Моделирование как метод обучения дошкольников математике. « Использование моделирования в обучении математике». Классификация методов математического моделирования

Математическое моделирование – процесс установления соответствия реальной системе S мат модели M и исследование этой модели, позволяющее получить хар-ки реальной системы. Применение мат модел-ния позволяет иссл-ть объекты, реальные эксперименты над которыми затруднены или невозможны.

Аналит-е моделирование - процессы функц-ия элем-в записываются в виде мат-х соотношений (алгебр-х, интегральных, диффер-х, логич-х и т.д.). Мат. модель может вообще не содержать в явном виде искомых величин. Ее необходимо преобразовать в систему соотношений относ-но искомых величин, допускающую получение нужного результата чисто анал-ми методами. Под этим понимается получения явных формул вида

<искомая величина> =<аналитическое выражение>, либо получение урав-й известного вида, решение которых также известно. В некоторых случаях возможно качественное исследование модели, при котором в явном виде можно найти лишь некоторые свойства решения.

Численное мод-е использует методы вычис-й матем-ки и позволяет получить лишь приближенные решения. Решение задачи бывает менее полным, чем в анал-м мод-и. Принципиальный недостаток численного мод-я закл-ся в автом-й реализации выбранного численного метода. Моделирующий алгоритм в большей степени отражает именно численный метод, чем особенности модели. Поэтому при смене численного метода приходится заново перерабатывать алгоритм моделирования.

Имит-е мод-ие - воспроизведение на ЭВМ (имитация) процесса функц-я исследуемой системы с соблюдением логической и временной послед-ти реальных событий. Для имит- мод-я характерно воспроизведение событий , происходящих в системе (описываемых моделью) с сохр их логической структуры и временной последовательности . Оно позволяет узнать данные о состоянии системы или отдельных ее элементов в опред-е моменты времени. Имитационное моделирование аналогично экспериментальному исследованию процессов на реальном объекте, т.е. на натуре.

12.Получение случайных чисел с произвольным законом распределения методом обратных функций. М-д обр ф-ий наиболее общий и универсальный способ получения чисел, подчиненных заданному закону. Стандартный метод моделирования основан на том, что интегральная функция распределения
любой непрерывной случайной величины равномерно распределена в интервале (0;1), т.е. для любой случайной величины X с плотностью распределения f (x ) случайная величина равномерно распределена на интервале (0;1).

Тогда случайную величину X с произвольной плотностью распределения f (x ) можно рассчитать по следующему алгоритму:1. Необходимо сгенерировать случайную величину r (значение случайной величины R), равномерно распределенную в интервале (0;1). 2. Приравнять сгенерированное случайное число известной функции распределения F(X) и получить уравнение
. 3. Решая уравнение X=F -1 (r), находим искомое значение X

Графическое решение

.

Дополнительно к вопросу 11.

Рассмотрим пример, характеризующий различие рассмотренных видов моделирования.

Имеется система, состоящая из трех блоков.

Система функционирует нормально, если исправен хотя бы один из блоков 1 и 2, а также исправен блок 3. Известны функции распределения времени безотказной работы блоков f1(t),f2(t),f3(t). Требуется найти вероятность безотказной работы системы в момент времени t.

Эквивалентная логическая схема

означает, что отказ системы наступает при обрыве цепи. Это имеет место в следующих случаях:

отказали блоки 1 и 2, исправен блок 3;

отказал блок 3, исправен хотя бы один из блоков 1 и 2.

Вероятность безотказной работы системы P(t)=P1,2(t)*p3(t)=(1-q1(t)*q2(t))*(1-q3(t)) =

Эта формула и есть основа математической модели системы.

Аналитическое моделирование. Оно возможно лишь при условии, что все интегралы выражаются через элементарные функции. Допустим, что

Тогда
=
=
.

С учетом этого модель (1) принимает вид

Это и есть явное аналитическое выражение относительно искомой вероятности; оно справедливо лишь при сделанных допущениях.

Численное моделирование . Необходимость в нем может возникнуть, например, тогда, когда установлено, что интегралы не определяются (т.е. выражены не ч/з элементарные функции). Необходимость в нем может возникнуть, например, тогда, когда установлено, что распределения f1(t),f2(t),f3(t) подчиняются закону Гаусса (нормальному):
.Для вычислений по формуле P(t)=P1,2(t)*p3(t)=(1-q1(t)*q2(t))*(1-q3(t)) = при каждом значении t они должны определяться численно, например, по методу трапеций, Симпсона, Гаусса или другими методами. Для каждого значения t вычисления проводятся заново.

метод прямоугольников, метод трапеций, метод параболы. При методе прямоуг возникает ошибка – неточность вычислений. Но можно разделить на 2 и более интервалов. Появляется множество интегралов, но здесь уже возникает ошибка округления.

метод Гаусса

метод Монте-Карло

Имитационное моделирование. Имитация есть воспроизведение событий, происходящих в системе, т.е. исправной работы либо отказа rаждого элемента. Если время работы системы t, а ti - время безотказной работы элемента с номером i, то: событие ti>t означает исправную работу элемента за время (0; t];

событие ti<=t означает отказ элемента к моменту t.

Заметим, что ti - случайная величина, распределенная по закону fi(t), который известен по условию.

Моделирование случайного события «исправная работа k –го элемента за время (0; t]» заключается:

1)в получении случайного числа ti, распределенного по закону fi(t);

2)в проверке истинности логического выражения ti>t. Если оно истинно, то i-й элемент исправен, если ложно – он отказал.

Алгоритм моделирования таков:

1.Положить n=0, k=0. Здесь n – счетчик числа реализаций (повторений) случайного процесса; k – счетчик числа «успехов».

2.Получить три случайных числа t1,t2,t3, распределенных соответственно по законам f1(t),f2(t),f3(t).

3.Проверить истинность логического выражения L=[(t1>t)∩ (t2>t)∩ (t3>t)] v [(t1>t)∩ (t2<=t)∩ (t3>t)] v [(t1<=t)∩ (t2>t)∩ (t3>t)]

Если L=true, то положить k=k+1 и перейти к шагу 4, иначе перейти к шагу 4.

4.Положить n=n+1.

5.Если n<=N, перейти к шагу 2; иначе вычислить и вывести P(t)=k/N. Здесь N - число реализация случайного процесса; от него зависят точность и достоверность результатов моделирования.

