Как решать уравнения умножение одночлена на многочлен. Умножение многочлена на одночлен. Умножение многочлена на одночлен — Гипермаркет знаний

Если числа обозначены различными буквами, то можно лишь обозначить из произведение; пусть, напр., надо число a умножить на число b, – мы можем это обозначить или a ∙ b или ab, но не может быть и речи о том, чтобы как-нибудь выполнить это умножение. Однако, когда имеем дело с одночленами, то, благодаря 1) присутствию коэффициентов и 2) тому обстоятельству, что в состав этих одночленов могут входить множители, обозначенные одинаковыми буквами, является возможность говорить о выполнении умножения одночленов; еще шире такая возможность при многочленах. Разберем ряд случаев, где возможно выполнять умножение, начиная с простейшего.

1. Умножение степеней с одинаковыми основаниями . Пусть, напр., требуется a 3 ∙ a 5 . Напишем, зная смысл возведения в степень, то же самое подробнее:

a ∙ a ∙ a ∙ a ∙ a ∙ a ∙ a ∙ a

Рассматривая эту подробную запись, мы видим, что у нас написано a множителем 8 раз, или, короче, a 8 . Итак, a 3 ∙ a 5 = a 8 .

Пусть требуется b 42 ∙ b 28 . Пришлось бы написать сначала множитель b 42 раза, а затем опять множитель b 28 раз – в общем, получили бы, что b берется множителем 70 раз. т. е. b 70 . Итак, b 42 ∙ b 28 = b 70 . Отсюда уже ясно, что при умножении степеней с одинаковыми основаниями основание степени остается без перемены, а показатели степеней складываются. Если имеем a 8 ∙ a, то придется иметь в виду, что у множителя a подразумевается показатель степени 1 («a в первой степени»), – следовательно, a 8 ∙ a = a 9 .

Примеры: x ∙ x 3 ∙ x 5 = x 9 ; a 11 ∙ a 22 ∙ a 33 = a 66 ; 3 5 ∙ 3 6 ∙ 3 = 3 12 ; (a + b) 3 ∙ (a + b) 4 = (a + b) 7 ; (3x – 1) 4 ∙ (3x – 1) = (3x – 1) 5 и т. д.

Иногда приходится иметь дело со степенями, показатели которых обозначены буквами, напр., xn (x в степени n). С такими выражениями надо привыкнуть обращаться. Вот примеры:

Поясним некоторые из этих примеров: b n – 3 ∙ b 5 надо основание b оставить без перемены, а показатели сложить, т. е. (n – 3) + (+5) = n – 3 + 5 = n + 2. Конечно, подобные сложения должно научиться выполнять быстро в уме.

Еще пример: x n + 2 ∙ x n – 2 , – основание x надо оставить без перемены, а показатель сложить, т. е. (n + 2) + (n – 2) = n + 2 + n – 2 = 2n.

Можно выше найденный порядок, как выполнять умножение степеней с одинаковыми основаниями, выразить теперь равенством:

a m ∙ a n = a m + n

2. Умножение одночлена на одночлен. Пусть, напр., требуется 3a²b³c ∙ 4ab²d². Мы видим, что здесь обозначено точкою одно умножение, но мы знаем, что этот же знак умножения подразумевается между 3 и a², между a² и b³, между b³ и c, между 4 и a, между a и b², между b² и d². Поэтому мы можем здесь видеть произведение 8 множителей и можем перемножить их любыми группами в любом порядке. Переставим их так, чтобы коэффициенты и степени с одинаковыми основаниями оказались рядом, т. е.

3 ∙ 4 ∙ a² ∙ a ∙ b³ ∙ b² ∙ c ∙ d².

Тогда мы сможем перемножить 1) коэффициенты и 2) степени с одинаковыми основаниями и получим 12a³b5cd².

Итак, при умножении одночлена на одночлен мы можем перемножить коэффициенты и степени с одинаковыми основаниями, а остальные множители приходится переписывать без изменения.

