Диффузный хроматин. Ядро, его строение и функции. Хроматин. Хромосомы. Кариотип. От чего зависит конденсация вещества наследственности

Генетический материал эукариотических организмов имеет очень сложную организацию. Молекулы ДНК, находящиеся в клеточном ядре, входят в состав особого многокомпонентного вещества – хроматина.

Определение понятия

Хроматином называется содержащий наследственную информацию материал клеточного ядра, представляющий собой сложный функциональный комплекс ДНК со структурными белками и другими элементами, обеспечивающими упаковку, хранение и реализацию кариотического генома. В упрощенной трактовке это вещество, из которого состоят хромосомы. Термин происходит от греческого "хрома" – цвет, краска.

Понятие было введено Флемингом еще в 1880 году, но до сих пор идут споры о том, что такое хроматин, с точки зрения биохимического состава. Неопределенность касается небольшой части компонентов, не участвующих в структурировании генетических молекул (некоторые ферменты и рибонуклеиновые кислоты).

На электронной фотографии интерфазного ядра хроматин визуализируется как многочисленные участки темной материи, которые могут быть мелкими и разрозненными или объединяться в крупные плотные скопления.

Конденсация хроматина во время клеточного деления приводит к образованию хромосом, которые видны даже в обычном световом микроскопе.

Структурные и функциональные компоненты хроматина

С целью определить, что такое хроматин на биохимическом уровне, ученые экстрагировали это вещество из клеток, переводили в раствор и в таком виде изучали компонентный состав и структуру. При этом использовались как химические, так и физические методы, включая технологии электронной микроскопии. Выяснилось, что химический состав хроматина на 40% представлен длинными молекулами ДНК и почти на 60% – различными белками. Последние подразделяются на две группы: гистоны и негистоновые.

Гистонами называют большое семейство основных ядерных белков, которые прочно связываются с ДНК, формируя структурный скелет хроматина. Их количество примерно равно процентному содержанию генетических молекул.

Остальная часть (до 20%) протеиновой фракции приходится на ДНК-связывающие и пространственно-модифицирующие белки, а также ферменты, принимающие участие в процессах считывания и копирования генетической информации.

Помимо основных элементов, в составе хроматина в небольшом количестве обнаруживаются рибонуклеиновые кислоты (РНК), гликопротеиды, углеводы и липиды, однако вопрос об их ассоциации с ДНК-упаковочным комплексом до сих пор открыт.

Гистоны и нуклеосомы

Молекулярная масса гистонов варьирует в пределах от 11 до 21 кДа. Большое количество остатков основных аминокислот лизина и аргинина придают этим белкам положительный заряд, способствуя формированию ионных связей с противоположно заряженными фосфатными группами двойной спирали ДНК.

Выделяют 5 разновидностей гистонов: H2A, H2B, H3, H4 и H1. Первые четыре типа участвуют в формировании основной структурной единицы хроматина – нуклеосомы, которая состоит из кора (белковой сердцевины) и обмотанной вокруг него ДНК.

Нуклеосомный кор представлен октамерным комплексом из восьми молекул гистонов, в который входят тетрамер H3-H4 и димер Н2A-H2B. Участок ДНК протяженностью около 146 нуклеотидных пар накручивается на поверхность белковой частицы, образуя 1,75 витка, и переходит в линкерную последовательность (примерно 60 н. п.), соединяющую нуклеосомы друг с другом. Молекула H1 связывается с линкерной ДНК, защищая ее от действия нуклеаз.


Гистоны могут подвергаться различным модификациям, таким как ацетилирование, метилирование, фосфорилирование, ADP-рибозилирование и взаимодействие с убивиктиновым белком. Эти процессы влияют на пространственную конфигурацию и плотность упаковки ДНК.

Негистоновые белки

Существует несколько сотен разновидностей негистоновых белков с различными свойствами и функциями. Их молекулярная масса варьирует от 5 до 200 кДа. Особую группу составляют сайт-специфические белки, каждый из которых комплементарен определенному участку ДНК. В эту группу входят 2 семейства:

  • "цинковые пальцы" – узнают фрагменты длиной в 5 нуклеотидных пар;
  • гомодимеры – характеризуются структурой "спираль-поворот-спираль" во фрагменте, связанном с ДНК.