Еще раз подчеркнем: Значение N задают заранее по соображениям обеспечения заданной точности о достоверности статистической оценки искомой величины P(t).

Татьяна Портнова

Я представляю опыт работы ДОУ №17 "Рождественский" г. Петровска по теме метод моделирования как способ обучения дошкольников математики .

Одним из наиболее перспективных методов математического развития дошкольников является моделирование . МОДЕЛИРОВАНИЕ для дошкольников позволяет одновременно решить сразу несколько задач, главные из которых – это привить детям основы логического мышления, научить простому счету, облегчить ребенку познание. В результате знания ребенка поднимаются на более высокий уровень обобщения, приближаются к понятиям.

В своей работе я опиралась на метод моделирования , разработанный Д. Б. Элькониным, Л. А. Венгером, Н. А. Ветлугиной, он заключается в том, что мышление ребенка развивают с помощью специальных схем, моделей , которые в наглядной и доступной для него форме воспроизводят скрытые свойства и связи того или иного объекта.

Использование моделирования в развитии математических представлений дошкольников дает ощутимые положительные результаты, а именно :

Позволяет выявить скрытые связи между явлениями и сделать их доступными пониманию ребенка;

Улучшает понимание ребенком структуры и взаимосвязи составных частей объекта или явления;

Повышает наблюдательность ребенка, дает ему возможность заметить особенности окружающего мира;

В своей работе я использую четырех ступенчатую последовательность применения метода моделирования .

Первый этап предполагает знакомство со смыслом арифметических действий.

Второй - обучение описанию этих действий на языке математических знаков и символов .

Третий - обучение простейшим приемам арифметических вычислений

Четвертый этап - обучение способам решения задач

Слайд 5 (фото дети модели делают )

Чтобы овладеть моделированием как методом научного познания , необходимо создавать модели . Создавать вместе с детьми и следить, чтобы дети принимали в изготовлении моделей непосредственное и активное участие. Продумывая разнообразные модели вместе с детьми , я придерживалась следующих требований :

Модель должна отображать обобщенный образ и подходить к группе объектов.

Раскрывать существенное в объекте.

Замысел по созданию модели следует обсудить с детьми, чтобы она была им понятна.

Моделирование как новый вид работы дает простор для творчества и фантазии детей, обеспечивая развитие их мышления.

Созданные нами модели многофункциональны . На основе моделей создаем разнообразные дидактические игры. При помощи картинок-моделей организовываем различные виды ориентированной деятельности детей. Модели использую на занятиях, в совместной с воспитателем и самостоятельной детской деятельности.

К созданию моделей подключаю родителей , которым даю задания по изготовлению несложных моделей (родители дома вместе с ребенком создают модель ) .

Таким образом, осуществляется взаимосвязь трех сторон :

родитель

и ребенок.


Хочу познакомить с моделями , которые я использую в работе с детьми.

Наглядная плоскостная модель "От секунды до года"

Цель применения :

Дать детям представления о временных отношениях, их взаимосвязи ;

Закрепить представления детей об отношении целого и части, научить обозначать в пространстве отношения во времени; совершенствовать счет.

Описание работы с моделью :

Знакомлю детей с моделью постепенно . Сначала знакомлю с самими терминами (секунда, минута, час, сутки, неделя, месяц, год) . Что по временным меркам больше, а что меньше, что во что входит.

Далее даю более четкие, узкие представления. Например, секунда - это почти самая маленькая временная единица, но если их 60, то они будут составлять большую временную единицу - минуту, и таким образом провожу работу до тех пор, пока дети не усвоят все термины, все взаимосвязи временных отношений, начиная от секунды и заканчивая годом.

Наглядная плоскостная модель

"Домик, где знаки и числа живут"

Цель применения :

Закрепить умения детей составлять числа из двух меньших; складывать и вычитать числа;

Дать детям представления о неизменности числа, величины при условии различий в суммировании;

Учить или закреплять умение сравнивать числа (больше, меньше, равно) .

Структура модели : модель представляет собой 4-этажный домик, на каждом этаже расположено разное количество окошек, где будут жить знаки и цифры, но так как домик волшебный, то поселяться в домик знаки и цифры могут только с помощью детей. Окна в домике располагаются следующим образом :

Описание работы с моделью :


первый и второй этажи будут использоваться для решения задачи, которая состоит в том, чтобы дать детям представления о неизменности числа, величины при условии различий в суммировании. Например : 4 = 1 + 1 + 1 + 1; 4 = 2 + 2.


Третий этаж будет использоваться, чтобы научить детей (или закрепить умение) составлять числа из двух меньших, а также вычитать числа. Например, 3 + 5 = 8 или 7 - 4 = 3 и т. п.

Последний, четвертый, этаж будет использоваться, чтобы научить детей (или закрепить умение) сравнивать числа между собой, с помощью знаков "меньше", "больше" или "равно".


Модель можно использовать в любых видах деятельности : на занятиях, в свободной деятельности детей, при индивидуальной работе с детьми и т. д.

Слайд 11-12

Наглядная плоскостная модель "Солнечная система"

Только для детей старшей и подготовительной группы.

Цели применения :

Дать (или закрепить) представления детей о геометрических телах и фигурах (сравнивая круг, шар с другими геометрическими телами и фигурами) ;

Научить детей определять и отражать в речи основания группировки, классификации, связи и зависимости полученной группы (солнечная система) ;

Научить (или закрепить) умение детей определять последовательность ряда предметов по размеру ;

Развивать понимание пространственных отношений, определять местонахождение одних объектов относительно других;

Совершенствовать порядковый и количественный счет;

Закрепить умение пользоваться условной меркой для измерения расстояний;

Закрепить умение решать арифметические задачи.

Структура модели :

модель представляет собой наглядную плоскостную схему, на которой изображена солнечная система. В дополнение к схеме имеется специальная карточка, которая предназначается для взрослого, где запечатлена информация о солнечной системе (небольшой рассказ о солнечной системе, размеры планет) . К модели прилагается комплекс смоделированных планет , при этом необходимо соблюдать пропорциональность их размеров друг к другу.

Описание работы с моделью :


Для решения задачи, необходимо объяснить детям, что все планеты солнечной системы и само солнце, конечно, - это одна целая группа (семья) . "У нашей звезды Солнце есть своя семья. В нее входит 9 планет, которые вращаются вокруг Солнца, то есть все эти 10 космических тел объединены в одну группу. Задания для детей :


1. разложить планеты в ряд, по мере увеличения размера планет или, наоборот, от самой большой планеты к самой маленькой.

