Как найти эдс самоиндукции формула катушки. Импульсный генератор эдс самоиндукции

>> Самоиндукция. Индуктивность

§ 15 САМОИНДУКЦИЯ. ИНДУКТИВНОСТЬ

Самоиндукция . Если по катушке идет переменный ток, то магнитный поток, пронизывающий катушку, меняется. Поэтому в том же самом проводнике, по которому идет переменный ток, возникает ЭДС индукции. Это явление называют самоиндукцией .

При самоиндукции проводящий контур выполняет двойную роль: переменный ток в проводнике вызывает появление магнитного потока через поверхность, ограниченную контуром. А так как магнитный поток изменяется со временем, то появляется ЭДС индукции . По правилу Ленца в момент нарастания тока напряженность вихревого электрического поля направлена против тока. Следовательно, в этот момент вихревое поле препятствует нарастанию тока. Наоборот, в момент уменьшения тока вихревое поле поддерживает его.

Явление самоиндукции можно наблюдать в простых опытах. На рисунке 2.13 показана схема параллельного соединения двух одинаковых ламп. Одну из них подключают к источнику через резистор R, а другую - последовательно с катушкой L, снабженной железным сердечником.

При замыкании ключа первая лампа вспыхивает практически сразу, а вторая - с заметным запозданием. ЭДС самоиндукции в цепи этой лампы велика, и сила тока не сразу достигает своего максимального значения (рис. 2.14).

Появление ЭДС самоиндукции при размыкании можно наблюдать в опыте с цепью, схематически показанной на рисунке 2.15. При размыкании ключа в катушке L возникает ЭДС самоиндукции, поддерживающая первоначальный ток. в результате в момент размыкания через гальванометр идет ток (цветная стрелка), направленный против начального тока до размыкания (черная стрелка). Сила тока при размыкании цепи может превышать силу тока, проходящего через гальванометр при замкнутом ключе. Это означает, что ЭДС самоиндукции больше ЭДС батареи элементов.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

На данном уроке мы узнаем, как и кем было открыто явление самоиндукции, рассмотрим опыт, с помощью которого продемонстрируем это явление, определим, что самоиндукция - это частный случай электромагнитной индукции. В конце урока введем физическую величину, показывающую зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, т. е. индуктивность.

Генри изобретал плоские катушки из полосовой меди, с помощью которых добивался силовых эффектов, выраженных более ярко, чем при использовании проволочных соленоидов. Ученый заметил, что при нахождении в цепи мощной катушки ток в этой цепи достигает своего максимального значения гораздо медленнее, чем без катушки.

Рис. 2. Схема экспериментальной установки Д. Генри

На рис. 2 изображена электрическая схема экспериментальной установки, на основе которой можно продемонстрировать явление самоиндукции. Электрическая цепь состоит из двух параллельно соединенных лампочек, подключенных через ключ к источнику постоянного тока. Последовательно с одной из лампочек подключена катушка. После замыкания цепи видно, что лампочка, которая соединена последовательно с катушкой, загорается медленнее, чем вторая лампочка (рис. 3).

Рис. 3. Различный накал лампочек в момент включения цепи

При отключении источника лампочка, подключенная последовательно с катушкой, гаснет медленнее, чем вторая лампочка.

Почему лампочки гаснут не одновременно

При замыкании ключа (рис. 4) из-за возникновения ЭДС самоиндукции ток в лампочке с катушкой нарастает медленнее, поэтому эта лампочка загорается медленнее.

Рис. 4. Замыкание ключа

При размыкании ключа (рис. 5) возникающая ЭДС самоиндукции мешает убыванию тока. Поэтому ток еще некоторое время продолжает течь. Для существования тока нужен замкнутый контур. Такой контур в цепи есть, он содержит обе лампочки. Поэтому при размыкании цепи лампочки должны некоторое время светиться одинаково, и наблюдаемое запаздывание может быть вызвано другими причинами.

Рис. 5. Размыкание ключа

Рассмотрим процессы, происходящие в данной цепи при замыкании и размыкании ключа.

