Строение и функции трнк, особенности аминокислотной активации. Строение и уровни организации рнк

Молекулы РНК в отличие от ДНК построены из одной полинуклеотидной цепи. Однако в этой цепи (для рРНК и мРНК) имеются ком­плементарные друг другу участки, которые могут взаимодействовать, образуя двойные спирали. При этом соединяются водородными связями нуклеотидные пары А-У и Г-Ц. Такие спирализованные участки (их назы­вают шпильками) обычно содержат небольшое количество нуклеотидных пар (до 20-30) и чередуются с неспирализованными участками.

Характерную вторичную структуру имеют тРНК. Они содержат четыре спирализованных участка и три (четыре) одноцепочные петли. При изображении такой структуры на плоскости получается фигура, на­зываемая «клеверным листом» (рис. справа).

Рис.. Вторичная (справа) и третичная (слева) структура тРНК

Все несколько десятков разных тРНК клетки имеют общий план пространственной структуры, но различаются в деталях. В тРНК выделяют следующие структурные участки.

1. Акцепторный конец - во всех типах тРНК имеет состав ЦЦА. К гидроксилу З"-ОН аденозина карбоксильной группой присоединяется аминокислота, которую данная тРНК доставляет к рибосомам, где проис­ходит синтез белка.

2. Антикодоновая петля - содержит специфический для каждой тРНК триплет нуклеотидов (антикодоны). Антикодон комплементарен кодону мРНК. Кодон-антикодоновое взаимодействие определяет порядок чередования аминокислот в белковой молекуле при синтезе ее на рибо­сомах.

3. Псевдоуридиловая петля (Г,С) - участвует в связывании тРНК с рибосомой.

4. Дигидроуридиловая (D) петля необходима для связывания с ферментом аминоацил-тРНК-синтетзой, которая участвует в узнавании аминокислотой своей тРНК.

5. Добавочная петля - разная у разных тРНК.

Третичная структура рнк и днк

Пространственная конфигурация спирализованной полинуклеотидной цепи (третичная структура) достаточно полно выяснена для мо­лекул РНК. Установлено, что нативные молекулы тРНК имеют примерно одинаковую третичную структуру, которая отличается от плоской струк­туры «клеверного листа» (вторичная структура) большей компактностью за счет складывания различных частей молекулы (см. рис выше).

Для рРНК и мРНК возможно существование, а зависимости от концентрации солей и температуры, трех видов третичной структуры (рис. ниже). Первый - рыхлый беспорядочный клубок или распрямленная цепь (при повышении температуры и отсутствии солей). Второй вариант - компактный клубок с двуспиральными участками (высокая ионная сила, комнатная температура). Третий вид - компактная палочка с упорядо­чение ориентированными двуспиральными участками (низкая ионная сила, комнатная температура). Все три типа третичной структуры РНК связаны взаимными переходами.

Третичная структура ДНК зависит от того, сколько цепочек полинуклеотидов (одна или две) в ДНК. В ряде вирусов обнаружены одноцепочечные ДНК линейной и кольцевой формы. Двуцепочечные спирале­видные молекулы ДНК также могут существовать в линейной и кольце­вой форме; образование последней вызвано ковалентным соединением их открытых концов.

Рис. Третичная структура: А - ДНК: 1 - линейная одноцепочечная бактериофаг ФХ174 (и др. вирусов); 2 - кольцевая одноцепочечная ДНК вирусов и митохонд­рий; 3 - кольцевая двойная спираль ДНК; Б - РНК: 1 - рыхлый клубок или рас­прямленная цепь; 2 - компактная палочка; 3 - компактный клубок

Кроме того, полагают, что биспиральные молекулы ДНК сущест­вуют в хромосомах в виде вторично спирализованных фрагментов, свя­занных друг с другом (суперспираль). Поэтому молекулярный вес нативной ДНК достигает нескольких сотен миллионов. Следовательно, молеку­лы с молекулярной массой 10.000.000 являются субъединицами более крупных молекулярных образований (третичная структура). Именно суперспирализация обеспечивает экономную упаковку огромной молекулы ДНК в хромосоме: вместо 8 см длины, которую она могла бы иметь в вы­тянутой форме, она занимает всего 5 нм.

