

    Пример 1.3. Из пятисот протестированных электроламп 415 проработали более 1000 часов. На основе данных этого эксперимента можно заключить, что вероятность нормального функционирования лампы данного типа более 1000 часов составляет:

    Примечание. Контроль имеет разрушающий характер, поэтому не все лампы могут быть проверены. Если бы была протестирована только одна лампа, то вероятность составила бы 1 или 0 (т.е. сможет проработать 1000 часов или нет). Отсюда следует необходимость повторения эксперимента.

    Пример 1.4. В табл. 1.3 приведены данные о стаже мужчин, работающих в фирме:

    Таблица 1.3. Стаж работы мужчины

    Какова вероятность того, что следующий принятый на работу в фирму человек проработает не меньше двух лет:

    Решение.

    Из таблицы видно, что 38 из 100 работников работают в компании больше двух лет. Эмпирическая вероятность того, что следующий работник останется в компании на срок более двух лет равна:

    При этом мы предполагаем, что новый работник «типичен, а условия работы неизменны.

    СУБЪЕКТИВНАЯ ОЦЕНКА ВЕРОЯТНОСТИ

    В бизнесе часто возникают ситуации, в которых отсутствует симметрия, и экспериментальных данных тоже нет. Поэтому определение вероятности благоприятного исхода под влиянием взглядов и опыта исследователя носит субъективный характер.

    Пример 1.5.

    1. Эксперт по инвестициям считает, что вероятность получения прибыли в течение первых двух лет равна 0,6.

    2. Прогноз менеджера по маркетингу: вероятность продажи 1000 единиц товара в первый месяц после его появления на рынке равна 0,4.