1. Замыкание ключа.

В цепи находится токопроводящий виток. Пусть ток в этом витке течет против часовой стрелки. Тогда магнитное поле будет направлено вверх (рис. 6).

Таким образом, виток оказывается в пространстве собственного магнитного поля. При возрастании тока виток окажется в пространстве изменяющегося магнитного поля собственного тока. Если ток возрастает, то созданный этим током магнитный поток также возрастает. Как известно, при возрастании магнитного потока, пронизывающего плоскость контура, в этом контуре возникает электродвижущая сила индукции и, как следствие, индукционный ток. По правилу Ленца, этот ток будет направлен таким образом, чтобы своим магнитным полем препятствовать изменению магнитного потока, пронизывающего плоскость контура.

То есть для рассматриваемого на рис. 6 витка индукционный ток должен быть направлен по часовой стрелке (рис. 7), тем самым препятствуя нарастанию собственного тока витка. Следовательно, при замыкании ключа ток в цепи возрастает не мгновенно благодаря тому, что в этой цепи возникает тормозящий индукционный ток, направленный в противоположную сторону.

2. Размыкание ключа

При размыкании ключа ток в цепи уменьшается, что приводит к уменьшению магнитного потока сквозь плоскость витка. Уменьшение магнитного потока приводит к появлению ЭДС индукции и индукционного тока. В этом случае индукционный ток направлен в ту же сторону, что и собственный ток витка. Это приводит к замедлению убывания собственного тока.

Вывод: при изменении тока в проводнике возникает электромагнитная индукция в этом же проводнике, что порождает индукционный ток, направленный таким образом, чтобы препятствовать любому изменению собственного тока в проводнике (рис. 8). В этом заключается суть явления самоиндукции. Самоиндукция - это частный случай электромагнитной индукции.

Рис. 8. Момент включения и выключения цепи

Формула для нахождения магнитной индукции прямого проводника с током:

где - магнитная индукция; - магнитная постоянная; - сила тока; - расстояние от проводника до точки.

Поток магнитной индукции через площадку равен:

где - площадь поверхности, которая пронизывается магнитным потоком.

Таким образом, поток магнитной индукции пропорционален величине тока в проводнике.

Для катушки, в которой - число витков, а - длина, индукция магнитного поля определяется следующим соотношением:

Магнитный поток, созданный катушкой с числом витков N , равен:

Подставив в данное выражение формулу индукции магнитного поля, получаем:

Отношение числа витков к длине катушки обозначим числом :

Получаем окончательное выражение для магнитного потока:

Из полученного соотношения видно, что значение потока зависит от величины тока и от геометрии катушки (радиус, длина, число витков). Величина, равная , называется индуктивностью:

Единицей измерения индуктивности является генри:

Следовательно, поток магнитной индукции, вызванный током в катушке, равен:

С учетом формулы для ЭДС индукции , получаем, что ЭДС самоиндукции равна произведению скорости изменения тока на индуктивность, взятому со знаком «-»:

Самоиндукция - это явление возникновения электромагнитной индукции в проводнике при изменении силы тока, протекающего сквозь этот проводник.

Электродвижущая сила самоиндукции прямо пропорциональна скорости изменения тока, протекающего сквозь проводник, взятой со знаком минус. Коэффициент пропорциональности называется индуктивностью , которая зависит от геометрических параметров проводника.

Проводник имеет индуктивность, равную 1 Гн, если при скорости изменения тока в проводнике, равной 1 А в секунду, в этом проводнике возникает электродвижущая сила самоиндукции, равная 1 В.

С явлением самоиндукции человек сталкивается ежедневно. Каждый раз, включая или выключая свет, мы тем самым замыкаем или размыкаем цепь, при этом возбуждая индукционные токи. Иногда эти токи могут достигать таких больших величин, что внутри выключателя проскакивает искра, которую мы можем увидеть.