В цитоплазме клеток содержатся три основных функциональных вида РНК:

  • матричные РНК (мРНК), выполняющие функции матриц белкового синтеза;
  • рибосомные РНК (рРНК), выполняющие роль структурных компо­нентов рибосом;
  • транспортные РНК (тРНК), участвующие в трансляции (переводе) информации мРНК в последовательность аминокислот молекулы белка.

В ядре клеток обнаруживают ядерную РНК, составляющую от 4 до 10% от суммарной клеточной РНК. Основная масса ядерной РНК представлена высо­комолекулярными предшественниками рибосомных и транспортных РНК. Предшественники высокомолекулярных рРНК (28 S, 18 S и 5 S РНК) в основ­ном локализуются в ядрышке.

РНК является основным генетическим материалом у некоторых вирусов животных и растений (геномные РНК). Для большинства РНК вирусов харак­терна обратная транскрипция их РНК генома, направляемая обратной транскриптазой.

Все рибонуклеиновые кислоты представляют собой полимеры рибонуклеотидов, соединенных, как в молекуле ДНК, 3",5"-фосфорнодиэфирными свя­зями. В отличие от ДНК, имеющей двухцепочечную структуру, РНК представ­ляет собой одноцепочечные линейные полимерные молекулы.

Строение мРНК. мРНК - наиболее гетерогенный в отно­шении размеров и стабильности класс РНК. Содержание мРНК в клетках со­ставляет 2-6% от общего количества РНК. мРНК состоят из участков - цистронов, определяющих последовательность аминокислот в кодируемых ими белках.

Строение тРНК . Транспортные РНК выполняют функ­ции посредников (адаптеров) в ходе трансляции мРНК. На их долю приходится примерно 15% суммарной кле­точной РНК. Каждой из 20 протеиногенных аминокислот соответствует своя тРНК. Для некоторых аминокис­лот, кодируемых двумя и более кодонами, существуют несколько тРНК. тРНК представляют собой сравнительно небольшие одноцепочечные мо­лекулы, состоящие из 70-93 нуклеотидов. Их молекулярная масса составляет (2,4-3,1) .104 кДа.

Вторичная структура тРНК формируется за счет образования максималь­ного числа водородных связей между внутримолекулярными комплементар­ными парами азотистых оснований. В результате образования этих связей полинуклеотидная цепь тРНК закручивается с образованием спирализованных ветвей, заканчивающихся петлями из неспаренных нуклеотидов. Пространст­венное изображение вторичных структур всех тРНК имеет форму клеверного листа.

В «клеверном листе» различают четыре обязательные ветви , более длин­ные тРНК, кроме того, содержат короткую пятую (дополнительную) ветвь . Адапторную функцию тРНК обеспечивают акцепторная ветвь, к 3"-концу которой присоединяется эфирной связью аминокислотный остаток, и про­тивостоящая акцепторной ветви антикодоновая ветвь, на вершине которой находится петля, содержащая антикодон. Антикодон представляет собой спе­цифический триплет нуклеотидов, который комплементарен в антипарал­лельном направлении кодону мРНК, кодирующему соответствующую амино­кислоту.

Т-Ветвь, несущая петлю псевдоуридина (ТyС-петлю), обеспечивает взаи­модействие тРНК с рибосомами.

Д-ветвь, несущая дегидроуридиновую пет­лю, обеспечивает взаимодействие тРНК с соответствующей аминоацил-тРНК-синтетазой.

Вторичная структура тРНК

Функции пятой дополнительной ветви пока мало исследованы, вероятнее всего она уравнивает длину разных молекул тРНК.

Третичная структура тРНК очень компактна и образуется путем сбли­жения отдельных ветвей клеверного листа за счет дополнительных водород­ных связей с образованием L-образной структуры «локтевого сгиба» . При этом акцепторное плечо, связывающее ами­нокислоту, оказывается расположенным на одном конце молекулы, а анти­кодон - на другом.