2. определить местонахождение одной планеты относительно другой, ориентируясь по схеме : планета Земля находится левее планеты Юпитер и т. п.

3. Можно использовать условную мерку, например любую веревочку, линейку и т. д для измерения расстояний между планетами и звездой, между планетами и т. д.

4. Планеты можно пересчитывать как в прямом, так и в обратном порядке, можно составлять разного вида задачи и решать их, в солнечной системе крупных планет только 3, включая звезду, сколько тогда маленьких и т. п.

Слайд 13-14

Наглядная плоскостная модель "Счетный торт"

Цель применения :

Учить детей решать арифметические задачи и развивать познавательные способности ребенка;

Учить выделять математические отношения между величинами, ориентироваться в них.

Структура модели ,

модель включает в себя :

1. Пять наборов "сладких счетных частей", каждый из которых разделен на части (как на равные, так и на разные части) . Каждый счетный торт в виде круга, имеет свой цвет.

2. Овалы, вырезанные из белого картона, которые обозначают "целое" и "часть". В игровой ситуации они будут называться тарелочками, куда дети будут раскладывать куски счетного.

Описание работы с моделью :


в арифметической задаче математические отношения можно рассматривать как "целое" и "часть".

Сначала необходимо дать детям представления о понятии "целое" и "часть".

Положите перед детьми на тарелочку обозначающую "целое", счетный торт (все его части, скажите, что торт целый мама испекла и что мы его кладем строго на тарелочку, которая обозначает "целое". Теперь мы разрежем торт на две части, каждую из них назовем "часть". Объясните, что теперь, когда целое (целый торт) разделили на части (на 2 кусочка) то целого теперь нет, a есть только 2 части. Которые не могут оставаться на чужой тарелочке и их необходимо переложить на свои места - тарелочки, обозначающие "часть". Одну часть на одну тарелку, другую часть на другую тарелку. Затем соедините 2 куска опять вместе и покажите, что опять получилось целое. Таким образом, мы продемонстрировали, что соединение частей дает целое, а вычитание части из целого дает часть.




Слайд 15-16

Наглядная объемная модель "песочные часы"


Цель применения :

научить детей измерять время при помощи модели песочных часов ; активно включаться в процесс экспериментирования.

Структура модели :

модель объемная , трехмерная.

Чтобы можно было измерять время, необходимо открыть крышечку донца одной из бутылок и насыпать туда песка ровно столько, сколько его необходимо, чтобы за 1 минуту песок из одного отсека часов перешел в другой. Сделать это нужно путем экспериментирования.



писание работы с моделью :

с помощью модели песочных часов можно сначала провожу познавательное ознакомительное занятие. Показываю детям картинки с изображением разных песочных часов, потом демонстрирую модель , рассказываю о происхождения песочных часов, зачем они нужны, как ими пользоваться, как они работают. Затем вместе с детьми проводим эксперименты : например, эксперимент, доказывающий точность часов.

Таким образом, моделирование является важным учебным средством и действием, с помощью которого можно осуществлять различные учебные и развивающие цели и задачи,

Все формы использования моделирования дают положительные результаты в практическом применении, активизируя познавательную деятельность детей.

ВВЕДЕНИЕ

Объекты материального мира сложны и многообразны. Отражение всех их свойств в создаваемых, изучаемых и используемых образах весьма затруднительно, да и не нужно. Важно, чтобы образ объекта содержал черты, наиболее важные для его использования Методом моделирования называется замена объекта оригинала объектом-заместителем, обладающим определенным сходством с оригиналом, с целью получения новой информации об оригинале. Моделью называется объект-заместитель объекта-оригинала, предназначенный для получения информации об оригинале.

Математические модели относятся к символьным моделям и представляют собой описание объектов в виде математических символов, формул, выражений. При наличии достаточно точной математической модели можно путем математических расчетов прогнозировать результаты функционирования объекта при различных условиях, выбрать из множества возможных вариантов тот, который дает наилучшие результаты.



В данной работе приведены виды классификации математических методов моделирования и описаны некоторые методы:

Линейное программирование - это методы математического моделирования, которые служат для поиска оптимального варианта распределения ограниченных ресурсов между конкурирующими работами.

Имитационное моделирование. Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между её элементами или другими словами - разработке симулятора исследуемой предметной области для проведения различных экспериментов.


Классификация методов математического моделирования

Ввиду разнообразия применяемых математических моделей, их общая классификация затруднена. В литературе обычно приводят классификации, в основу которых положены различные подходы и принципы.

По принадлежности к иерархическому уровню математические модели делятся на модели микроуровня, макроуровня, метауровня. Математические модели на микроуровне процесса отражают физические процессы, протекающие, например, при резании металлов. Они описывают процессы на уровне перехода (прохода).

Математические модели на макроуровне процесса описывают технологические процессы.

Математические модели на метауровне процесса описывают технологические системы (участки, цехи, предприятие в целом).

По характеру отображаемых свойств объекта модели можно классифицировать на структурные и функциональные

Модель структурная, – если она представима структурой данных или структурами данных и отношениями между ними В свою очередь, структурная модель может быть иерархической или сетевой.

Модель иерархическая (древовидная), – если представима некоторой иерархической структурой (деревом); например, для решения задачи нахождения маршрута в дереве поиска можно построить древовидную модель, приведенную на рисунке 1.

Рисунок 1 - Модель иерархической структуры.


Модель сетевая, – если она представима некоторой сетевой структурой. Например, строительство нового дома включает различные операции которые можно представить в виде сетевой модели, приведенной на рисунке 2.

Рисунок 2 - Модель сетевой структуры.

Модель функциональная, – если она представима в виде системы функциональных соотношений. Например, закон Ньютона и модель производства товаров –функциональные.

По способу представления свойств объекта модели делятся на аналитические, численные, алгоритмические и имитационные.

Аналитические математические модели представляют собой явные математические выражения выходных параметров как функций от параметров входных и внутренних и имеют единственные решения при любых начальных условиях. Например, процесс резания (точения) с точки зрения действующих сил представляет собой аналитическую модель. Также квадратное уравнение, имеющее одно или несколько решений, будет аналитической моделью. Модель будет численной, если она имеет решения при конкретных начальных условиях (дифференциальные, интегральные уравнения).