Список литературы

  1. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. - М.: Просвещение, 2010.
  2. Касьянов В.А. Физика. 11 кл.: Учеб. для общеобразоват. учреждений. - М.: Дрофа, 2005.
  3. Генденштейн Л.Э., Дик Ю.И., Физика 11. - М.: Мнемозина.
  1. Интернет-портал Myshared.ru ().
  2. Интернет-портал Physics.ru ().
  3. Интернет-портал Festival.1september.ru ().

Домашнее задание

  1. Вопросы в конце параграфа 15 (стр. 45) - Мякишев Г.Я. Физика 11 (см. список рекомендованной литературы)
  2. Индуктивность какого проводника равна 1 Генри?

Явление самоиндукции

Если по катушке идет переменный ток, то магнитный поток, пронизы-вающий катушку, меняется. Поэтому возникает ЭДС индукции в том же самом проводнике, по которому идет переменный ток. Это явление называют самоиндукцией .

При самоиндукции проводящий контур играет двоякую роль: по нему протекает ток, вызывающий индукцию, и в нем же появляется ЭДС индукции. Изменяющееся магнитное поле индуцирует ЭДС в том самом проводнике, по которому течет ток, создающий это поле.

В момент нарастания тока напряженность вихревого электрического поля в соответствии с правилом Ленца направлена против тока. Следовательно, в этот момент вихревое поле препятствует нарастанию тока. Наоборот, в момент уменьшения тока вихревое поле поддерживает его.

Это приводит к тому, что при замыкании цепи, содержащей источник постоянной ЭДС, определенное значение силы тока устанавливается не сразу, а постепенно с течением времени (рис. 9). С другой стороны, при отключении источника ток в замкнутых контурах прекращается не мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника, так как изменение тока и его магнитного поля при отключении источника происходит очень быстро.

Явление самоиндукции можно наблюдать на простых опытах. На рисунке 10 показана схема параллельного включения двух одинаковых ламп. Одну из них подключают к источнику через резистор R , а другую - последовательно с катушкой L с железным сердечником. При замыкании ключа первая лампа вспыхивает практически сразу, а вторая - с заметным запозданием. ЭДС самоиндукции в цепи этой лампы велика, и сила тока не сразу достигает своего максимального значения.

Появление ЭДС самоиндукции при размыкании можно наблюдать на опыте с цепью, схематически показанной на рисунке 11. При размыкании ключа в катушке L возникает ЭДС самоиндукции, поддерживающая первоначальный ток. В результате в момент размыкания через гальванометр течет ток (штриховая стрелка), направленный против начального тока до размыкания (сплошная стрелка). Причем сила тока при размыкании цепи превосходит силу тока, проходящего через гальванометр при замкнутом ключе. Это означает, что ЭДС самоиндукции E is больше ЭДС E батареи элементов.

Индуктивность

Величина магнитной индукции B , создаваемой током в любом замкнутом контуре, пропорциональна силе тока. Так как магнитный поток Ф пропорционален В , то можно утверждать, что

\(~\Phi = L \cdot I\) ,

где L – коэффициент пропорциональности между током в проводящем контуре и созданным им магнитным потоком, пронизывающим этот контур. Величину L называют индуктивностью контура или его коэффициентом самоиндукции.

Используя закон электромагнитной индукции, получим равенство:

\(~E_{is} = - \frac{\Delta \Phi}{\Delta t} = - L \cdot \frac{\Delta I}{\Delta t}\) ,

Из полученной формулы следует, что

индуктивность – это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.

Индуктивность подобно электроемкости, зависит от геометрических факторов: размеров проводника и его формы, но не зависит непосредственно от силы тока в проводнике. Кроме геометрии проводника, индуктивность зависит от магнитных свойств среды, в которой находится проводник.

Единицу индуктивности в СИ называют генри (Гн). Индуктивность проводника равна 1 Гн, если в нем при изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В:

1 Гн = 1 В / (1 А/с) = 1 В·с/А = 1 Ом·с

Энергия магнитного поля

Найдем энергию, которой обладает электрический ток в проводнике. Согласно закону сохранения энергии энергия тока равна той энергии, которую должен затратить источник тока (гальванический элемент, генератор на электростанции и др.) на создание тока. При прекращении тока эта энергия выделяется в той или иной форме.