Лучше всего изучены так называемые белки высокой подвижности (HGM-белки), постоянно ассоциированые с хроматином. Такое наименование семейство получило из-за высокой скорости перемещения белковых молекул в электрофорезном геле. Эта группа занимает большую часть негистоновой фракции и включает в себя четыре основных типа HGM-белков: HGM-1, HGM-14, HGM-17 и HMO-2. Они выполняют структурную и регуляторную функции.

К негистоновым белкам относят также ферменты, обеспечивающие транскрипцию (процесс синтеза матричной РНК), репликацию (удвоение ДНК) и репарацию (устранение повреждений в генетической молекуле).

Уровни компактизации ДНК

Особенность структуры хроматина такая, что позволяет нитям ДНК с суммарной длиной более метра поместиться в ядро диаметром около 10 мкм. Такое возможно благодаря многоступенчатой системе упаковки генетических молекул. Общая схема компактизации включает пять уровней:

  1. нуклеосомная нить диаметром 10–11 нм;
  2. фибрилла 25–30 нм;
  3. петлевые домены (300 нм);
  4. волокно толщиной 700 нм;
  5. хромосомы (1200 нм).

Такая форма организации обеспечивает уменьшение длины исходной молекулы ДНК в 10 тысяч раз.


Нить диаметром 11 нм образована рядом нуклеосом, связанных линкерными участками ДНК. На электронной микрофотографии такая структура напоминает нанизанные на леску бусы. Нуклеосомная нить сворачивается в спираль по типу соленоида, образуя фибриллу толщиной 30 нм. В ее формировании участвует гистон H1.


Соленоидная фибрилла складывается в петли (иначе – домены), которые закрепляются на поддерживающем внутриядерном матриксе. Каждый домен содержит от 30 до 100 тысяч пар нуклеотидов. Такой уровень компактизации характерен для интерфазного хроматина.

Структура толщиной 700 нм образуется при спирализации доменной фибриллы и называется хроматидой. В свою очередь, две хроматиды формируют пятый уровень организации ДНК – хромосому диаметром 1400 нм, которая становится видна на стадии митоза или мейоза.

Таким образом, хроматин и хромосома – это формы упаковки генетического материала, зависящие от жизненного цикла клетки.

Хромосомы

Хромосома состоит из двух идентичных друг другу сестринских хроматид, каждая из которых образована одной суперспирализованной молекулой ДНК. Половинки соединяются особым фибриллярным тельцем, называемым центромерой. Одновременно эта структура является перетяжкой, разделяющей каждую хроматиду на плечи.


В отличие хроматина, представляющего собой структурный материал, хромосома – это дискретная функциональная единица, характеризующаяся не только структурой и составом, но и уникальным генетическим набором, а также определенной ролью в реализации механизмов наследственности и изменчивости на клеточном уровне.

Эухроматин и гетерохроматин

Хроматин в ядре существует в двух формах: менее спирализованной (эухроматин) и более компактной (гетерохроматин). Первая форма соответствует транскрипционно-активным участкам ДНК и поэтому структурирована не так плотно. Гетерохроматин подразделяется на факультативный (может переходить из активной формы в плотную неактивную в зависимости от стадии жизненного цикла клетки и необходимости реализовать те или иные гены) и конститутивный (постоянно уплотнен). Во время митотического или мейотического деления весь хроматин неактивен.

Конститутивный гетерохроматин обнаружен возле центромер и в концевых участках хромосомы. Результаты электронной микроскопии показывают, что такой хроматин сохраняет высокую степень конденсации не только на стадии деления клетки, но и во время интерфазы.

Биологическая роль хроматина

Основная функция хроматина заключается в плотной упаковке большого количества генетического материала. Однако просто уместить ДНК в ядре для жизнедеятельности клетки недостаточно. Необходимо, чтобы эти молекулы должным образом "работали", то есть, могли передавать заключенную в них информацию по системе ДНК-РНК-белок. Кроме этого, клетке нужно распределять генетический материал во время деления.

Устройство хроматина полностью отвечает этим задачам. Белковая часть содержит все необходимые ферменты, а особенности структуры позволяют им взаимодействовать с определенными участками ДНК. Поэтому, второй важной функцией хроматина является обеспечение всех процессов, связанных с реализацией ядерного генома.