Модель алгоритмическая, если она описана некоторым алгоритмом или комплексом алгоритмов, определяющим ее функционирование и развитие. Введение данного типа моделей (действительно, кажется, что любая модель может быть представлена алгоритмом её исследования) вполне обосновано, т. к. не все модели могут быть исследованы или реализованы алгоритмически. Например, моделью вычисления суммы бесконечного убывающего ряда чисел может служить алгоритм вычисления конечной суммы ряда до некоторой заданной степени точности. Алгоритмической моделью корня квадратного из числа Х может служить алгоритм вычисления его приближенного, сколь угодно точного значения по известной рекуррентной формуле.

Модель имитационная, – если она предназначена для испытания или изучения возможных путей развития и поведения объекта путем варьирования некоторых или всех параметров модели, например модель экономической системы производства товаров двух видов. Такую модель можно использовать в качестве имитационной с целью определения и варьирования общей стоимости в зависимости от тех или иных значений объемов производимых товаров.

По способу получения модели делятся на теоретические и эмпирические Теоретические математические модели создаются в результате исследования объектов (процессов) на теоретическом уровне. Например, существуют выражения для сил резания, полученные на основе обобщения физических законов. Но они неприемлемы для практического использования, т. к. очень громоздки и не совсем адаптированы к реальным процессам. Эмпирические математические модели создаются в результате проведения экспериментов (изучения внешних проявлений свойств объекта с помощью измерения его параметров на входе и выходе) и обработки их результатов методами математической статистики.

По форме представления свойств объекта модели делятся на логические, теоретико-множественные и графовые. Модель логическая, если она представима предикатами, логическими функциями, например, совокупность двух логических функций может служить математической моделью одноразрядного сумматора. Модель теоретико-множественная, если она представима с помощью некоторых множеств и отношений принадлежности к ним и между ними. Модель графовая, – если она представима графом или графами и отношениями между ними.

По степени устойчивости . модели могут быть разделены на устойчивые и неустойчивые. Устойчивой является такая система, которая, будучи выведена из своего исходного состояния, стремится к нему. Она может колебаться некоторое время около исходной точки, подобно обычному маятнику, приведенному в движение, но возмущения в ней со временем затухают и исчезают В неустойчивой системе, находящейся первоначально в состоянии покоя, возникшее возмущение усиливается, вызывая увеличение значений соответствующих переменных или их колебания с возрастающей амплитудой

По отношению к внешним факторам модели могут быть разделены на открытые и замкнутые. Замкнутой моделью является модель,которая функционирует вне связи с внешними (экзогенными) переменными. В замкнутой модели изменения значений переменных во времени определяются внутренним взаимодействием самих переменных. Замкнутая модель может выявить поведение системы без ввода внешней переменной. Пример: информационные системы с обратной связью являются замкнутыми системами. Это самонастраивающиеся системы, и их характеристики вытекают из внутренней структуры и взаимодействий, которые отражают ввод внешней информации. Модель, связанная с внешними (экзогенными) переменными, называется открытой.

По отношению к временному фактору модели делятся на динамические и статические Модель называется статической, если среди параметров, участвующих в ее описании, нет временного параметра. Динамической моделью называется модель, если среди ее параметров есть временной параметр, т. е. она отображает систему (процессы в системе) во времени. одновременно.


Линейное программирование

Среди задач математического программирования самыми простыми (и лучше всего изученными) являются так называемые задачи линейного программирования. Характерно для них то, что:

а) показатель эффективности (целевая функция) W линейно зависит от элементов решения х 1 , х 2 , ....., х п и

б) ограничения, налагаемые на элементы решения, имеют вид линейных равенств или неравенств относительно х 1 , х 2 , ..., х п

Такие задачи довольно часто встречаются на практике, например, при решении проблем, связанных с распределением ресурсов, планированием производства, организацией работы транспорта и т. д. Это и естественно, так как во многих задачах практики «расходы» и «доходы» линейно зависят от количества закупленных или утилизированных средств (например, суммарная стоимость партии товаров линейно зависит от количества закупленных единиц; оплата перевозок производится пропорционально весам перевозимых грузов и т. д.).

Любую задачу линейного программирования можно свести к стандартной форме, так называемой «основной задаче линейного программирования» (ОЗЛИ), которая формулируется так: найти неотрицательные значения переменных х 1 ,х 2 , ..., х п, которые удовлетворяли бы условиям-равенствам (1).


Случай, когда f надо обратить не в максимум, а в. минимум, легко сводится к предыдущему, если попросту изменить знак f на обратный (максимизировать не f, а f" = - f). Кроме того, от любых условий-неравенств можно перейти к условиям-равенствам ценой введения новых дополнительных переменных.

В зависимости от вида целевой функции и ограничений можно выделить несколько типов задач линейного программирования или линейных моделей: общая линейная задача, транспортная задача, задача о назначениях.

Транспортная задача (задача Монжа - Канторовича) - математическая задача линейного программирования специального вида о поиске оптимального распределения однородных объектов из аккумулятора к приемникам с минимизацией затрат на перемещение. Для простоты понимания рассматривается как задача об оптимальном плане перевозок грузов из пунктов отправления в пункты потребления, с минимальными затратами на перевозки.

Задача о назначениях формулируется следующим образом:

Имеется некоторое число работ и некоторое число исполнителей. Любой исполнитель может быть назначен на выполнение любой (но только одной) работы, но с неодинаковыми затратами. Нужно распределить работы так, чтобы выполнить работы с минимальными затратами. Если число работ и исполнителей совпадает, то задача называется линейной задачей о назначениях.

Существует несколько способов решения задачи линейного программирования, в частности графический метод и симплекс-метод. Графический метод основан на геометрической интерпретации задачи линейного программирования и применяется для решения задач двумерного пространства. Задачи трёхмерного пространства решаются очень редко, т.к. построение их решения неудобно и лишено наглядности. Рассмотрим метод на примере двумерной задачи.

Найти решение Х = (х 1 ,х 2), удовлетворяющее системе неравенств (3)

(3)
6x 1 +7x 2 ≤42

при котором значение целевой функции F = 2x 1 x 2 достигает максимума.

Построим на плоскости в декартовой прямоугольной системе координат х 1 Ох 2 область допустимых решений задачи.

Каждая из построенных прямых делит плоскость на две полуплоскости. Координаты точек одной полуплоскости удовлетворяют исходному неравенству, а другой нет. Чтобы определить искомую полуплоскость нужно взять какую-нибудь точку, принадлежащую одной из полуплоскостей и проверить: удовлетворяют ли её координаты данному неравенству. Если координаты взятой точки удовлетворяют данному неравенству, то искомой является та полуплоскость, которой принадлежит эта точка. В противном случае другая полуплоскость.