Еще примеры:

3. Умножение многочлена на одночлен. Пусть надо сначала какой-нибудь многочлен, напр., a – b – c + d умножить на положительное целое число, напр., +3. Так как положительные числа считаются совпадающими с арифметическими, то это все равно, что (a – b – c + d) ∙ 3, т. е. a – b – c + d взять 3 раза слагаемым, или

(a – b – c + d) ∙ (+3) = a – b – c + d + a – b – c + d + a – b – c + d = 3a – 3b – 3c + 3d,

т. е. в результате пришлось каждый член многочлена умножить на 3 (или на +3).

Отсюда вытекает:

(a – b – c + d) ÷ (+3) = a – b – c + d,

т. е. пришлось каждый член многочлена разделить на (+3). Также, обобщая, получим:

и т. п.

Пусть теперь надо (a – b – c + d) умножить на положительную дробь, напр., на +. Это все равно, что умножить на арифметическую дробь , что значит взять части от (a – b – c + d). Взять одну пятую часть от этого многочлена легко: надо (a – b – c + d) разделить на 5, а это уже умеем делать, – получим . Остается повторить полученный результат 3 раза или умножить на 3, т. е.

В результате мы видим, что пришлось каждый член многочлена умножить на или на +.

Пусть теперь надо (a – b – c + d) умножить на отрицательное число, целое или дробное,

т. е. и в этом случае пришлось каждый член многочлена умножить на –.

Таким образом, какое бы ни было число m, всегда (a – b – c + d) ∙ m = am – bm – cm + dm.

Так как каждый одночлен представляет собою число, то здесь мы видим указание, как умножать многочлен на одночлен – надо каждый член многочлена умножить на этот одночлен.

4. Умножение многочлена на многочлен . Пусть надо (a + b + c) ∙ (d + e). Так как d и e означают числа, то и (d + e) выражает какое-либо одно число.

(a + b + c) ∙ (d + e) = a(d + e) + b(d + e) + c(d + e)

(мы можем объяснить это и так: мы вправе d + e временно принять за одночлен).

Ad + ae + bd + be + cd + ce

В этом результате можно изменить порядок членов.

(a + b + c) ∙ (d + e) = ad + bd + ed + ae + be + ce,

т. е. для умножения многочлена на многочлен приходится каждый член одного многочлена умножать на каждый член другого. Удобно (для этого и был выше изменен порядок полученных членов) умножить каждый член первого многочлена сперва на первый член второго (на +d), затем на второй член второго (на +e), затем, если бы он был, на третий и т. д.; после этого следует сделать приведение подобных членов.

В этих примерах двучлен умножается на двучлен; в каждом двучлене члены расположены по нисходящим степеням буквы, общей для обоих двучленов. Подобные умножения легко выполнять в уме и сразу писать окончательный результат.

От умножения старшего члена первого двучлена на старший член второго, т. е. 4x² на 3x, получим 12x³ старший член произведения – ему подобных, очевидно, не будет. Далее мы ищем, от перемножения каких членов получатся члены с меньшею на 1 степенью буквы x, т. е. с x². Легко видим, что такие члены получатся от умножения 2-го члена первого множителя на 1-й член второго и от умножения 1-го члена первого множителя на 2-ой член второго (скобки внизу примера это указывают). Выполнить эти умножения в уме и выполнить также приведение этих двух подобных членов (после чего получим член –19x²) – дело нетрудное. Затем замечаем, что следующий член, содержащий букву x в степени еще на 1 меньшей, т. е. x в 1-ой степени, получится только от умножения второго члена на второй, и ему подобных не будет.

Еще пример: (x² + 3x)(2x – 7) = 2x³ – x² – 21x.

