Таламус и основные группы его ядер. Особенности строения и функций гипоталамуса. Что такое гипоталамус

Функции и связи таламуса.

Таламус (лат. Thalamus , латинское произношение: талямус ; от греч. θάλαμος - «бугор») - область головного мозга, отвечающая за перераспределение информации от органов чувств, за исключением обоняния, к коре головного мозга. Эта информация (импульсы) поступает в ядра таламуса. Сами ядра состоят из серого вещества, которое образовано нейронами. Каждое ядро представляет собой скопление нейронов. Ядра разделяет белое вещество.

В таламусе можно выделить четыре основных ядра: группа нейронов перераспределяющая зрительную информацию; ядро перераспределяющее слуховую информацию; ядро перераспределяющее тактильную информацию и ядро перераспределяющее чувство равновесия и баланса.

После того как информация о каком-либо ощущении поступила в ядро таламуса, там происходит её первичная обработка, то есть впервые осознается температура, зрительный образ и т. д. Считается, что таламус играет важную роль в осуществлении процессов запоминания. Фиксация информации осуществляется следующим образом: первая стадия формирования энграммы происходит в СС. Это начинается, когда стимул возбуждает периферические рецепторы. От них по проводящим путям нервные импульсы идут в таламус, а затем в корковый отдел. В нем осуществляется высший синтез ощущения. Повреждение таламуса может привести к антероградной амнезии, а также вызвать тремор - непроизвольную дрожь конечностей в состоянии покоя, - хотя эти симптомы отсутствуют, когда пациент выполняет движения осознанно.

С таламусом связано редкое заболевание, называемое «фатальная семейная бессонница».