Найдём полуплоскость, определяемую неравенством x 1 -x 2 ≥-3. Для этого, построив прямую (I) x 1 -x 2 =-3, возьмём какую-нибудь точку, принадлежащую одной из двух полученных полуплоскостей, например, точку O(0,0). Координаты этой точки удовлетворяют неравенству x 1 -x 2 ≥-3. Значит полуплоскость, которой принадлежит точка O(0,0) определяется неравенством x 1 -x 2 ≥-3.

Теперь найдём полуплоскость, определяемую неравенством 6x1+7x 2 ≤42.

Строим прямую II 6x 1 +7x 2 =42. Координаты точки O(0,0) удовлетворяют неравенству6x 1 +7x 2 ≤42, а значит, искомой будет вторая полуплоскость.

Теперь ищем полуплоскость для неравенства 2 x 1 -3 x 2 ≤6. Координаты точки O(0,0) удовлетворяют неравенств 2 x 1 -3 x 2 ≤6. Следовательно, полуплоскость, которой принадлежит точка O(0,0) определяется неравенством 2 x 1 -3 x 2 ≤6 (Прямая III).

И полуплоскость для неравенства x 1 + x 2 ≥4. Координаты точки О(0,0) удовлетворяют неравенству x 1 + x 2 ≥4 (Прямая IV). Отсюда прямая x 1 + x 2 =4 определяется первой полуплоскостью.

Неравенства x 1 ≥0 и x 2 ≥0 означают, что область решения будет расположена справа от оси ординат и над осью абсцисс. Таким образом, заштрихованная на рисунке 3 область ABCD будет областью допустимых решений, определённой ограничениями задачи. Целевая функция принимает свое максимальное значение в одной из вершин фигуры ABCD. Для определения этой вершины, построим вектор С (2; -1) и прямую 2x 1 -x 2 =р, где pнекоторая постоянная такая, что прямая2x 1 -x 2 =p имеет общие точки с многоугольником решений. Положим, например, p=1/2 и построим прямую 2 x 1 -x 2 =1/2. Далее, будем передвигать построенную прямую в направлении вектора , до тех пор, пока она не пройдет через последнюю ее общую точку с многоугольником решений. Координаты указанной точки и определяют оптимальный план данной задачи.

На рисунке 3 видно, что последней общей точкой прямой 2x 1 -x 2 =p с многоугольником решений является точка A. Эта точка является местом пересечения прямой II и III, поэтому ее координаты находятся как решение системы уравнений, задающих эти прямые:

(4)
6x 1 +7x 2 =42

При этом значение целевой функции F = 2 x 1 -x 2 = 2* 5.25 – 1 *1.5 = 9.

Точка B будет оптимальным решением задачи Х опт = (х 1опт, х 2опт) и ее координаты будут равны х 1опт =5.25, х 2 опт =1.5.

Рисунок 3 - Область допустимых решений задачи

Симплекс - метод

Данный метод является методом целенаправленного перебора опорных решений задачи линейного программирования. Он позволяет за конечное число шагов либо найти оптимальное решение, либо установить, что оптимальное решение отсутствует.

1) Указать способ нахождения оптимального опорного решения.

2) Указать способ перехода от одного опорного решения к другому, на котором значение целевой функции будет ближе к оптимальному, т.е. указать способ улучшения опорного решения.

3) Задать критерии, которые позволяют своевременно прекратить перебор опорных решений на оптимальном решении или сделать заключение об отсутствии оптимального решения.

Для того, чтобы решить задачу симплексным методом необходимо выполнить следующее:

1) Привести задачу к каноническому виду.

2) Найти начальное опорное решение с "единичным базисом" (если опорное решение отсутствует, то задача не имеет решения ввиду несовместимости системы ограничений).

3) Вычислить оценки разложений векторов по базису опорного решения и заполнить таблицу симплексного метода.

4) Если выполняется признак единственности оптимального решения, то решение задачи заканчивается. Если выполняется условие существования множества оптимальных решений, то путем простого перебора находят все оптимальные решения.

Вычислительная эффективность математических методов оценивается обычно при помощи двух параметров:

1) Числа итераций, необходимого для получения решения;

2) Затрат машинного времени.

В результате численных экспериментов получены результаты для симплекс-метода:

1) Число итераций при решении задач линейного программирования в стандартной форме с ограничениями и переменными заключено между и . Среднее число итераций . Верхняя граница числа итераций равна .

2) Требуемое машинное время пропорционально .

Число ограничений больше влияет на вычислительную эффективность, чем число переменных, поэтому при формулировке задач линейного программирования нужно стремиться к уменьшению числа ограничений пусть даже путём роста числа переменных.


Основные понятия метода имитационного моделирования.

Под термином «имитационное моделирование» («имитационная модель») обычно подразумевают вычисление значений некоторых характеристик развивающегося во времени процесса путем воспроизведения течения этого процесса на компьютере с помощью его математической модели, причем получить требуемые результаты другими способами или невозможно, или крайне затруднительно. Воспроизведение течения процесса на компьютере с помощью математической модели принято называть имитационным экспериментом.

Имитационные модели относятся к классу моделей, которые являются системой соотношений между характеристиками описываемого процесса. Эти характеристики разделяют на внутренние («эндогенные», «фазовые переменные») и внешние («экзогенные», «параметры»). Приблизительно внутренние характеристики - это те, значения которых намереваются узнать с помощью средств математического моделирования; внешние - такие, от которых внутренние характеристики существенно зависят, но обратная зависимость (с практически приемлемой точностью) не имеет места.

Модель, способная давать прогноз значений внутренних характеристик, должна быть замкнутой («замкнутая модель»), в том смысле, что ее соотношения позволяют вычислять внутренние характеристики при известных внешних. Процедура определения внешних характеристик модели называется ее идентификацией, или калибровкой. Математические модели описанного класса (к ним относят имитационные модели) определяют отображение, позволяющее получить по известным значениям внешних характеристик значения внутренних. Далее это отображение будет называться отображением, ассоциированным с моделью.