Также в уме легко выполнять примеры, вроде следующего:

Старший член получается от умножения старшего члена на старший, ему подобных членов не будет, и он = 2a³. Затем ищем, от каких умножений получатся члены с a² – от умножения 1-го члена (a²) на 2-ой (–5) и от умножения второго члена (–3a) на 1-ый (2a) – это указано внизу скобками; выполнив эти умножения и соединив полученные члены в один, получим –11a². Затем ищем, от каких умножений получатся члены с a в первой степени – эти умножения отмечены скобками сверху. Выполнив их и соединив полученные члены в один, получим +11a. Наконец, замечаем, что младший член произведения (+10), вовсе не содержащий a, получается от перемножения младшего члена (–2) одного многочлена на младший член (–5) другого.

Еще пример: (4a 3 + 3a 2 – 2a) ∙ (3a 2 – 5a) = 12a 5 – 11a 4 – 21a 3 + 10a 2 .

Из всех предыдущих примеров мы также получим общий результат: старший член произведения получается всегда от перемножения старших членов множителей, и подобных ему членов быть не может; также младший член произведения получается от перемножения младших членов множителей, и подобных ему членов также быть не может.

Остальным членам, получаемым при умножении многочлена на многочлен, могут быть подобные, и может даже случиться, что все эти члены взаимно уничтожатся, а останутся лишь старший и младший.

Вот примеры:

(a² + ab + b²) (a – b) = a³ + a²b + ab² – a²b – ab² – b³ = a³ – b³
(a² – ab + b²) (a – b) = a³ – a²b + ab² + a²b – ab² + b³ = a³ + b³
(a³ + a²b + ab² + b³) (a – b) = a 4 – b 4 (пишем только результат)
(x 4 – x³ + x² – x + 1) (x + 1) = x 5 + 1 и т. п.

Эти результаты достойны внимания и их полезно запомнить.

Особенно важен следующий случай умножения:

(a + b) (a – b) = a² + ab – ab – b² = a² – b²
или (x + y) (x – y) = x² + xy – xy – y² = x² – y²
или (x + 3) (x – 3) = x² + 3x – 3x – 9 = x² – 9 и т. п.

Во всех этих примерах, применяясь к арифметике, мы имеем произведение суммы двух чисел на их разность, а в результате получается разность квадратов этих чисел.

Если мы увидим подобный случай, то уже нет нужды выполнять умножение подробно, как это делалось выше, а можно сразу написать результат.

Напр., (3a + 1) ∙ (3a – 1). Здесь первый множитель, с точки зрения арифметики, есть сумма двух чисел: первое число есть 3a и второе 1, а второй множитель есть разность тех же чисел; потому в результате должно получиться: квадрат первого числа (т. е. 3a ∙ 3a = 9a²) минус квадрат второго числа (1 ∙ 1 = 1), т. е.

(3a + 1) ∙ (3a – 1) = 9a² – 1.

Также

(ab – 5) ∙ (ab + 5) = a²b² – 25 и т. п.

Итак, запомним

(a + b) (a – b) = a² – b²

т. е. произведение суммы из двух чисел на их разность равно разности квадратов этих чисел.

В представляемом видеоуроке мы подробно рассмотрим вопрос умножения многочлена на какое-либо выражение, отвечающее определению «моном», или одночлен. Мономом может выступать любое свободное числовое значение, представленное натуральным числом (в любой степени, с любым знаком) либо же некая переменная (с подобными атрибутами). При этом стоит помнить, что многочлен представляет собой набор алгебраических элементов, называемых членами полинома. Иногда некоторые члены могут быть приведены с подобностью и сокращены. Настоятельно рекомендуется проводить процедуру приведения подобных слагаемых после операции умножения. Конечным ответом, в таком случае, будет являться стандартизованная форма полинома.

Как следует из нашего видео, процесс умножения одночлена на многочлен можно рассматривать с двух позиций: линейной алгебры и геометрии. Рассмотрим операцию умножения многочлена с каждой стороны - это способствует универсальности применения правил, особенно в случае комплексных задач.