Таламус является интегративной структурой центральной нервной системы. В таламусе существует многоуровневая система интегративных процессов, которая не только обеспечивает проведение афферентной импульсации к коре головного мозга, но и выполняет множество других функций, позволяющих осуществлять координированные, хотя и простые реакции организма, проявляющиеся даже у таламических животных. Важно то, что основную роль во всех формах интегративных процессов в таламусе играет процесс торможе-ния.
Интегративные процессы таламуса носят многоуровневый харак-тер.
Первый уровень интеграции в таламусе осуществляется в гломеру-лах. Основу гломерулы составляет дендрит релейного нейрона и пресинаптические отростки нескольких типов: терминали восходящих афферентных и кортико-таламических волокон, а также аксонов интернейронов (клетки типа Гольджи П). Направленность синаптической передачи в гломерулах подчинена строгим закономерностям. В ограниченной группе синаптических образований гломерулы возможно столкновение разнородных афферентаций. Несколько гломерул, расположенных на соседних нейронах, могут взаимодействовать друг с другом благодаря малым безаксонным элементам, у которых розетки терминалей дендритов одной клетки входят в состав нескольких гломерул. Полагают, что объединение нейронов в ансамбли с помощью таких безаксонных элементов или с помощью дендро-дендритических синапсов, которые обнаружены в таламусе, может быть основой для поддержания синхронизации в ограниченной популяции таламических нейронов.
Вторым, более сложным, интернуклеарным уровнем интеграции является объединение значительной группы нейронов таламического ядра с помощью собственных (внутриядерных) тормозных интернейронов. Каждый тормозный вставочный нейрон устанавливает тормозные контакты со множеством релейных нейронов. В абсолютном выражении число интернейронов к числу релейных клеток составляет 1:3 (4), но за счет перекрытия взаимных тормозных интернейронов создаются такие соотношения, когда один интернейрон бывает связан с десятками и даже сотнями релейных нейронов. Всякое возбуждение такого вставочного нейрона приводит к торможению значительной группы релейных нейронов, в результате чего их деятельность синхронизируется. На этом уровне интеграции большое значение придается торможению, которое обеспечивает контроль афферентного входа в ядро и которое, вероятно, наиболее представлено в релейных ядрах.
Третий уровень интегративных процессов, происходящих в тала-мусе без участия коры головного мозга, представлен интраталамическим уровнем интеграции. Решающую роль в этих процессах играют ретикулярное ядро (n. R) и вентральное переднее ядро (n. VA) таламуса, предполагается участие и других неспецифических ядер таламуса. В основе интраталамической интеграции лежат также процессы торможения, осуществляющиеся за счет длинных аксональных систем, тела нейронов которых находятся в ретикулярном ядре и, возможно, в других неспецифических ядрах. Большинство аксонов таламокортикальных нейронов релейных ядер таламуса проходит через нейропиль ретикулярного ядра таламуса (охватывающего таламус почти со всех сторон), отдавая в него коллатерали. Предполагается, что нейроны n. R осуществляют возвратное торможение таламокортикальных нейронов релейных ядер таламуса.
Кроме контроля таламокортикального проведения, интрануклеар-ные и интраталамические интегративные процессы могут иметь важное значение для определенных специфических ядер таламуса. Так, интрануклеарные тормозные механизмы могут обеспечить дискриминативные процессы, усиливая контраст между возбужденными и интактными участками рецептивного поля. Предполагается участие ретикулярного ядра таламуса в обеспечении фокусированного внимания. Это ядро благодаря широкоразветвленной сети своих аксонов может затормаживать нейроны тех релейных ядер, к которым в данный момент не адресуется афферентный сигнал.
Четвертый, наивысший уровень интеграции, в котором принимают участие ядра таламуса, – это таламокортикальный. Кортико-фугальная импульсация играет важнейшую роль в деятельности ядер таламуса, контролируя проведение и многие другие функции, начиная с деятельности синаптических гломерул и заканчивая системами нейронных популяций. Влияние кортико-фугальной импульсации на деятельность нейронов ядер таламуса носит фазный характер: вначале на короткий промежуток наблюдается облегчение таламокортикального проведения (в среднем до 20 мс), а затем на относительно длинный период (в среднем до 150 мс) происходит торможение. Допускается и тоническое влияние кортико-фугальной импульсации. За счет связей нейронов таламуса с различными областями коры головного мозга и обратных связей устанавливается сложная система таламокортикальных взаимоотношений.
Таламус, реализуя свою интегративную функцию, принимает уча-стие в следующих процессах:
1. Все сенсорные сигналы, кроме возникающих в обонятельной сенсорной системе, достигают коры через ядра таламуса и там осозна-ются.
2. Таламус является одним из источников ритмической активности в коре мозга.
3. Таламус принимает участие в процессах цикла сон – бодрствование.
4. Таламус является центром болевой чувствительности.
5. Таламус принимает участие в организации различных типов поведения, в процессах памяти, в организации эмоций и т.д.

Чтобы иметь представление о том, что такое таламус и гипоталамус, необходимо сначала разобраться в том, что такое промежуточный мозг. Находится этот участок мозга под так называемым мозолистым телом, чуть выше среднего мозга.

Он включает в себя метаталамус, гипоталамус и таламус. Функции промежуточного мозга очень обширные – он интегрирует двигательные, сенсорные и вегетативные реакции, которые крайне важны для нормальной деятельности человека. Свое развитие промежуточный мозг ведет из переднего мозгового пузыря, при этом его стенки образуют третий желудочек мозговой структуры.

Таламус – это вещество, которое составляет основную массу промежуточного мозга. Функции его заключаются в получении и передаче коре мозга и ЦНС практически всех импульсов, за исключением обонятельных.

Таламус имеет две симметричные части, и является частью лимбической системы. Расположена эта структура в переднем мозге, рядом с центром голов направлениях.

Функции таламуса осуществляются посредством ядер, которых у него 120. Эти ядра собственно и отвечают за прием и отправку сигналов и импульсов.

Нейроны, которые отходят от таламуса разделяются следующим образом:

  1. Специфические – передают информацию, полученную от глазной, слуховой, мышечной и прочих чувствительных зон.
  2. Неспецифические – в основном отвечают за сон человека, поэтому, если происходит повреждение этих нейронов, человек будет все время хотеть спать.
  3. Ассоциативные – регулируют возбуждение модальности.