Энергия тока, о которой сейчас пойдет речь, совсем иной природы, чем энергия, выделяемая постоянным током в цепи в виде теплоты, количество которой определяется законом Джоуля-Ленца.

При замыкании цепи, содержащей источник постоянной ЭДС, энергия источника тока первоначально расходуется на создание тока, т. е. на приведение в движение электронов проводника и образование связанного с током магнитного поля, а также отчасти на увеличение внутренней энергии проводника, т.е. на его нагревание. После того как установится постоянное значение силы тока, энергия источника расходуется исключительно на выделение теплоты. Энергия тока при этом уже не изменяется.

Выясним теперь, почему же для создания тока необходимо затратить энергию, т.е. необходимо совершить работу. Объясняется это тем, что при замыкании цепи, когда ток начинает нарастать, в проводнике появляется вихревое электрическое поле, действующее против того электрического поля, которое создается в проводнике благодаря источнику тока. Для того чтобы сила тока стала равной I , источник тока должен совершить работу против сил вихревого поля. Эта работа и идет на увеличение энергии тока. Вихревое поле совершает отрицательную работу.

При размыкании цепи ток исчезает и вихревое поле совершает положительную работу. Запасенная током энергия выделяется. Это обнаруживается по мощной искре, возникающей при размыкании цепи с большой индуктивностью.

Найдем выражение для энергии тока I L .

Работа А , совершаемая источником с ЭДС E за малое время Δt , равна:

\(~A = E \cdot I \cdot \Delta t\) . (1)

Согласно закону сохранения энергии эта работа равна сумме приращения энергии тока ΔW m и количества выделяемой теплоты \(~Q = I^2 \cdot R \cdot \Delta t\):

\(~A = \Delta W_m + Q\) . (2)

Отсюда приращение энергии тока

\(~\Delta W_m = A - Q = I \cdot \Delta t \cdot (E - I \cdot R)\) . (3)

Согласно закону Ома для полной цепи

\(~I \cdot R = E + E_{is}\) . (4)

где \(~E_{is} = - L \cdot \frac{\Delta I}{\Delta t}\) - ЭДС самоиндукции. Заменяя в уравнении (3) произведение I∙R его значением (4), получим:

\(~\Delta W_m = I \cdot \Delta t \cdot (E - E - E_{is}) = - E_{is} \cdot I \cdot \Delta t = L \cdot I \cdot \Delta I\) . (5)

На графике зависимости L∙I от I (рис. 12) приращение энергии ΔW m численно равно площади прямоугольника abcd со сторонами L∙I и ΔI . Полное изменение энергии при возрастании тока от нуля до I 1 численно равно площади треугольника ОВС со сторонами I 1 и L I 1 . Следовательно,

\(~W_m = \frac{L \cdot I^2_1}{2}\) .

Энергия тока I , текущего по цепи с индуктивностью L , равна

\(~W_m = \frac{L \cdot I^2}{2}\) .

Энергию магнитного поля, заключенную в единице объема пространства, занятого полем, называют объемной плотностью энергии магнитного поля ω m :

\(~\omega_m = \frac{W_m}{V}\) .

Если магнитное поле создано внутри соленоида длиной l и площадью витка S , тогда, учитывая, что индуктивность соленоида \(~L = \frac{\mu_0 \cdot N^2 \cdot S}{l}\) и модуль вектора индукции магнитного поля внутри соленоида \(~B = \frac{\mu_0 \cdot N \cdot I}{l}\) , получаем

\(~I = \frac{B \cdot l}{\mu_0 \cdot N} ; W_m = \frac{L \cdot I^2}{2} = \frac{1}{2} \cdot \frac{\mu_0 \cdot N^2 \cdot S}{l} \cdot \left (\frac{B \cdot l}{\mu_0 \cdot N} \right)^2 = \frac{B^2}{2 \cdot \mu_0} \cdot S \cdot l\) .

Так как V = S∙l , то плотность энергии магнитного поля

\(~\omega_m = \frac{B^2}{2 \cdot \mu_0}\) .