В алгебраическом понимании, умножение полинома на одночлен отвечает стандартному правилу умножения на сумму: каждый элемент суммы должен быть умножен на заданное значение, а полученное значение алгебраически сложено. Стоит понимать, что любой многочлен - это развернутая алгебраическая сумма. После умножения каждого члена полинома на некое значение мы получим новую алгебраическую сумму, которую принято приводить к стандартному виду, если это возможно, конечно.

Рассмотрим умножение многочлена в данном случае:

3а * (2а 2 + 3с - 3)

Легко понять, что тут выражение (2а 2 + 3с - 3) является многочленом, а 3а - свободным множителем. Для решения этого выражения достаточно переумножить каждый из трех членов полинома на 3а:

При этом стоит помнить, что знак является важным атрибутом переменной справа, и его нельзя потерять. Знак «+», как правило, не записывается, если с него начинается выражение. При умножении чисельно-буквенных выражений все коэффициенты при переменных элементарно перемножаются. Одинаковые переменные повышают степень. Разные переменные остаются неизменными, и записываются в одном элементе: а*с = ас. Знание этих простейших правил сложения способствует корректному, и быстрому решению любых подобных упражнений.

Мы получили три значения, которые являются, по сути, членами итогового многочлена, что и есть ответом на пример. Необходимо лишь алгебраически сложить данные значения:

6а 3 + 9ас +(- 9а) = 6а 3 + 9ас - 9а

Скобки раскрываем, сохраняя знаки, так как это алгебраическое сложение, и между мономами по определению стоит знак «плюс». Итоговый стандартный вид многочлена является корректным ответом на представляемый пример.

Геометрический вид умножения многочлена на одночлен представляет собой процесс нахождения площади прямоугольника. Предположим, у нас есть некий прямоугольник со сторонами а и с. Фигура разбита двумя отрезками на три прямоугольника различной площади, так, что сторона с является для всех общей, или одинаковой. А стороны а1, а2 и а3 в сумме дают начальную а. Как известно из аксиоматического определения площади прямоугольника, для нахождения этого параметра необходимо перемножить стороны: S = а*с. Либо же, S = (а1 + а2 + а3) * с. Проведем умножение многочлена (образованного сторонами меньших прямоугольников) на одночлен - главную сторону фигуры, и получим выражение для S: а1*с + а2*с + а3*с. Но если внимательно присмотреться, то можно заметить, что данный многочлен является суммой площадей трех меньших прямоугольников, которые и составляют начальную фигуру. Ведь для первого прямоугольника S = а1с (по аксиоме) и т.д. Алгебраически верность рассуждений при сложении многочлена подтверждается расчетами линейной алгебры. А геометрически - правилами сложения площадей в единой простейшей фигуре.

При проведении манипуляций с умножением многочлена на одночлен следует помнить, что при этом степени монома и полинома (общая) складываются - а полученное значение является степенью нового многочлена (ответа).

Все вышеперечисленные правила вместе с основами алгебраического сложения используются в примерах простейшего упрощения выражений, где проводится приведение подобных слагаемых и умножение элементов для упрощения всего многочлена.

§ 1 Умножение многочлена на одночлен

Когда речь идёт об умножении многочленов, то мы можем иметь дело с операциями двух видов: умножение многочлена на одночлен и умножение многочлена на многочлен. На этом занятии мы узнаем, как умножить многочлен на одночлен.

Основным правилом, которое используют при умножении многочлена на одночлен, является распределительное свойство умножения. Вспомним:

Чтобы сумму умножить на число, можно каждое слагаемое умножить на это число и полученные произведения сложить.

Это свойство умножения распространяется и на действие вычитания. В буквенной записи распределительное свойство умножения выглядит так:

(а + b) ∙ с = ас + bc

(а - b) ∙ с = ас - bc

Рассмотрим пример: многочлен (5аb - 3а2) умножить на одночлен 2b.