Исходя из выше сказанного, можно сказать, что таламус регулирует различные процессы, происходящие в организме человека, а также отвечает за получение сигналов о том в каком состоянии находится чувство равновесия.

Если говорить о регулировании сна, то при нарушении функциональности некоторых нейронов таламуса, у человека может развиться настолько стойкая бессонница, что он может даже умереть от этого.

Заболевания таламуса

При поражении зрительного бугра развивается таламический синдром, симптоматика при этом может быть очень разнообразной, поскольку зависит от того какую именно функцию выполняли ядра, которые утратили вою функциональность. Причиной развития таламического синдрома является функциональное расстройство сосудов задней мозговой артерии. При этом может наблюдаться:

  • нарушение чувствительности лица;
  • болевой синдром, который охватывает одну половину тела;
  • отсутствие вибрационной чувствительности;
  • парез;
  • в пострадавшей половине тела наблюдается мышечная атрофия;
  • симптом так называемой таламической руки – определенное положение фаланг пальцев и непосредственно самой кисти,
  • расстройство внимания.

Гипоталамус мозга

Строение гипоталамуса очень сложное, поэтому в этой статье будут рассмотрены только его функции. Они заключаются в поведенческих ответных реакциях человека, а также во влиянии на вегетатику. Помимо этого, гипоталамус активно принимает участие в регенерации резервов.

Гипоталамус тоже имеет множество ядер, которые делятся на задние, средние и передние. Ядра задней категории регулируют симпатические реакции организма – повышение давление, учащенный пульс, расширение зрачка глаза. Ядра средней категории наоборот, снижают симпатические проявления.

Гипоталамус отвечает за:

  • терморегуляцию;
  • чувство насыщения и голода;
  • страх;
  • половое влечение и так далее.

Все эти процессы происходят в результате активации или торможения различных ядер.

К примеру, если у человека расширяются сосуды, и ему становится холодно, значит произошло раздражение передней группы ядер, а если повреждаются ядра заднего порядка, то это может спровоцировать летаргический сон.

Гипоталамус отвечает за регуляцию движений, если в этой области происходит возбуждение, человек может совершать хаотические движения. Если нарушения происходят в так называемом сером бугре, который тоже входит в состав гипоталамуса, то человек начинает страдать от нарушения обменных процессов.

Патологии гипоталамуса

Все недуги гипоталамуса связаны с нарушением функции этой структуры, а точнее с особенностями гормонального синтеза. Заболевания могут возникнуть по причине избыточного продуцирования гормонов, по причине сниженной секреции гормонов, но также недуги могут появиться при нормальной выработке гормонов гипоталамуса. Существует очень тесная связь между гипоталамусом и гипофизом – у них общее кровообращение, похожее анатомическое строение и идентичные функции. Поэтому часто заболевания объединяют в одну группу, которую именуют патологиями гипоталамо-гипофизарной системы.

Нередко причиной возникновения патологической симптоматики является возникновение аденомы гипофиза или самого гипоталамуса. В этом случае гипоталамус начинает продуцировать большое количество гормонов, в результате чего и появляется соответствующая симптоматика.

Типичным поражение гипоталамуса являет пролактинома – опухоль, которая является гормонально активной, так как вырабатывает пролактин.

Еще одним опасным заболеванием является гипоталамо-гипофизарный синдром, этот недуг связан с нарушением функциональности как гипофиза, так и гипоталамуса, что приводит к развитию характерной клинической картины.