Магнитное поле, созданное электрическим током, обладает энергией, прямо пропорциональной квадрату силы тока. Плотность энергии магнитного поля пропорциональна квадрату магнитной индукции.

Литература

  1. Жилко В.В. Физика: Учеб. пособие для 10-го кл. общеобразоват. шк. с рус. яз. обучения / В.В. Жилко, А.В. Лавриненко, Л.Г. Маркович. – Мн.: Нар. асвета, 2001. – 319 с.
  2. Мякишев, Г.Я. Физика: Электродинамика. 10-11 кл. : учеб. для углубленного изучения физики / Г.Я. Мякишев, А.3. Синяков, В.А. Слободсков. – М.: Дрофа, 2005. – 476 с.

Самоиндукцией называется появление в проводнике электродвижущей силы (ЭДС), направленной в противоположную сторону относительно напряжения источника питания при протекании тока. При этом оно возникает в момент, когда сила тока в цепи изменяется. Изменяющийся электрической ток порождает изменяющееся магнитное поле, оно в свою очередь наводит ЭДС в проводнике.

Это похоже на формулировку закона электромагнитной индукции Фарадея, где сказано:

При прохождении магнитного потока через проводник, в последнем возникает ЭДС. Она пропорциональна скорости изменения магнитного потока (мат. производная по времени).

E=dФ/dt ,

Где E – ЭДС самоиндукции, измеряется в вольтах, Ф – магнитный поток, единица измерения – Вб (вебер, он же равен В/с)

Индуктивность

Мы уже сказали о том, что самоиндукция присуща индуктивным цепям, поэтому рассмотрим явление самоиндукции на примере катушки индуктивности.

Катушка индуктивности – это элемент, который представляет собой катушку из изолированного проводника. Для увеличения индуктивности увеличивают число витков или внутрь катушки помещают сердечник из магнитомягкого или другого материала.

Единица измерения индуктивности – Генри (Гн). Индуктивность характеризует то, насколько сильно проводник противодействует электрическому току. Так как вокруг каждого проводника, по которому протекает ток, образуется магнитное поле, и, если поместить проводник в переменное поле – в нем возникнет ток. В свою очередь магнитные поля каждого витка катушки складываются. Тогда вокруг катушки, по которой протекает ток, возникнет сильное магнитное поле. При изменении его силы в катушке будет изменяться и магнитный поток вокруг неё.

Согласно закону электромагнитной индукции Фарадея, если катушку будет пронизывать переменный магнитный поток, то в ней возникнет ток и ЭДС самоиндукции. Они будут препятствовать току, который протекал в индуктивности от источника питания к нагрузке. Их еще называют экстратоки ЭДС самоиндукции.

Формула ЭДС самоиндукции на индуктивности имеет вид:

То есть чем больше индуктивность, и чем больше и быстрее изменился ток – тем сильнее будет всплеск ЭДС.

При возрастании тока в катушке возникает ЭДС самоиндукции, которая направлена против напряжения источника питания, соответственно возрастание тока замедлится. То же самое происходит при убывании – самоиндукция приведет к появлению ЭДС, которое будет поддерживать ток в катушке в том же направлении, что и до этого. Отсюда следует, что напряжение на выводах катушки будет противоположным полярности источника питания.

На рисунке ниже вы видите, что при включении/отключении индуктивной цепи ток не резко возникает, а изменяется постепенно. Об этом говорят и законы коммутации.

Другое определение индуктивности звучит так: магнитный поток пропорционален току, но в его формуле индуктивность выступает в качестве коэффициента пропорциональности.

Трансформатор и взаимоиндукция

Если расположить две катушки в непосредственной близости, например, на одном сердечнике, то будет наблюдаться явление взаимоиндукции. Пропустим переменный ток по первой, тогда её переменный поток будет пронизывать витки второй и на её выводах появится ЭДС.

Это ЭДС будет зависеть от длины провода, соответственно количества витков, а также от величины магнитной проницаемости среды. Если их расположить просто около друг друга — ЭДС будет низким, а если взять сердечник из магнитомягкой стали – ЭДС будет значительно больше. Собственно, так и устроен трансформатор.