Третичная структура тРНК (по А.С. Спирину)

Строение рРНК и рибосом . Рибосомные РНК формируют основу, с которой связываются специфические белки при образовании рибо­сом. Рибосомы - это нуклеопротеиновые органеллы, обеспечивающие синтез белка на мРНК. Число рибосом в клет­ке очень велико: от 104 у прокариот до 106 у эукариот. Локализуются рибосомы главным об­разом в цитоплазме, у эукариот, кроме того, в ядрышке, в матриксе митохондрий и строме хлоропластов. Рибосомы состоят из двух субчас­тиц: большой и малой. По размерам и молеку­лярной массе все изученные рибосо­мы делят на 3 группы - 70S рибосомы прокариот (S-коэффициент седиментации), состоящие из малой 30S и большой 50S субчас­тиц; 80S рибосомы эукариот, состоящие из 40S малой и 60S большой субчастиц.

Малая субчастица 80S рибосом образована одной молекулой рРНК (18S) и 33 молекулами различных белков. Большая субчастица обра­зована тремя молекулами рРНК (5S, 5,8S и 28S) и примерно 50 белками.

Вторичная структура рРНК образуется за счет коротких двуспиральных участков молекулы - шпилек (около 2/3 рРНК), 1/3 - представлена однотяжевыми участками , богаты­ми пуриновыми нуклеотидами.

Данная статья является второй в серии автопубликаций, которую необходимо читать после ознакомления с первой статьёй Свойства генетического кода - след его возникновения . Крайне желательным для людей, плохо знакомым с основами молекулярной биологии, знакомство со статьёй О.О. Фаворовой " ". Важно понимать, для того, чтобы понять КАК возник генетический код , необходимо понять, КАК он функционирует в современных организмах. А для этого необходимо вникнуть в молекулярные механизмы кодируемого синтеза белка. Для понимания данной статьи важно понимать, как устроена молекула РНК, чем она отличается от молекулы ДНК.

Разобраться в теме о происхождении жизни вообще, и возникновении генетического кода, в частности, просто невозможно без понимания основных молекулярных механизмов в живых организмах, в первую очередь двух аспектов - воспроизведения наследственных молекул (нуклеиновых кислот) и синтеза белка. Поэтому данная статья посвящена в первую очередь изложению того минимума знания, с помощью которого можно понять богатый и довольно интересный материал, связанный с происхождением генетического кода (ГК).

Знакомство с молекулярными механизмами синтеза белка лучше всего начинать с изучения структуры одного из ключевых компонентов и одной из самых древних структур в живых организмах - молекулы транспортной РНК (или тРНК ). Молекула тРНК имеет необычайно консервативную структуру, которая сходна у всех живых организмах. Эта структура меняется в ходе эволюции настолько медленно, что позволяет нам извлечь немало информации о том, как могли выглядеть древнейшие белок-синтезирующие системы в период их начального формирования. Поэтому говорят, что молекула тРНК является молекулярным реликтом.

Молекулярный реликт , или молекулярное ископаемое - это абстракция, обозначающая древние механизмы и молекулярные и надмолекулярные структуры, встречающиеся в современных организмах, что позволяет нам извлекать информацию об устройстве древнейших живых систем. К молекулярным реликтам относятся молекулы рибосомной и транспортных РНК, аминоацил-тРНК -синтетаз, ДНК- и РНК-полимераз и сам генетический код , как способ кодирования, а также ряд других молекулярных структур и механизмов. Их анализ и является ключевым источником информации о том, как могла возникнуть жизнь, и генетический код , в частности. Рассмотрим подробнее структуру тРНК и те её участки, которые изменяются в ходе эволюции настолько медленно, что ещё содержат немало информации относительно древних тРНК , существовавших более 3,5 млрд. лет назад.

Молекула тРНК относительно небольшая, её длина варьирует от 74 до 95 нукелотидных остатков, наиболее часто - 76 нуклеотидов (см. рис. 1). В последовательности тРНК выделяют так называемые консервативные нуклеотидные остатки - это нуклеотидные остатки расположенные в строго определённых последовательностях почти у всех молекул тРНК . Кроме того выделяются полуконсервативные нуклеотидные остатки - это остатки, представленные только пуриновыми или пиримидиновыми основаниямив строго определённых последовательностях тРНК . Кроме того, различные участки тРНК изменяются с существенно различной скоростью.