В связи с тем, что заболеваний, поражающих гипоталамо-гипофизарную систему много, ниже будут приведены общие симптомы, по которым можно заподозрить патологии этого отдела головного мозга:

  1. Проблемы с насыщением организма. Ситуация может развиваться в двух направлениях – либо человек полностью теряет аппетит, либо не чувствует насыщения сколько бы не съел.
  2. Проблемы с терморегуляцией. Проявляется это в повышении температуры, при этом никаких воспалительных процессов в организме не наблюдается. Кроме того, повышение температурных показателей сопровождается ознобом, повышенным потоотделением, повышенной жаждой, ожирением и неконтролируемым голодом.
  3. Эпилепсия по гипоталамическому признаку – перебои в работе сердца, повышенное артериальное давление, болевые ощущения в эпигастральной области. При приступе человек теряет сознание.
  4. Изменения в работе вегетососудистой системе. Они проявляются в работе пищеварения (отрыжка, боли в животе, срывы стула), в работе системы дыхания (тахипноэ, затрудненный вдох, удушье) и в работе сердца и сосудов (сбои в сердечном ритме, высокое или низкое артериальное давление, загрудинные боли).

Лечением заболеваний гипоталамуса занимаются неврологи, эндокринологи и гинекологи.

Заключение и выводы

  1. Поскольку гипоталамус регулирует дневные и ночные ритмы человека, важно соблюдать режим дня.
  2. Необходимо улучшать кровообращение и насыщать кислородом все отделы мозга. Недопустимо курение и употребление спиртосодержащих напитков. Рекомендованы прогулки на свежем воздухе и спортивные занятия.
  3. Важно привести в норму синтез гормонов.
  4. Рекомендуется насыщать организм всеми необходимыми витаминами и минералами.

Нарушение работы таламуса и гипоталамуса приводит к различным заболеваниям, большинство из которых заканчиваются печально, поэтому необходимо очень внимательно относиться к своему здоровью и при первых же недомоганиях обращаться к специалистам за консультацией.

Красное ядро

Передние и задние бугры четверохолмия.

Мозжечок.

Белое вещество мозжечка – проводящие пути мозжечка. Среди БВ находятся ядра мозжечка. В мозжечок поступают сигналы от всех структур, связанных с движением. Там они обрабатываются, затем из мозжечка поступает огромный поток тормозных влияний на СМ.

Средний мозг – четверохолмие, черная субстанция, ножки мозга.

Передние бугры – первичная зрительная зона – формируют ориентировочный рефлекс на зрительный сигнал

Задние бугры – первичная слуховая зона – формируют ориентировочный рефлекс на звуковой сигнал

Функция - сторожевые рефлексы (ориентировочные)

Тонус скелетной мускулатуры

Перераспределение тонуса при изменении позы

Упорядочивать взаимоотношение между мышцами сгибателями и разгибателями

Децереберационная ригидность – повреждение красного ядра, резко повышается возбудимость/тонус более сильных мышц

Черная субстанция – источник дофамина

Тормозная функция базальных ганглиев, не дает возбуждать зоны больших полушарий

Тонус скелетных мышц, отвечающих за тонкие инструментальные движения

Пример дисфункции: болезнь Паркинсона

Таламус – поступают сигналы со всех рецепторов кроме обонятельного, его называют коллектором афферентный импульсов.

Прежде чем попасть в кору, информация поступает в таламус. Если таламус разрушен, то кора не получает эту информацию. Если в коленчатые тела (одни из ядер таламуса) поступают зрительные сигналы, то уходят сразу в затылочную долю коры полушарий. Тоже и со слуховой, только она идет в височную. В таламусе обрабатывается информация и выбирается наиболее адекватная

В таламусе десятки ядер, которые делятся на 2 группы: специфические и неспецифические.

Когда поступает информация в специфические ядра таламуса, то в коре возникают вызванные ответы, но ответы возникают в строго выбранных участках полушарий. Информация от неспецифических ядер таламуса поступает ко всей коре больших полушарий. Это происходит, чтобы повысить возбудимость всей коры, чтобы она более четко воспринимала специфическую информацию.

Адекватная боль возникает с участием лобной, теменной коры, таламуса. Таламус - высший центр болевой чувствительности. При разрушении одних ядер таламуса возникает невыносимая боль, при разрушении других ядер полностью теряется болевая чувствительность.