Введём новые переменные и обозначим 5аb - буквой х, 3а2 - буквой у, 2b - буквой с. Тогда наш пример примет вид:

(5аb - 3а2) ∙ 2b = (х - у) ∙с

Согласно распределительному закону это равно хс - ус. Теперь вернёмся к первоначальному значению новых переменных. Получим:

5аb∙2b - 3а2∙2b

Теперь приведём получившийся многочлен к стандартному виду. Получим выражение:

Таким образом, можно сформулировать правило:

Чтобы умножить многочлен на одночлен, надо каждый член многочлена умножить на этот одночлен и полученные произведения сложить.

Это же правило действует и при умножении одночлена на многочлен.

§ 2 Примеры по теме урока

При умножении многочленов на практике во избежание путаницы с определением получающихся знаков рекомендуют сначала определять и сразу записывать знак произведения, а уж потом находить и записывать произведение чисел и переменных. Вот как это выглядит на конкретных примерах.

Пример 1. (4а2b - 2а) ∙ (-5аb).

Здесь одночлен - 5аb надо умножить на два одночлена, составляющих многочлен, 4а2b и - 2а. Первое произведение будет со знаком «-», а второе - со знаком «+». Поэтому решение будет выглядеть так:

(4а2b - 2а) ∙ (-5аb) = - 4а2b ∙ 5аb + 2а ∙ 5аb = -20а3b2 + 10а2b

Пример 2. -ху(2х - 3у +5).

Здесь нам придётся выполнить три действия умножения, причём знак первого произведения будет «-», знак второго «+», знак третьего «-». Решение выглядит так:

Ху(2х - 3у + 5) = -ху∙2х + ху∙3у - ху∙5 = -2х2у + 3ху2 - 5ху.

Список использованной литературы:

  1. Мордкович А.Г, Алгебра 7 класс в 2 частях, Часть 1, Учебник для общеобразовательных учреждений/ А.Г. Мордкович. – 10 – е изд., переработанное – Москва, «Мнемозина», 2007
  2. Мордкович А.Г., Алгебра 7 класс в 2 частях, Часть 2, Задачник для общеобразовательных учреждений/ [А.Г. Мордкович и др.]; под редакцией А.Г. Мордковича – 10-е издание, переработанное – Москва, «Мнемозина», 2007
  3. Е.Е. Тульчинская, Алгебра 7 класс. Блиц опрос: пособие для учащихся общеобразовательных учреждений, 4-е издание, исправленное и дополненное, Москва, «Мнемозина», 2008
  4. Александрова Л.А., Алгебра 7 класс. Тематические проверочные работы в новой форме для учащихся общеобразовательных учреждений, под редакцией А.Г. Мордковича, Москва, «Мнемозина», 2011
  5. Александрова Л.А. Алгебра 7 класс. Самостоятельные работы для учащихся общеобразовательных учреждений, под редакцией А.Г. Мордковича – 6-е издание, стереотипное, Москва, «Мнемозина», 2010

На данном уроке будет изучена операция умножения многочлена на одночлен, являющаяся основой для изучения умножения многочленов. Вспомним распределительный закон умножения и сформулируем правило умножения любого многочлена на одночлен. Также вспомним некоторые свойства степеней. Кроме того, будут сформулированы типовые ошибки при выполнении различных примеров.

Тема: Многочлены. Арифметические операции над одночленами

Урок: Умножение многочлена на одночлен. Типовые задачи

Операция умножения многочлена на одночлен является основой для рассмотрения операции умножения многочлена на многочлен и нужно сначала научиться умножать многочлен на одночлен, чтобы разобраться в умножении многочленов.

Основой данной операции является распределительный закон умножения. Напомним его:

По существу, мы видим правило умножения многочлена, в данном случае двучлена, на одночлен и это правило можно сформулировать так: чтобы умножить многочлен на одночлен, нужно каждый член многочлена умножить на этот одночлен. Сложить алгебраически полученные произведения, после чего произвести над многочленом необходимые действия - а именно привести его к стандартному виду.