До 25% всех нуклеотидных остатков представлены модифицированными нуклеозидами, часто называемых минорными . Минорных остатков описано уже больше 60. Они образуются врезультате модификации обычных нуклеозидных остатков с помощью специальных ферментов.

Среди модифицированных остатков часто встречаются псевдоуридин (5-рибофуранозилурацил, Ψ), 5,6- дигидроуридин (D ), 4-тиоуридил и инозин. Структура некоторых модифицированный оснований и частично их роль изложены в статье

Наряду с первичной структурой (это просто последовательность нуклеотидов), молекула тРНК обладает вторичной и третичной структурой.

Вторичная структура обусловлена образованием водородных связей между нуклеотидами. Ещё в школе учат про водородные связи при комплементарным спариванием между нуклеотидами (A-U и G-C такой вид спаривания нуклеотидов называют каноническим), но в молекулах тРНК также образуется немалое количество неканонических связей, в частности, между G и U, которые будет несколько слабее и энергетически менее выгодная ).

Рис. 1. Обобщённая вторичная структура тРНК (слева) и общепринятая нумерация нуклеотидов в тРНК (справа). Так она выглядит почти у всех живых организмов. На правом рисунке консервативные нуклеотиды выделены жирными кружочками.

Обозначения: N - любой нуклеотид, Т - тимин, D - дигидроуридин, Ψ - псевдоуридин, R - пуриновый нуклеотид.

В результате образуется так называемая структура клеверного листа. В структуре клеверного листа выделяют: акцепторный стебель и три ветви, или домена (arms ): антикокодоновую (состоит из антикодонового двуцепочечного стебля (stem ) и антикодоновой петли (loop ), дигидроуридиновую, или D -ветвь, или D -домен, (также из дигидроуридиновой петли и стебля) и TΨC -ветви, или просто Т-ветви, или Т-домена, (Т-петли и Т-стебля). В дополнение к трём петлям клеверного листа выделяется также так называемая дополнительная, или вариабельная, петля. Длина вариабельной петли варьирует от4 до 24 нуклеотидов.

Почему вторичная структура тРНК имеет Фому клеверного листа? Ответ на этот вопрос дал М.Эйген [Эйген М, Винклер Р. 1979] . Дело в том, что при длине РНКовой цепи 80 нуклеотидов со случайной последовательностью вторичная структура с 3-4 лепестками является наиболее вероятной. Хотя шпилька, имеющая только одну петлю имеет максимальное число спаренныхоснований, эта стуктура в случайных последовательностях является маловероятной. Именно поэтому разумно считать, что тРНК -подобные структуры (то есть структуры с 3-4 петлями) были наиболее распространёнными молекулами на стадии РНКовой и РНК-белковой жизни. Дополнительные доводы в пользу этого утверждения будут приведены в следующих статьях.

Третичная стуктура тРНК .

Третичная структура тРНК соответстует реальной пространственной структуре. Она получила название L -формы, из-за сходства третичной структуры с формой латинской заглавной буквы « L ». Третичная структура образуется благодаря взаимодействию элементов вторичной структуры. Веё формировании принимают участие стэкинг-взаимодействия оснований. За счёт стэкинга оснований акцепторный и Т-стебель клеверного листа образуют одну непрерывную двойную спираль, формирующую одну из «палочек» L -формы. Антикодоновый и D -стебли образуют другую «палочку» этой буквы, D - и T -петли оказываются в такой структуре сближенными и скрепляются между собой путём образования дополнительных, часто необычных пар оснований, которые, как правило, образованы консервативными или полуконсервативными остатками. В свете такого участия консервативных и полуконсервативных оснований в образовании L -формы становится ясным их присутствие в T - и D -петлях. Формирование L-образной структуры и её взаимодействие с АРСаз ой схематически приведено на рис. 2.


Рис. 2. Схема образования пространственной L -образной стуктуры тРНК и взаимодействия её с АРСаз ой.