Неспецифические ядра по функции очень похожи на ретикулярную формацию, их еще называют ретикулярными ядрами.

И.И. Сеченов 1864 – открыл ретикулярную формацию, опыты на лягушках. Доказал, что в ЦНС наряду с явлениями возбуждения, есть явления торможения.


Ретикулярная формация – поддерживает кору в состоянии бодрствования. Тормозные влияния на СМ.

Мозолистое тело – плотный пучок нервных волокон, соединяет полушария, обеспечивает их совместную работу.

Гипоталамус – связан с гипофизом. Гипофиз – железа внутренней секреции, главная. В ней вырабатываются тропные гормоны, которые влияют на работу остальных эндокринных желез.

Нейросекреторные клетки гипоталамуса выделяют нейрогормоны:

Статины - тормозят выработку тропных гормонов гипофиза

Либерины – усиливают выработку тропных гормонов гипофиза

Функции - высший цент регуляции эндокринных желез

Нейросекреторные клетки, аксоны которых доходят до гипофиза и выделяют в гипофиз гормоны:

Окситоцин – обеспечивает сокращение матки при родах

Антидиуретический гормон – регулирует работу почек

Клетки гипоталамуса чувствительны к уровню половых гормонов (эстроген и андроген) и в зависимости от того, какие преобладают у человека, возникает та или иная половая мотивация. Клетки гипоталамуса чувствительны к температуре крови, регулирует теплоотдачу.

Главный сигнал голода – уровень глюкозы в крови. Только в гипоталамусе есть глюкорецептивные клетки, чувствительные к уровню глюкозы в крови. Собраны вместе и образуют центр голода.

Центр насыщения – возникновение чувства сытости.

Пример дисфункции: Булимия – заболевания центра сытости

Осморецептивные клетки – чувствительные к уровню солей в крови, возбуждаются – возникает чувство жажды.

На уровне гипоталамуса возникают только мотивации, а для их выполнения нужно включить кору.

Таламус - массивное парное образование, занимающее основную часть промежуточного мозга.

Нервные клетки таламуса , группируясь, образуют большое количество ядер: всего различают до 40 таких образований. Разделяются на несколько основных групп: передние, интраламинарные, срединные и задние. В каждой из этих основных групп различают более мелкие ядра, отличающиеся друг от друга как нейронной организацией, так и особенностями афферентных и эфферентных проекций. С функциональной точки зрения принято различать неспецифические и специфические ядра таламуса. Нейроны неспецифических ядер посылают аксоны диффузно ко всей новой коре, в то время как нейроны специфических ядер образуют связи только с клетками определенных корковых полей.

На нейронах специфических ядер заканчиваются волокна различных восходящих трактов. Аксоны этих нейронов образуют прямые моносинаптические связи с нейронами сенсорной и ассоциативной коры. К клеткам ядер латеральной группы таламуса, включающих заднее вентральное ядро, поступают импульсы от кожных рецепторов, двигательного аппарата, а также мозжечково-таламического пути.

Нейроны специфического комплекса ядер посылают по направлению к коре аксоны, почти не имеющие коллатералей. В отличие от него нейроны неспецифической системы посылают аксоны, дающие множество коллатералей.

Функции таламуса

Все сенсорные сигналы, за исключением возникающих в обонятельном тракте, достигают коры больших полушарий только через таламокортикальные проекции. Таламус представляет собой своего рода ворота, через которые в кору поступает и достигает сознания основная информация об окружающем нас мире и о состоянии нашего тела.

Тот факт, что афферентные сигналы на пути к коре мозга переключаются на нейронах таламуса, имеет важное значение. Тормозные влияния, приходящие в таламус из коры, других образований и соседних таламических ядер, позволяют обеспечить лучшую передачу в кору мозга наиболее важной информации. Торможение подавляет слабые возбуждающие влияния, благодаря чему выделяется наиболее важная информация, при-ходящая в таламус от различных рецепторов.