Рассмотрим пример:

Комментарий: данный пример решается, точно следуя правилу: каждый член многочлена умножается на одночлен. Для того, чтобы хорошо понять и усвоить распределительный закон, в данном примере члены многочлена были заменены на х и у соответственно, а одночлен на с, после этого выполнено элементарное действие в соответствии с распределительным законом и выполнена подстановка исходных значений. Следует быть внимательными со знаками и правильно выполнить умножение на минус единицу.

Рассмотрим пример умножения трехчлена на одночлен и убедимся, что оно ничем не отличается от такой же операции с двучленом:

Перейдем к решению примеров:

Комментарий: данный пример решается согласно распределительному закону и аналогично предыдущему примеру - каждый член многочлена умножается на одночлен, полученный многочлен уже записан в стандартном виде, поэтому упростить его нельзя.

Пример 2 - выполнить действия и получить многочлен в стандартном виде:

Комментарий: для решения данного примера сначала произведем умножение для первого и второго двучленов согласно распределительному закону, после этого приведем полученный многочлен к стандартному виду - приведем подобные члены.

Теперь сформулируем основные задачи, связанные с операцией умножения многочлена на одночлен, и приведем примеры их решения.

Задача1 - упростить выражение:

Комментарий: данный пример решается аналогично предыдущему, а именно вначале производится умножение многочленов на соответствующие одночлены, после этого приведение подобных.

Задача 2 - упростить и вычислить:

Пример 1:;

Комментарий: данный пример решается аналогично предыдущему, с тем лишь дополнением, что после приведения подобных членов нужно вместо переменной подставить ее конкретное значение и вычислить значение многочлена. Напомним, чтобы легко умножить десятичную дробь на десять, нужно переместить запятую на один разряд вправо.

Цель :

  1. Обеспечить усвоение первоначальных знаний по теме «Умножение одночлена на многочлен»;
  2. Развивать аналитико-синтезирующее мышление;
  3. Воспитывать мотивы учения и положительного отношения к знаниям.

Сплочение коллектива класса.

Задачи :

  1. Познакомиться с алгоритмом умножения одночлена на многочлен;
  2. Отрабатывать практическое применение алгоритма.

Оборудование : карточки с заданиями, компьютер, интерактивный проектор.

Тип урока : комбинированный.

Ход урока

I. Организационный момент:

Здравствуйте ребята, садитесь.

Сегодня мы продолжаем изучение раздела «Многочлены» и тема нашего урока «Умножение одночлена на многочлен». Откройте тетради и запишите число и тему урока «Умножение одночлена на многочлен».

Задача нашего урока вывести правило умножения одночлена на многочлен и учиться применять его на практике. Знания, полученные сегодня необходимы вам на протяжении изучения всего курса алгебры.

У вас на столах лежат бланки в которые мы будем заносить ваши баллы, набранные на протяжении всего урока, и по итогам будет выставлена оценка. Баллы мы будем изображать в виде смайликов. (Приложение 1 )

II. Этап подготовки учащихся к активному и осознанному усвоению нового материала.

При изучении новой темы нам потребуются знания, которые вы получили на предыдущих уроках.

Учащихся выполняют задания по карточкам по теме «Степень и ее свойства». (5-7 минут)

Фронтальная работа:

1) Даны два одночлена: 12p 3 и 4p 3

а) сумму;
б) разность;
в) произведение;
д) частное;
е) квадрат каждого одночлена.

2) Назовите члены многочлена и определите степень многочлена:

а)5ab – 7a 2 + 2b – 2,6
б)6xy 5 + x 2 y - 2

3) Нам сегодня потребуется распределительное свойство умножения.

Давайте сформулируем это свойство и запись в буквенном виде.