Стрелкой обозначено место присоединения аминокислоты при аминоацилировании тРНК синтетазой. Красным цветом выделен акцепторный домен тРНК , синим - антикодоновый домен. Овалами обозначены домены АРСаз ы: зелёный - каталитический домен, содержащий домен связывания и аминоацилирования акцепторной области тРНК , жёлтым и оранжевым - вариабельныйдомен АРСаз ы. В зависимости от размера этого домена, АРСаз а распознаёт вариабельным доменом антикодоновую область (домен обозначен жёлтым цветом), или не распознаёт (домен обозначен оранжевым цветом).

Основания антикодона обращены внутрь L -образной молекулы.

Транспортные РНК во всех живых организмах последовательно выполняют три фукнции, необходимые для осуществления синтеза белка:

1) акцепторную - с помощью белковых ферментов (аминоацил-тРНК -синтатаз) ковалентно присоединяет к аминоацильному остатку строго определённую аминокислоту (для каждой аминокислоты - строго своя одна или иногда несколько разных тРНК ); 2) транспортную - транспортирует аминокислоту к специфическому месту на рибосоме; 3) адапторную - в комплексе с рибосомой способен специфически узнавать триплет генетического кода на матричной РНК, после чего присоединённая к тРНК аминокислота включается в растущую полипептидную цепь на рибосоме.

Статьи, связанные с темой:

Строение транспортных РНК и их функция на первом (предрибосомном) этапе биосинтеза белков

70-90Н | вторичная стр-ра- клеверный лист | CCA 3" const для всех tRNA |к концевому аденозину присоед акта |
наличие тимина, псевдоуридина-пси, дигироуридина ДГУ в D-петле - защита от рибонуклеаз? долгоживущие | Разнообразие первичных структур tРНК - 61+1 - по кол-ву кодонов + формилметиониновая tРНК, у кот антикодон такой же, как у метиониновой tРНК. Разнообразие третичных структур - 20 (по кол-ву аминокислот) | рекогниция - образование ковалентной связи м-у tРНК и актой | аминоацил-тРНК-синтетазы присоединяют акты к тРНК

Функция тРНК заключается в переносе аминокислот из цитоплазмы в рибосомы, в которых происходит синтез белков.
тРНК связывающие одну аминокислоту называются изоакцепторными.
Всего в клетке одновременно существует 64 различных тРНК.
Каждая тРНК спаривается только со своим кодоном.
Каждая тРНК распознает свой собственный кодон без участия аминокислоты. Связавшиеся с тРНК аминокислоты химически модифицировали, после чего анализировали получившийся полипептид, который содержал модифицированную аминокислоту. Цистеинил-тРНКCys (R=CH2-SH) восстанавливали до аланил-тРНКCys (R=CH3).
Большинство тРНК, не зависимо от их нуклеотидной последовательности, имеют вторичную структуру в форме клеверного листа из-за наличия в ней трех шпилек.

Особенности структуры тРНК

На 3"-конце молекулы всегда находятся четыре неспаренных нуклеотида, причем три из них – это обязательно ССА. 5"- и 3"-концы цепи РНК образуют акцепторный стебель. Цепи удерживают-ся вместе благодаря комплементарному спарива-нию семи нуклеотидов 5"-конца с семью нуклеотида-ми, находящимися вблизи 3"-конца. 2. У всех моле-кул имеется шпилька T?C, обозначаемая так пото-му, что она содержит два необычных остатка: рибо-тимидин (Т) и псевдоуридин (?). Шпилька состоит из двухцепочечного стебля из пяти спаренных осно- ваний, включая пару G-C, и петли длиной семь нуклеотидов. Тринуклеотид Т?С всегда расположен
в одном и том же месте петли. 3. В антикодоновой шпильке стебель всегда представлен семью спарен-
ными основаниями. Триплет, комплементарный родственному кодону,– антикодон – находится в пет-
ле, состоящей из семи нуклеотидов. С 5"-конца антикодон фланкируют инвариантный остаток ура-
цила и модифицированный цитозин, а к его 3"-концу примыкает модифицированный пурин, как правило
аденин. 4. Еще одна шпилька состоит из стебля длиной три-четыре пары нуклеотидов и петли варь-
ирующего размера, часто содержащей урацил в вос-становленной форме – дигидроурацил (DU). Наиболее сильно варьируют нуклеотидные по-следовательности стеблей, число нуклеотидов меж-ду антикодоновым стеблем и стеблем Т?С (вариа-бельная петля), а также размер петли и локализация остатков дигидроурацила в DU-петле.
[Сингер, 1998].