Хроматин – основной компонент клеточного ядра – достаточно легко получить из выделенных интерфазных ядер и из выделенных митотических хромосом. Для этого используют его свойство переходить в растворенное состояние при экстракции водными растворами с низкой ионной силой или просто деионизованной водой. При этом участки хроматина набухают и переходят в гель. Чтобы такие препараты перевести в настоящие растворы, необходимы сильные механические воздействия: встряхивание, перемешивание, дополнительная гомогенизация. Это, конечно, приводит к частичному разрушению исходной структуры хроматина, дробит его на мелкие фрагменты, но практически не меняет его химического состава.

Фракции хроматина, полученные из разных объектов, обладают довольно однообразным набором компонентов. Было найдено, что суммарный химический состав хроматина из интерфазных ядер и митотических хромосом мало отличаются друг от друга. Главными компонентами хроматина являются ДНК и белки, среди которых основную массу составляют гистоны и негистоновые белки (см табл. 3).

Таблица 3. Химический состав хроматина. Содержание белков и РНК дано по отношению к ДНК

В среднем в хроматине около 40% приходится на ДНК и около 60 % на белки, среди которых специфические ядерные белки-гистоны , составляют от 40 до 80% от всех белков, входящих в состав выделенного хроматина. Кроме того в состав хроматиновой фракциии входят мембранные компоненты, РНК, углеводы, липиды, гликопротеиды. Вопрос о том, насколько эти минорные компоненты входят в структуру хроматина еще не решен. Так, например, РНК может представлять собой транскрибируемую РНК, которая еще не потеряла связь с матрицей ДНК. Другие же минорные компоненты могут представлять собой вещества соосажденных фрагментов ядерной оболочки.

В структурном отношении хроматин представляет собой нитчатые комплексные молекулы дезоксирибонуклеопротеида (ДНП), которые состоят из ДНК, ассоциированной с гистонами (см. рис. 57). Поэтому укоренилось другое название хроматина – нуклеогистон . Именно за счет ассоциации гистонов с ДНК образуются очень лабильные, изменчивые нуклеиново-гистоновые комплексы, где отношения ДНК: гистон равно примерно единице, т.е. они присутствуют в равных весовых количествах. Эти нитчатые фибриллы ДНП и есть элементарные хромосомные или хроматиновые нити, толщина которых в зависимости от степени упаковки ДНК может колебаться от 10 до 30 нм. Эти фибриллы ДНП могут в свою очередь дополнительно компактизоваться с образованием более высоких уровней структуризации ДНП, вплоть до митотической хромосомы. Роль некоторых негистоновых белков заключается именно в образовании высоких уровней компактизации хроматина.

ДНК хроматина

В препарате хроматина на долю ДНК приходится обычно 30-40%. Эта ДНК представляет собой двухцепочечную спиральную молекулу подобно чистой выделенной ДНК в водных растворах. Об этом говорят многие экспериментальные данные. Так, при нагревании растворов хроматина наблюдается повышение оптической плотности раствора, так называемый гиперхромный эффект, связанный с разрывом межнуклеотидных водородных связей между цепями ДНК, подобно тому, что происходит при нагревании (плавлении) чистой ДНК.

Вопрос о размере, длине молекул ДНК в составе хроматина имеет важное значение для понимания структуры хромосомы в целом. При стандартных методах выделения ДНК хроматина обладает молекулярной массой 7-9 х 10 6 , что значительно меньше молекулярной массы ДНК из кишечной палочки (2,8 х 10 9). Такую сравнительно малую молекулярную массу ДНК из препаратов хроматина можно объяснить механическими повреждениями ДНК в процессе выделения хроматина. Если же выделять ДНК в условиях, исключающих встряхивание, гомогенизацию и другие воздействия, то удается из клеток получить молекулы ДНК очень большой длины. Длина молекул ДНК из ядер и хромосом эукариотических клеток может быть изучена с помощью метода светооптической радиоавтографии, подобно тому как это изучалось на прокариотических клетках.

Было обнаружено, что в составе хромосом длина индивидуальных линейных (в отличие от прокариотических хромосом) молекул ДНК может достигать сотен микрометров и даже нескольких сантиметров. Так, у разных объектов были получены молекулы ДНК от 0,5 мм до 2 см. Эти результаты показали, что есть близкое совпадение между расчетной длиной ДНК на хромосому и радиоавтографическим наблюдением.