Интересно: такое взаимное влияние катушек друг на друга называют индуктивной связью.

Польза и вред

Если вам понятна теоретическая часть, стоит рассмотреть где применяется явление самоиндукции на практике. Рассмотрим на примерах того, что мы видим в быту и технике. Одно из полезнейших применений – это трансформатор, принцип его работы мы уже рассмотрели. Сейчас встречаются все реже, но ранее ежедневно использовались люминесцентные трубчатые лампы в светильниках. Принцип их работы основан на явлении самоиндукции. Её схемы вы можете увидеть ниже.

После подачи напряжения ток протекает по цепи: фаза — дроссель — спираль — стартер — спираль — ноль.

Или наоборот (фаза и ноль). После срабатывания стартера, его контакты размыкаются, тогда (катушка с большой индуктивностью) стремится поддержать ток в том же направлении, наводит ЭДС самоиндукции большой величины и происходит розжиг ламп.

Аналогично это явление применяется в цепи зажигания автомобиля или мотоцикла, которые работают на бензине. В них в разрыв между катушкой индуктивности и минусом (массой) устанавливают механический (прерыватель) или полупроводниковый ключ (транзистор в ЭБУ). Этот ключ в момент, когда в цилиндре должна образоваться искра для зажигания топлива, разрывает цепь питания катушки. Тогда энергия, запасенная в сердечнике катушки, вызывает рост ЭДС самоиндукции и напряжение на электроде свечи возрастает до тех пор, пока не наступит пробой искрового промежутка, или пока не сгорит катушка.

В блоках питания и аудиотехнике часто возникает необходимость убрать из сигнала лишние пульсации, шумы или частоты. Для этого используются фильтры разных конфигурации. Один из вариантов это LC, LR-фильтры. Благодаря препятствию роста тока и сопротивлению переменного тока, соответственно, возможно добиться поставленных целей.

Вред ЭДС самоиндукции приносит контактам выключателей, рубильников, розеток, автоматов и прочего. Вы могли заметить что, когда вытаскиваете вилку работающего пылесоса из розетки, очень часто заметна вспышка внутри неё. Это и есть сопротивление изменению тока в катушке (обмотке двигателя в данном случае).

В полупроводниковых ключах дело обстоит более критично – даже небольшая индуктивность в цепи может привести к их пробою, при достижении пиковых значений Uкэ или Uси. Для их защиты устанавливают снабберные цепи, на которых и рассеивается энергия индуктивных всплесков.

Заключение

Подведем итоги. Условиями возникновения ЭДС самоиндукции является: наличие индуктивности в цепи и изменение тока в нагрузке. Это может происходить как в работе, при смене режимов или возмущающих воздействиях, так и при коммутации приборов. Это явление может нанести вред контактам реле и пускателей, так как приводит к при размыкании индуктивных цепей, например, электродвигателей. Чтобы снизить негативное влияние большая часть коммутационной аппаратуры оснащается дугогасительными камерами.

В полезных целях явление ЭДС используется довольно часто, от фильтра для сглаживания пульсаций тока и фильтра частот в аудиоаппаратуре, до трансформаторов и высоковольтных катушек зажигания в автомобилях.

Надеемся, теперь вам стало понятно, что такое самоиндукция, как она проявляется и где ее можно использовать. Если возникли вопросы, задавайте их в комментариях под статьей!

Материалы

Самоиндукцией называется наведение ЭДС в проводнике при изменении электрического тока в этом проводнике.

Когда подается напряжение на катушку электромагнита, ток возрастает не сразу. Он увеличивается постепенно. Нарастание тока тормозится возникшим напряжением, противоположным приложенному. Это напряжение – электродвижущая сила (ЭДС) самоиндукции. Значение ЭДС постепенно уменьшается, и ток в электромагните возрастает до номинального значения.

Взаимодействие электрического и магнитного полей – причина самоиндукции

Электрическое и магнитное поля взаимосвязаны: электрический ток или меняющееся электрическое поле создает магнитное поле.