Третичная структура тРНК

L-образная структура.

Присоединение аминокислот к тРНК

Для того чтобы аминокислота могла образовывать полипептидную цепь она должна присоединиться к тРНК с помощью фермента аминоацил-тРНК-синтетазы. Этот фермент образует ковалентную связь между карбоксильной группой аминокислоты и гидроксильной группой рибозы на 3’-конце тРНК при участии АТФ. Аминоацил-тРНК-синтетаза узнает специфический кодон не из-за наличия антикодона на тРНК, а по наличию специфического сайта узнавания на тРНК.
Всего в клетке имеется 21 различных аминоацил-тРНК-синтетаз.
Присоединение происходит в две стадии:
1. Карбоксильная группа аминокислоты присоединяется к а-фосфату АТФ. Полученный нестабильный аминоацил-аденилат стабилизируется связываясь с ферментом.
2. Перенос аминоацильной группы аминоацил-аденилата на 2’ или 3’-OH-группу концевой рибозы тРНК
Некоторые аминоацил-тРНК-синтетазы состоят из одной полипептидной цепи, другие – из двух или четырех идентичных цепей, каждая молекулярной массой от 35 до 115 кДа. Некоторые димерные и тетрамерные ферменты состоят из субъединиц двух типов. Четкой корреляции между размером молекулы фермента или характером его субъединичной структуры и специфичностью не существует.
Специфичность фермента определяется его прочным связыванием с акцепторным концом тРНК, DU-участком и вариабельной петлей. Некоторые ферменты, по-видимому, не распознают антикодоновый триплет и катализируют реакцию аминоацетилирования даже при измененном антикодоне. Однако отдельные ферменты проявляют пониженную активность по отношению к таким модифицированным тРНК и при замене антикодона присоединяют не ту аминокислоту.

70-90н | вторичная стр-ра- клеверный лист | CCA 3" const для всех tRNA |к концевому аденозину присоед акта |
наличие тимина, псевдоуридина-пси, дигироуридина ДГУ в D-петле - защита от рибонуклеаз? долгоживущие | Разнообразие первичных структур tРНК - 61+1 - по кол-ву кодонов + формилметиониновая tРНК, у кот антикодон такой же, как у метиониновой tРНК. Разнообразие третичных структур - 20 (по кол-ву аминокислот)

Имеются два вида тРНК связывающие метионин тРНКFMet и тРНКMMet у прокариот и, тРНКIMetи тРНКMMet - у эукариот. К каждой тРНК добавляется метионин с помощью соответствующих аминоацил-тРНК-синтетез. метионин присоединенный к тРНКFMet и тРНКIMet формилируется ферментом метионил-тРНК-трансформилазой до Fmet-тРНКFMet. тРНК нагруженные формилметионином узнают инициаторный кодон AUG.

Литература:

К сожалению, список литературы отсутствует.

Является синтез белковой молекулы на основе матричной РНК (трансляция). Однако в отличие от транскрипции нуклеотидная последовательность не может быть переведена в аминокислотную напрямую, так как эти соединения имеют разную химическую природу. Поэтому для осуществления трансляции требуется посредник в виде транспортной РНК (тРНК), функция которого состоит в переводе генетического кода на "язык" аминокислот.

Общая характеристика транспортной РНК

Транспортные РНК или тРНК - это небольшие молекулы, которые доставляют аминокислоты к месту синтеза белка (в рибосомы). Количество этого вида рибонуклеиновой кислоты в клетке составляет примерно 10 % от общего пула РНК.