Таблица 4. Содержание ДНК в клетках некоторых объектов (пг, 10 -12 г)

После мягкого лизиса клеток эукариот можно прямо определять молекулярные массы ДНК физико-химическими методами. Было показано, что максимальная молекулярная масса молекулы ДНК дрозофилы равна 41 х 10 9 , что соответствует длине около 2 см. У некоторых дрожжей на хромосому приходится молекула ДНК с молекулярной массой 1 х 10 8 -10 9 , которая имеет размеры около 0,5 мм.

Такие длинные ДНК представляют собой одну молекулу, а не несколько более коротких, сшитых гуськом с помощью белковых связок, как считали некоторые исследователи. К этому заключению пришли после того, как оказалось, что длина молекул ДНК не изменяется после обработки препаратов протеолитическими ферментами.

Общее количество ДНК, входящее в ядерные структуры клеток, в геном организмов, колеблется от вида к виду, хотя у микроорганизмов количество ДНК на клетку значительно ниже, чем у беспозвоночных, высших растений и животных. Так, у мыши на ядро приходится почти в 600 раз больше ДНК, чем у кишечной палочки. Сравнивая количество ДНК на клетку у эукариотических организмов, трудно уловить какие-либо корреляции между степенью сложности организма и количеством ДНК на ядро. Примерно одинаковое количество ДНК имеют такие различные организмы как лен, морской еж, окунь (1,4-1,9 пг) или рыба голец и бык (6,4 и 7 пг).

Значительны колебания количества ДНК в больших таксономических группах. Среди высших растений количество ДНК у разных видов может отличаться в сотни раз, так же, как и среди рыб, в десятки раз отличается количество ДНК у амфибий.

У некоторых амфибий в ядрах количество ДНК больше, чем в ядрах человека в 10-30 раз, хотя генетическая конституция человека несравненно сложнее, чем у лягушек. Следовательно, можно предполагать, что «избыточное» количество ДНК у более низко организованных организмов либо не связано с выполнением генетической роли, либо число генов повторяется то или иное число раз.

Разрешить эти вопросы оказалось возможным на основании изучения кинетики реакции ренатурации или гибридизации ДНК. Если фрагментированные молекулы ДНК в растворах подвергнуть тепловой денатурации, а затем инкубировать их при температуре несколько более низкой, чем та, при которой происходит денатурация, то идет восстановление исходной двуспиральной структуры фрагментов ДНК за счет воссоединения комплементарных цепей – ренатурация. Для ДНК вирусов и прокариотических клеток было показано, что скорость такой ренатурации прямо зависит от величины генома; чем больше геном, чем больше количество ДНК на частицу или клетку, тем больше нужно времени для случайного сближения комплементарных цепей и специфической реассоциации большего числа разных по нуклеотидной последовательности фрагментов ДНК (рис. 53). Характер кривой реассоциации ДНК прокариотических клеток указывает на отсутствие повторяющихся последовательностей оснований в геноме прокариот; все участки их ДНК несут уникальные последовательности, число и разнообразие которых отражает степень сложности генетической композиции объектов и, следовательно, их общей биологической организации.

Совсем другая картина реассоциации ДНК наблюдается у эукариотических организмов. Оказалось, что в состав их ДНК входят фракции, которые ренатурируют с гораздо более высокой скоростью, чем можно было бы предполагать на основании размера их генома, а также фракция ДНК, ренатурирующая медленно, подобно уникальным последовательностям ДНК прокариот. Однако для эукариот требуется значительно большее время для ренатурации этой фракции, что связано с общим большим размером их генома и с большим числом различных уникальных генов.

В той части ДНК эукариотов, которая отличается высокой скоростью ренатурации, различают две подфракции: 1) фракцию с высоко или часто повторяющимися последовательностями, где сходные участки ДНК могут быть повторены 10 6 раз; 2) фракцию умеренно повторяющихся последовательностей, встречающихся в геноме 10 2 -10 3 раз. Так, у мыши во фракцию ДНК с часто повторяющимися последовательностями входит 10% от общего количества ДНК на геном и 15% приходится на фракцию с умеренно повторяющимися последовательностями. Остальные 75% от всей ДНК мыши представлены уникальными участками, соответствующими большому числу различных неповторяющихся генов.