Через неспецифические ядра таламуса в кору мозга поступают восходящие активирующие влияния от ретикулярной формации мозгового ствола. Система неспецифических ядер таламуса осуществляет контроль ритмической активности коры больших полушарий и выполняет функции внутриталамической интегрирующей системы.

Кроме специфических влияний на кору, ряд таламических ядер, в особенности ядра дорсальной группы, оказывает регулирующее воздействие на подкорковые структуры. Вероятно, через эти ядра осуществляется замыкание путей некоторых рефлексов, осуществляющихся без участия коры больших полушарий мозга.

ГИПОТАЛАМУС -является центром регуляции вегетативных функций и высшим эндокринным центром.

Гипоталамус образован группой небольших ядер, расположенных у основания мозга, вблизи гипофиза. Клеточные ядра, образующие гипоталамус, представляют собой высшие подкорковые центры вегетативной нервной системы и всех жизненно важных функций организма.

Скопление нейронных образований, образующих гипоталамус, может быть подразделено на преоптическую, переднюю, среднюю, наружную и заднюю группы ядер. Организация гипоталамуса характеризуется обширными и очень сложными афферентными и эфферентными связями.

Афферентные сигналы в гипоталамус поступают из коры больших полушарий, из таламических структур, ядер базальных ганглиев. Одним из основных эфферентных путей является медильный мозговой пучок, или паравентрикулярная система, и мамиллотегментальный тракт. Волокна этих путей идут в каудальном направлении по стенкам водопровода мозга или сильвиева водопровода, дают многочисленные ответвления к структурам среднего мозга. Аксоны клеток гипоталамических ядер образуют также большое количество коротких эфферентных путей, идущих в таламическую и субталамическую области и в другие подкорковые образования.

Функции гипоталамуса

Результаты, полученные с помощью избирательного раздражения или разрушения определенных ядер, показали, что латеральная и дорсальная группы ядер повышают тонус симпатической нервной системы. Раздражения области средних ядер (в частности, серого бугра) вызывают снижение тонуса симпатической нервной системы. Существуют экспериментальные данные о наличии в гипоталамусе центра сна и центра пробуждения.

Гипоталамус играет важную роль в терморегуляции.

В области средних и боковых ядер имеются группы нейронов, рассматриваемых как центры насыщения и голода.

При голодании в крови происходит снижение содержания аминокислот, жирных кислот, глюкозы и других веществ. Это приводит к активации определенных гипоталамических нейронов и развитию сложных поведенческих реакций организма, направленных на утоление чувства голода.

Приспособительные поведенческие реакции развиваются при недостатке в организме воды, что приводит к появлению чувства жажды вследствие активации гипоталамических зон. В результате резко усиливается потребление воды (полидипсия). Наоборот, разрушение указанных гипоталамических центров приводит к отказу от воды (адипсия).

В гипоталамусе расположены центры, связанные с регуляцией полового поведения.

Гипоталамус принимает участие в процессе чередования сна и бодрствования.

Основными гормонами, выделяемыми задней долей гипофиза, являются антидиуретический гормон, регулирующий водный метаболизм, а также гормоны, регулирующие деятельность матки, функцию молочных желез.

Промежуточный мозг впроцессе эмбриогенеза развивается из переднего мозгового пузыря. Он образует стенки третьего мозгового желудочка. Промежуточный мозг расположен под мозолистым телом и состоит из таламусов, эпиталамуса, метаталамуса и гипоталамуса.

Таламусы (зрительные бугры) представляют собой скопление , имеющего яйцевидную форму. Таламус является крупным подкорковым образованием, через которое в кору проходят разнообразные афферентные пути. Нервные клетки его группируются в большое количество ядер (до 40). Топографически последние разделяют на переднюю, заднюю, срединную, медиальную и латеральную группы. По функции таламические ядра можно дифференцировать на специфические, неспецифические, ассоциативные и моторные.