Как и другие разновидности тРНК состоит из цепочки рибонуклеозидтрифосфатов. Длина нуклеотидной последовательности насчитывает 70-90 звеньев, и около 10 % состава молекулы приходится на минорные компоненты.

Из-за того, что каждой аминокислоте соответствует свой переносчик в виде тРНК, клетка синтезирует большое количество разновидностей этой молекулы. В зависимости от вида живого организма этот показатель варьирует от 80 до 100.

Функции тРНК

Транспортная РНК является поставщиком субстрата для белкового синтеза, который происходит в рибосомах. За счет уникальной способности связываться и с аминокислотами, и с матричной последовательностью тРНК выполняет функцию смыслового адаптера при переводе генетической информации из формы РНК в форму белка. Взаимодействие такого посредника с кодирующей матрицей, как в транскрипции, основано на принципе комплементарности азотистых оснований.

Главная функция тРНК заключается в акцептировании аминокислотных звеньев и их транспортировке в аппарат белкового синтеза. За этим техническим процессом стоит огромный биологический смысл - реализация генетического кода. Осуществление этого процесса основано на следующих особенностях:

  • все аминокислоты кодируются триплетами нуклеотидов;
  • для каждого триплета (или кодона) существует антикодон, входящий в состав тРНК;
  • каждая тРНК может связаться только с определенной аминокислотой.

Таким образом, аминокислотная последовательность белка определяется тем, какие тРНК и в каком порядке будут комплементарно взаимодействовать с матричной РНК в процессе трансляции. Это возможно благодаря наличию в транспортной РНК функциональных центров, один из которых отвечает за избирательное присоединение аминокислоты, а другой - за связывание с кодоном. Поэтому функции и тесно взаимосвязаны.

Строение транспортной РНК

Уникальность тРНК заключается в том, что ее молекулярная структура не линейна. Она включает в себя спиральные двуцепочечные участки, которые называют стеблями, и 3 одноцепочечные петли. По форме такая конформация напоминает клеверный лист.

В структуре тРНК различают следующие стебли:

  • акцепторный;
  • антикодоновый;
  • дигидроуридиловый;
  • псевдоуридиловый;
  • добавочный.

Двойные спирали стеблей содержат от 5 до 7 Уотсон-Криксоновских пар. На конце акцепторного стебля расположена небольшая цепочка неспаренных нуклеотидов, 3-гидроксил которой является местом прикрепления соответствующей молекулы аминокислоты.

Структурной областью для соединения с мРНК служит одна из петель тРНК. Она содержит антикодон, комплементарный смысловому триплету в Именно антикодон и акцептирующий конец обеспечивают адапторную функцию тРНК.

Третичная структура молекулы

"Клеверный лист" является вторичной структурой тРНК, однако за счет фолдинга молекула приобретает L-образную конформацию, которая скрепляется дополнительными водородными связями.

L-форма представляет собой третичную структуру тРНК и состоит из двух практически перпендикулярных А-РНК спиралей, имеющих длину 7 нм и толщину 2 нм. Такая форма молекулы имеет всего 2 конца, на одном из которых расположен антикодон, а на другом - акцепторный центр.

Особенности связывания тРНК с аминокислотой

Активацию аминокислот (их присоединение к транспортной РНК) осуществляет аминоацил-тРНК-синтетаза. Этот фермент одновременно выполняет 2 важных функции:

  • катализирует образования ковалентной связи между 3`-гидроксильной группой акцепторного стебля и аминокислотой;
  • обеспечивает принцип избирательного соответствия.

Для каждой из есть своя аминоацил-тРНК-синтетаза. Она может взаимодействовать только с соответствующим видом транспортной молекулы. Это означает, что антикодон последней должен быть комплементарен триплету, кодирующему именно эту аминокислоту. Например, синтетаза лейцина будет соединяться только с предназначеным для лейцина тРНК.

В молекуле аминоацил-тРНК-синтетазы есть три нуклеотид-связывающих кармана, конформация и заряд которых комплементарны нуклеотидам соответствующего антикодона в тРНК. Таким образом, фермент определяет нужную транспортную молекулу. Гораздо реже фрагментом опознавания служит нуклеотидная последовательность акцепторного стебля.