III. Этап усвоения новых знаний.

Мы с вами повторили правило умножения одночлена на одночлен, распределительное свойство умножения. А теперь давайте усложним задачу.

Разделитесь на 4 группы. У каждой группы на карточках 4 выражения. Попробуйте восстановить недостающее звено в цепи и пояснить свою точку зрения.

  • 8x 3 (6x 2 – 4x + 3) = ………………….……= 48x 5 – 32x 4 + 24x 3
  • 5a 2 (2a 2 + 3a – 7) = …………………...…..= 10a 4 + 15a 3 – 35a 2
  • 3y(9y 3 – 4y 2 – 6) = ………………………. =27y 4 – 12y 3 – 18y
  • 6b 4 (6b 2 + 4b – 5) = ………….……………= 36b 6 + 24b 5 – 30b 4

(Один представитель от каждой группы выходит к экрану, записывает недостающую часть выражения и поясняет свою точку зрения.)

Попробуйте сформулировать правило (алгоритм) умножения многочлена на одночлен.

Какое выражение получается в результате выполнения данных действий?

Чтобы проверить себя откройте учебник стр. 126 и прочитайте правило (1 человек читает вслух).

Совпадают ли наши выводы с правилом в учебнике? Запишите правило умножения одночлена на многочлен в тетрадь.

IV. Закрепление:

1. Физкультминутка:

Ребята, сядьте поудобнее, закройте глаза, расслабьтесь, сейчас мы отдыхаем, мышцы расслаблены, мы изучаем тему «Умножение одночлена на многочлен».

И так мы помним правило и повторяем за мной: чтобы умножить одночлен на многочлен нужно одночлен умножить на каждый член многочлена и записать сумму полученных выражений. Открываем глаза.

2. Работа по учебнику № 614 у доски и в тетрадях;

а) 2х(х 2 – 7х - 3) = 2х 3 – 14х 2 – 6х
б) -4в 2 (5в 2 – 3в - 2) = -20в 4 + 12в 3 + 8в 2
в) (3а 3 – а 2 + а)(- 5а 3) = -15а 6 + 5а 5 – 5а 4
г) (у 2 – 2,4у + 6)1,5у = 1,5у 3 – 3,6у 2 + 9у
д) -0,5х 2 (-2х 2 – 3х + 4) = х 4 + 1,5х 3 – 2х 2
е) (-3у 2 + 0,6у)(- 1,5у 3) = 4,5у 5 - 0,9у 4

(При выполнении номера анализируются наиболее типичные ошибки)

3. Соревнование по вариантам (расшифровка пиктограммы). (Приложение 2)

1 вариант: 2 вариант:
1) -3х 2 (- х 3 + х - 5)
2) 14 x (3 xy 2 x 2 y + 5)
3) -0,2 m 2 n (10 mn 2 – 11 m 3 – 6)
4) (3a 3 – a 2 + 0,1a)(-5a 2)
5) 1/2 с (6 с 3 d – 10c 2 d 2)
6) 1,4p 3 (3q – pq + 5p)
7) 10x 2 y(5,4xy – 7,8y – 0,4)
8) 3 а b(a 2 – 2ab + b 2)
1) 3а 4 х(а 2 – 2ах + х 3 - 1)
2) -11a(2a 2 b – a 3 + 5b 2)
3) -0,5 х 2 y(х y 3 – 3 х + y 2)
4) (6b 4 – b 2 + 0,01)(-7b 3)
5) 1/3m 2 (9m 3 n 2 – 15mn)
6) 1,6c 4 (2c 2 d – cd + 5d)
7) 10p 4 (0,7pq – 6,1q – 3,6)
8) 5xy(x 2 – 3xy + x 3)

Задания представлены на индивидуальных карточках и на экране. Каждый учащийся выполняет свое задание, находит букву и записывает ее на экране напротив того выражения, которое он преобразовывал. Если получен правильный ответ, то получится слово: молодцы! умники 7а