В свою очередь, меняющееся магнитное поле создает электрическое поле.

Рассмотрим процессы в проводящем контуре, когда в нем меняется электрический ток (например, его включают или выключают).

  • В проводнике, помещенном в меняющееся магнитное поле, наводится ЭДС.
  • Если в проводнике меняется величина электрического тока – возникает меняющееся магнитное поле.
  • Меняющееся магнитное поле, созданное током в проводнике, наводит ЭДС самоиндукции в этом же проводнике.

Не во всех электрических цепях возникает эффект самоиндукции. Лампочка накаливания мгновенно вспыхивает при подаче тока, и мгновенно гаснет при его отключении, а в электромагните, на который подается и выключается постоянное напряжение, процессы растянуты во времени. У лампочки и электромагнита разная инерционность.

В механике мерой инерционности является масса: чтобы привести в движение массивный предмет, нужно прикладывать усилие в течение некоторого времени.

В электротехнике мерой инерционности является величина, названная индуктивностью. Она обозначается символом L . Единица измерения индуктивности – Генри (Гн), а также производные единицы: миллиГенри (мГн), микроГенри (мкГн) и так далее. Чем больше индуктивность цепи, тем дольше и мощнее протекают переходные процессы. Лампочка накаливания имеет очень малую индуктивность, а у электромагнита индуктивность большая.

В радиотехнике и электротехнике используются дроссели – детали, имеющие нормированные значения индуктивности.

На рисунке приведена схема опыта, демонстрирующего явление самоиндукции.

Катушка, намотанная на ферритовый сердечник, имеет значительную индуктивность. Источник питания – батарейка с номиналом полтора вольта. Пока тумблер находится во включенном состоянии, лампочка горит тускло, поскольку напряжения батарейки для нее недостаточно. После размыкания тумблера лампочка вспыхивает ярко и потом гаснет.

Почему лампочка вспыхивает после отключения напряжения питания? Через нее разряжается ЭДС самоиндукции, наведенная в катушке в момент выключения напряжения.

Но почему свет не просто продолжает гореть, а вспыхивает ярче, чем при включенном тумблере? ЭДС самоиндукции превышает номинальное напряжение батарейки. Рассмотрим, от чего зависит такой эффект.

От чего зависит ЭДС самоиндукции?

ЭДС самоиндукции, возникающая в электрической цепи, зависит от ее индуктивности и от скорости изменения тока в цепи.

Скорость изменения тока имеет важное значение. Если он мгновенно выключается, то есть скорость изменения очень большая, то и ЭДС самоиндукции велико. Наведенное напряжение разряжается через параллельные ветви цепи (в опыте с лампочкой – через лампочку).

Самоиндукция и переходные процессы в электрических цепях

Индуктивность электрической плитки или лампочки накаливания очень мала, и ток в этих электроприборах, при включении и выключении, возникает или исчезает практически мгновенно. Индуктивность электродвигателя велика, и он «выходит на режим» в течение нескольких минут.

Если выключить ток в большом электромагните с большим значением индукции, допустив высокую скорость уменьшения тока, то между контактами выключателя вспыхивает искра, а в случае большого тока может загореться вольтова дуга. Это опасное явление, поэтому в цепях с большой индуктивностью ток снижают постепенно, используя реостат (элемент с переменным электрическим сопротивлением).

Безопасное отключение электроэнергии – серьезна проблема. На все выключатели действуют «ударные нагрузки», возникающие из-за ЭДС самоиндукции при отключении тока, и выключатели «искрят». Для каждого типа выключателей указывается максимальное значение тока, которое можно коммутировать. Если ток превышает допустимое значение, в выключателе может вспыхнуть электрическая дуга.

На опасных производствах, в угольных шахтах, хранилищах нефтепродуктов простое искрение выключателей недопустимо. Здесь применяются взрывобезопасные выключатели, надежно защищенные герметичным пластмассовым корпусом. Цена таких выключателей в десятки раз выше, чем обычных – это необходимая плата за безопасность.