В основе моделей рассматриваемого класса лежит постулат о независимости внешних характеристик от внутренних, а соотношения модели являются формой записи ассоциированного с ней отображения. Как показано на рисунке 4 в процессе имитационного моделирования исследователь имеет дело с четырьмя основными элементами:

Реальная система;

Логико-математическая модель моделируемого объекта;

Имитационная (машинная) модель;

ЭВМ, на которой осуществляется имитация – направленный вычислительный эксперимент.

Исследователь изучает реальную систему, разрабатывает логико-математическую модель реальной системы. Имитационный характер исследования предполагает наличие логико или логико-математических моделей, описываемых изучаемый процесс. Выше, реальная система определялась как совокупность взаимодействующих элементов, функционирующих во времени. Составной характер сложной системы описывает представление ее модели в виде трех множеств:A, S, T, где
А – множество элементов (в их число включается и внешняя среда);
S – множество допустимых связей между элементами (структура модели);
Т – множество рассматриваемых моментов времени.

Рисунок 4 Процесс имитационного моделирования

Особенностью имитационного моделирования является то, что имитационная модель позволяет воспроизводить моделируемые объекты:

С сохранением их логической структуры;

С сохранением поведенческих свойств (последовательности чередования во времени событий, происходящих в системе), т.е. динамики взаимодействий.

При имитационном моделировании структура моделируемой системы адекватно отображается в модели, а процессы ее функционирования проигрываются (имитируются) на построенной модели. Поэтому построение имитационной модели заключается в описании структуры и процессов функционирования моделируемого объекта или системы.

Различают имитационные модели:

Непрерывные;

Дискретные;

Непрерывно-дискретные.

В непрерывных имитационных моделях переменные изменяются непрерывно, состояние моделируемой системы меняется как непрерывная функция времени, и, как правило, это изменение описывается системами дифференциальных уравнений. Соответственно продвижение модельного времени зависит от численных методов решения дифференциальных уравнений. В дискретных имитационных моделях переменные изменяются дискретно в определенные моменты имитационного времени (наступления событий).

Динамика дискретных моделей представляет собой процесс перехода от момента наступления очередного события к моменту наступления следующего события. Поскольку в реальных системах непрерывные и дискретные процессы часто невозможно разделить, были разработаны непрерывно-дискретные модели, в которых совмещаются механизмы продвижения времени, характерные для этих двух процессов.

Метод имитационного моделирования позволяет решать задачи высокой сложности, обеспечивает имитацию сложных и многообразных процессов, с большим количеством элементов. Отдельные функциональные зависимости в таких моделях могут описываться громоздкими математическими соотношениями. Поэтому имитационное моделирование эффективно используется в задачах исследования систем со сложной структурой с целью решения конкретных проблем. Имитационная модель содержит элементы непрерывного и дискретного действия, поэтому применяется для исследования динамических систем, когда требуется анализ узких мест, исследование динамики функционирования, когда желательно наблюдать на имитационной модели ход процесса в течение определенного времени.

Имитационное моделирование - эффективный аппарат исследования стохастических систем, когда исследуемая система может быть подвержена влиянию многочисленных случайных факторов сложной природы. Имеется возможность проводить исследование в условиях неопределенности, при неполных и неточных данных. Имитационное моделирование является важным фактором в системах поддержки принятия решений, т.к. позволяет исследовать большое число альтернатив (вариантов решений), проигрывать различные сценарии при любых входных данных.

Главное преимущество имитационного моделирования состоит в том, что исследователь для проверки новых стратегий и принятия решений, при изучении возможных ситуаций, всегда может получить ответ на вопрос “Что будет, если?”. Имитационная модель позволяет прогнозировать, когда речь идет о проектируемой системе или исследуются процессы развития (т.е. в тех случаях, когда реальной системы еще не существует). В имитационной модели может быть обеспечен различный, в том числе и высокий уровень детализации моделируемых процессов. При этом модель создается поэтапно, эволюционно.


СПИСОК ЛИТЕРАТУРЫ

1. Блинов, Ю.Ф. Методы математического моделирования [Текст] : Электронное учебное пособие / Ю.Ф. Блинов, В.В. Иванцов, П.В. Серба. –Таганрог: ТТИ ЮФУ, 2012. –42 с.

2. Вентцель, Е.С. Исследование операций. Задачи, принципы, методология. [Текст] : Учебное пособие / Е.С. Вентцель - М. : КНОРУС, 2010. - 192 с.

3. Гетманчук, А. В. Экономико-математические методы и модели [Текст]: Учебное пособие для бакалавров. / А.В. Гетманчук - М. : Издательско-торговая корпорация «Дашков и Ко», 2013. -188 с.

4. Замятина, О.М. Моделирование систем. [Текст] : Учебное пособие. / О.М. Замятина – Томск: Изд-во ТПУ, 2009. – 204 с.

5. Павловский, Ю.Н. Имитационное моделирование. [Текст] : учебное пособие для студентов ВУЗов / Ю.Н.Павловский, Н.В.Белотелов, Ю.И.Бродский - М. : Издательский центр «Академия», 2008. – 236 с.

Математическое моделирование

1. Что такое математическое моделирование?

С середины XX в. в самых различных областях человеческой деятельности стали широко применять математические методы и ЭВМ. Возникли такие новые дисциплины, как «математическая экономика», «математическая химия», «математическая лингвистика» и т. д., изучающие математические модели соответствующих объектов и явлений, а также методы исследования этих моделей.

Математическая модель - это приближенное описание какого-либо класса явлений или объектов реального мира на языке математики. Основная цель моделирования - исследовать эти объекты и предсказать результаты будущих наблюдений. Однако моделирование - это еще и метод познания окружающего мира, дающий возможность управлять им.

Математическое моделирование и связанный с ним компьютерный эксперимент незаменимы в тех случаях, когда натурный эксперимент невозможен или затруднен по тем или иным причинам. Например, нельзя поставить натурный эксперимент в истории, чтобы проверить, «что было бы, если бы...» Невозможно проверить правильность той или иной космологической теории. В принципе возможно, но вряд ли разумно, поставить эксперимент по распространению какой-либо болезни, например чумы, или осуществить ядерный взрыв, чтобы изучить его последствия. Однако все это вполне можно сделать на компьютере, построив предварительно математические модели изучаемых явлений.

2. Основные этапы математического моделирования

1) Построение модели . На этом этапе задается некоторый «нематематический» объект - явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

2) Решение математической задачи, к которой приводит модель . На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.