От специфических ядер информация о характере сенсорных стимулов поступает в строго определенные участки 3-4 слоев коры. Функциональной основной единицей специфических таламических ядер являются «релейные» , которые имеют мало дендритов, длинный и выполняют переключательную функцию. Здесь происходит переключение путей, идущих в кору от кожной, мышечной и других видов чувствительности. Нарушение функции специфических ядер приводит к выпадению конкретных видов чувствительности.

Неспецифические ядра таламуса связаны со многими участками коры и принимают участие в активизации ее деятельности, их относят к .

Ассоциативные ядра образованы мультиполярными, биполярными нейронами, аксоны которых идут в 1-ый и 2-ой слои, и частично проекционных областей, по пути отдавая в 4 и 5 слои коры, образуя ассоциативные контакты с пирамидными нейронами. Ассоциативные ядра связаны с ядрами полушарий головного мозга, гипоталамусом, средним и . Ассоциативные ядра участвуют в высших интегративных процессах, однако их функции изучены еще недостаточно.

К моторным ядрам таламуса относится вентральное ядро, которое имеет вход от и базальных ганглиев, и одновременно дает проекции в моторную зону коры больших полушарий. Это ядро включено в систему регуляции движений.

Таламус – структура, в которой происходит обработка и интеграция практически всех сигналов, идущих в кору головного мозга от нейронов , мозжечка. Возможность получить информацию о состоянии множества систем организма позволяет ему участвовать в регуляции и определять организма в целом. Это подтверждается уже тем, что в таламусе около 120 разно функциональных ядер.

Функциональная значимость ядер таламуса определяется не только их проекцией на другие структуры мозга, но и тем, какие структуры посылают к нему свою информацию. В таламус приходят сигналы от зрительной, слуховой, вкусовой, кожной, мышечной систем, от ядер черепно-мозговых нервов, ствола, мозжечка, продолговатого и . В связи с этим таламус фактически является подкорковым чувствительным центром. Отростки нейронов таламуса направляются отчасти к ядрам полосатого тела конечного мозга (в связи с этим таламус рассматривается как чувствительный центр экстропирамидной системы), отчасти к коре большого мозга, образуя таламокортикальные пути.

Таким образом, таламус является подкорковым центром всех видов чувствительности, кроме обонятельного. К нему подходят и переключаются восходящие (афферентные) проводящие пути, по которым передается информация от различных . От таламуса идут нервные волокна к коре большого мозга, составляя таламокортикальные пучки.

Гипоталамус – филогенетический старый отдел промежуточного мозга, который играет важную роль в поддержании постоянства внутренней среды и обеспечении интеграции функций вегетативной, эндокринной и соматической систем. Гипоталамус участвует в образовании дна III желудочка. К гипоталамусу относятся зрительный перекрест, зрительный тракт, серый бугор с воронкой и сосцевидное тело. Структуры гипоталамуса имеют различное происхождение. Из конечного мозга образуется зрительная часть (зрительный перекрест, зрительный тракт, серый бугор с воронкой, нейрогипофиз), а из промежуточного – обонятельная часть (сосцевидное тело и подбугорье).

Зрительный перекрест имеет вид поперечно лежащего валика, образованного волокнами зрительных нервов (II пара), частично переходящими на противоположную сторону. Этот валик с каждой стороны латерально и кзади продолжается в зрительный тракт, который проходит сзади от переднего продырявленного вещества, огибает ножку мозга с латеральной стороны и заканчивается двумя корешками в подкорковых центрах . Более крупный латеральный корешок подходит к латеральному коленчатому телу, а более тонкий медиальный корешок направляется к верхнему холмику крыши .

К передней поверхности зрительного перекреста прилежит и срастается с ним относящаяся к конечному мозгу терминальная (пограничная, или конечная) пластинка. Она замыкает передний отдел продольной щели большого мозга и состоит из тонкого слоя серого вещества, которое в латеральных отделах пластинки продолжается в вещество лобных долей полушарий.