5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

3. Классификация моделей

Классифицировать модели можно по разным критериям. Например, по характеру решаемых проблем модели могут быть разделены на функциональные и структурные. В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие - как функции от этих величин. Математическая модель обычно представляет собой систему уравнений разного типа (дифференциальных, алгебраических и т. д.), устанавливающих количественные зависимости между рассматриваемыми величинами. Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов. Граф - это математический объект, представляющий собой некоторое множество точек (вершин) на плоскости или в пространстве, некоторые из которых соединены линиями (ребрами).

По характеру исходных данных и результатов предсказания модели могут быть разделены на детерминистические и вероятностно-статистические. Модели первого типа дают определенные, однозначные предсказания. Модели второго типа основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер.

4. Примеры математических моделей

1) Задачи о движении снаряда.

Рассмотрим следующую задачу механики.

Снаряд пущен с Земли с начальной скоростью v 0 = 30 м/с под углом a = 45° к ее поверхности; требуется найти траекторию его движения и расстояние S между начальной и конечной точкой этой траектории.

Тогда, как это известно из школьного курса физики, движение снаряда описывается формулами:

где t - время, g = 10 м/с 2 - ускорение свободного падения. Эти формулы и дают математическую модель поставленной задачи. Выражая t через x из первого уравнения и подставляя во второе, получим уравнение траектории движения снаряда:

Эта кривая (парабола) пересекает ось x в двух точках: x 1 = 0 (начало траектории) и (место падения снаряда). Подставляя в полученные формулы заданные значения v0 и a, получим

ответ: y = x – 90x 2 , S = 90 м.

Отметим, что при построении этой модели использован ряд предположений: например, считается, что Земля плоская, а воздух и вращение Земли не влияют на движение снаряда.

2) Задача о баке с наименьшей площадью поверхности.

Требуется найти высоту h 0 и радиус r 0 жестяного бака объема V = 30 м 3 , имеющего форму закрытого кругового цилиндра, при которых площадь его поверхности S минимальна (в этом случае на его изготовление пойдет наименьшее количество жести).

Запишем следующие формулы для объема и площади поверхности цилиндра высоты h и радиуса r:

V = p r 2 h, S = 2p r(r + h).

Выражая h через r и V из первой формулы и подставляя полученное выражение во вторую, получим:

Таким образом, с математической точки зрения, задача сводится к определению такого значения r, при котором достигает своего минимума функция S(r). Найдем те значения r 0 , при которых производная

обращается в ноль:Можно проверить, что вторая производная функции S(r) меняет знак с минуса на плюс при переходе аргумента r через точку r 0 . Следовательно, в точке r0 функция S(r) имеет минимум. Соответствующее значение h 0 = 2r 0 . Подставляя в выражение для r 0 и h 0 заданное значение V, получим искомый радиус и высоту

3) Транспортная задача.

В городе имеются два склада муки и два хлебозавода. Ежедневно с первого склада вывозят 50 т муки, а со второго - 70 т на заводы, причем на первый - 40 т, а на второй - 80 т.

Обозначим через a ij стоимость перевозки 1 т муки с i-го склада на j-й завод (i, j = 1,2). Пусть

a 11 = 1,2 р., a 12 = 1,6 р., a 21 = 0,8 р., a 22 = 1 р.

Как нужно спланировать перевозки, чтобы их стоимость была минимальной?

Придадим задаче математическую формулировку. Обозначим через x 1 и x 2 количество муки, которое надо перевезти с первого склада на первый и второй заводы, а через x 3 и x 4 - со второго склада на первый и второй заводы соответственно. Тогда:

x 1 + x 2 = 50, x 3 + x 4 = 70, x 1 + x 3 = 40, x 2 + x 4 = 80. (1)

Общая стоимость всех перевозок определяется формулой

f = 1,2x 1 + 1,6x 2 + 0,8x 3 + x 4 .

С математической точки зрения, задача заключается в том, чтобы найти четыре числа x 1 , x 2 , x 3 и x 4 , удовлетворяющие всем заданным условиям и дающим минимум функции f. Решим систему уравнений (1) относительно xi (i = 1, 2, 3, 4) методом исключения неизвестных. Получим, что

x 1 = x 4 – 30, x 2 = 80 – x 4 , x 3 = 70 – x 4 , (2)

а x 4 не может быть определено однозначно. Так как x i і 0 (i = 1, 2, 3, 4), то из уравнений (2) следует, что 30Ј x 4 Ј 70. Подставляя выражение для x 1 , x 2 , x 3 в формулу для f, получим

f = 148 – 0,2x 4 .

Легко видеть, что минимум этой функции достигается при максимально возможном значении x 4 , то есть при x 4 = 70. Соответствующие значения других неизвестных определяются по формулам (2): x 1 = 40, x 2 = 10, x 3 = 0.

4) Задача о радиоактивном распаде.

Пусть N(0) - исходное количество атомов радиоактивного вещества, а N(t) - количество нераспавшихся атомов в момент времени t. Экспериментально установлено, что скорость изменения количества этих атомов N"(t) пропорциональна N(t), то есть N"(t)=–l N(t), l >0 - константа радиоактивности данного вещества. В школьном курсе математического анализа показано, что решение этого дифференциального уравнения имеет вид N(t) = N(0)e –l t . Время T, за которое число исходных атомов уменьшилось вдвое, называется периодом полураспада, и является важной характеристикой радиоактивности вещества. Для определения T надо положить в формуле Тогда Например, для радона l = 2,084 · 10 –6 , и следовательно, T = 3,15 сут.

5) Задача о коммивояжере.

Коммивояжеру, живущему в городе A 1 , надо посетить города A 2 , A 3 и A 4 , причем каждый город точно один раз, и затем вернуться обратно в A 1 . Известно, что все города попарно соединены между собой дорогами, причем длины дорог b ij между городами A i и A j (i, j = 1, 2, 3, 4) таковы:

b 12 = 30, b 14 = 20, b 23 = 50, b 24 = 40, b 13 = 70, b 34 = 60.

Надо определить порядок посещения городов, при котором длина соответствующего пути минимальна.

Изобразим каждый город точкой на плоскости и пометим ее соответствующей меткой Ai (i = 1, 2, 3, 4). Соединим эти точки отрезками прямых: они будут изображать дороги между городами. Для каждой «дороги» укажем ее протяженность в километрах (рис. 2). Получился граф - математический объект, состоящий из некоторого множества точек на плоскости (называемых вершинами) и некоторого множества линий, соединяющих эти точки (называемых ребрами). Более того, этот граф меченый, так как его вершинам и ребрам приписаны некоторые метки - числа (ребрам) или символы (вершинам). Циклом на графе называется последовательность вершин V 1 , V 2 , ..., V k , V 1 такая, что вершины V 1 , ..., V k - различны, а любая пара вершин V i , V i+1 (i = 1, ..., k – 1) и пара V 1 , V k соединены ребром. Таким образом, рассматриваемая задача заключается в отыскании такого цикла на графе, проходящего через все четыре вершины, для которого сумма всех весов ребер минимальна. Найдем перебором все различные циклы, проходящие через четыре вершины и начинающиеся в A 1:

1) A 1 , A 4 , A 3 , A 2 , A 1 ;
2) A 1 , A 3 , A 2 , A 4 , A 1 ;
3) A 1 , A 3 , A 4 , A 2 , A 1 .

Найдем теперь длины этих циклов (в км): L 1 = 160, L 2 = 180, L 3 = 200. Итак, маршрут наименьшей длины - это первый.

Заметим, что если в графе n вершин и все вершины попарно соединены между собой ребрами (такой граф называется полным), то число циклов, проходящих через все вершины, равно Следовательно, в нашем случае имеется ровно три цикла.

6) Задача о нахождении связи между структурой и свойствами веществ.

Рассмотрим несколько химических соединений, называемых нормальными алканами. Они состоят из n атомов углерода и n + 2 атомов водорода (n = 1, 2 ...), связанных между собой так, как показано на рисунке 3 для n = 3. Пусть известны экспериментальные значения температур кипения этих соединений:

y э (3) = – 42°, y э (4) = 0°, y э (5) = 28°, y э (6) = 69°.

Требуется найти приближенную зависимость между температурой кипения и числом n для этих соединений. Предположим, что эта зависимость имеет вид

y » a n + b,

где a , b - константы, подлежащие определению. Для нахождения a и b подставим в эту формулу последовательно n = 3, 4, 5, 6 и соответствующие значения температур кипения. Имеем:

– 42 » 3a + b, 0 » 4a + b, 28 » 5a + b, 69 » 6a + b.

Для определения наилучших a и b существует много разных методов. Воспользуемся наиболее простым из них. Выразим b через a из этих уравнений:

b » – 42 – 3a , b » – 4a , b » 28 – 5a , b » 69 – 6a .

Возьмем в качестве искомого b среднее арифметическое этих значений, то есть положим b » 16 – 4,5a . Подставим в исходную систему уравнений это значение b и, вычисляя a , получим для a следующие значения: a » 37, a » 28, a » 28, a » 36. Возьмем в качестве искомого a среднее значение этих чисел, то есть положим a » 34. Итак, искомое уравнение имеет вид

y » 34n – 139.

Проверим точность модели на исходных четырех соединениях, для чего вычислим температуры кипения по полученной формуле:

y р (3) = – 37°, y р (4) = – 3°, y р (5) = 31°, y р (6) = 65°.

Таким образом, ошибка расчетов данного свойства для этих соединений не превышает 5°. Используем полученное уравнение для расчета температуры кипения соединения с n = 7, не входящего в исходное множество, для чего подставим в это уравнение n = 7: y р (7) = 99°. Результат получился довольно точный: известно, что экспериментальное значение температуры кипения y э (7) = 98°.

7) Задача об определении надежности электрической цепи.

Здесь мы рассмотрим пример вероятностной модели. Сначала приведем некоторые сведения из теории вероятностей - математической дисциплины, изучающей закономерности случайных явлений, наблюдаемых при многократном повторении опыта. Назовем случайным событием A возможный исход некоторого опыта. События A 1 , ..., A k образуют полную группу, если в результате опыта обязательно происходит одно из них. События называются несовместными, если они не могут произойти одновременно в одном опыте. Пусть при n-кратном повторении опыта событие A произошло m раз. Частотой события A называется число W = . Очевидно, что значение W нельзя предсказать точно до проведения серии из n опытов. Однако природа случайных событий такова, что на практике иногда наблюдается следующий эффект: при увеличении числа опытов значение практически перестает быть случайным и стабилизируется около некоторого неслучайного числа P(A), называемого вероятностью события A. Для невозможного события (которое никогда не происходит в опыте) P(A)=0, а для достоверного события (которое всегда происходит в опыте) P(A)=1. Если события A 1 , ..., A k образуют полную группу несовместимых событий, то P(A 1)+...+P(A k)=1.

Пусть, например, опыт состоит в подбрасывании игральной кости и наблюдении числа выпавших очков X. Тогда можно ввести следующие случайные события A i ={X = i}, i = 1, ..., 6. Они образуют полную группу несовместных равновероятных событий, поэтому P(A i) = (i = 1, ..., 6).

Суммой событий A и B называется событие A + B, состоящее в том, что в опыте происходит хотя бы одно из них. Произведением событий A и B называется событие AB, состоящее в одновременном появлении этих событий. Для независимых событий A и B верны формулы

P(AB) = P(A) P(B), P(A + B) = P(A) + P(B).

8) Рассмотрим теперь следующую задачу . Предположим, что в электрическую цепь последовательно включены три элемента, работающие независимо друг от друга. Вероятности отказов 1-го, 2-го и 3-го элементов соответственно равны P 1 = 0,1, P 2 = 0,15, P 3 = 0,2. Будем считать цепь надежной, если вероятность того, что в цепи не будет тока, не более 0,4. Требуется определить, является ли данная цепь надежной.

Так как элементы включены последовательно, то тока в цепи не будет (событие A), если откажет хотя бы один из элементов. Пусть A i - событие, заключающееся в том, что i-й элемент работает (i = 1, 2, 3). Тогда P(A1) = 0,9, P(A2) = 0,85, P(A3) = 0,8. Очевидно, что A 1 A 2 A 3 - событие, заключающееся в том, что одновременно работают все три элемента, и

P(A 1 A 2 A 3) = P(A 1) P(A 2) P(A 3) = 0,612.

Тогда P(A) + P(A 1 A 2 A 3) = 1, поэтому P(A) = 0,388 < 0,4. Следовательно, цепь является надежной.

В заключение отметим, что приведенные примеры математических моделей (среди которых есть функциональные и структурные, детерминистические и вероятностные) носят иллюстративный характер и, очевидно, не исчерпывают всего разнообразия математических моделей, возникающих в естественных и гуманитарных науках.