Фракции с часто повторяющимися последовательностями могут обладать иной плавучей плотностью, чем основная масса ДНК, и поэтому могут быть выделены в чистом виде, как так называемые фракции сателлитной ДНК . У мыши эта фракция имеет плотность, равную 1,691 г/мл, а основная часть ДНК - 1,700 г/мл. Эти различия плотности определяются различиями в нуклеотидном составе. Например, у мыши в этой фракции имеется 35% Г и Ц пар, а в основном пике ДНК - 42%.

Как оказалось, сателлитная ДНК, или фракция ДНК с часто повторяющимися последовательностями, не участвует в синтезе основных типов РНК в клетке, не связана с процессом синтеза белка. Этот вывод сделан был на основании того, что ни один из типов РНК клетки (тРНК, иРНК, рРНК) не гибридизируется с сателлитными ДНК. Следовательно, на этих ДНК нет последовательностей, отвечающих за синтез клеточных РНК, т.е. сателлитные ДНК не являются матрицами для синтеза РНК, не участвуют в транскрипции.

Существует гипотеза о том, что высокоповторяющиеся последовательности, не участвующие непосредственно в синтезе белков, могут нести информацию, играющую важную структурную роль в сохранении и функционировании хромосом. К ним могут быть отнесены многочисленные участки ДНК, связанные с белками остова интерфазного ядра (см. ниже), участки начала репликации или транскрипции, а также участки ДНК, регулирующие эти процессы.

Методом гибридизации нуклеиновых кислот прямо на хромосомах (in situ ) была изучена локализация этой фракции. Для этого на изолированной сателлитной ДНК с помощью бактериальных ферментов синтезировали меченую 3 Н-уридином РНК. Затем цитологический препарат с хромосомами подвергали такой обработке, при которой происходит денатурация ДНК (повышенная температура, щелочная среда и др.). После этого на препарат помещали меченную 3 Н РНК и добивались гибридизации между ДНК и РНК. Радиоавтографически было обнаружено, что большая часть метки локализуется в зоне первичных перетяжек хромосом, в зоне их центромерных участков. Метка обнаруживалась также и в других участках хромосом, но очень слабо (рис. 54).

За последние 10 лет сделаны большие успехи в изучении центромерных ДНК , особенно у дрожжевых клеток. Так у S. cerevisiae центромерная ДНК состоит из повторяющихся участков по 110 п.н. Она состоит из двух консервативных участков (I и III) и центрального элемента (II), обогащенного АТ-парами оснований. Сходное строение ДНК центромеры имеют хромосомы дрозофилы. Центромерная ДНК человека (альфоидная сателлитная ДНК) состоит из тандема мономеров по 170 п.н., организованных в группы димеров или пентамеров, которые в свою очередь образуют большие последовательности по 1-6 х 10 3 п.н. Такая самая большая единица повторена 100-1000 раз. С этой специфической центромерной ДНК комплексируются особые центромерные белки, участвующие в образовании кинетохора , структуры, обеспечивающей связь хромосом с микротрубочками веретена и в движении хромосом в анафазе (см. ниже).

ДНК с высокоповторяющимися последовательностями обнаружена также в теломерных участках хромосом многих эукариотических организмов (от дрожжей до человека). Здесь чаще всего встречаются повторы, в которые входят 3-4 гуаниновых нуклеотида. У человека теломеры содержат 500-3000 повторов TTAGGG. Эти участки ДНК выполняют особую роль - ограничивать хромосому с концов и предотвращать ее укорачивание в процессе многократной репликации.

Недавно было найдено, что высокоповторяющиеся последовательности ДНК интерфазных хромосом связываются специфически с белками - ламинами, подстилающими ядерную оболочку, и участвуют в заякоревании растянутых деконденсированных интерфазных хромосом, тем самым определяют порядок в локализации хромосом в объеме интерфазного ядра.

Сделано предположение, что сателлитная ДНК может участвовать в узнавании гомологичных районов хромосом при мейозе. По другим предположениям, участки с часто повторяющимися последовательностями играют роль разделителей (спейсеров) между различными функциональными единицами хромосомной ДНК, например между репликонами (см. ниже).

Как оказалось, фракция умеренно повторяющихся (от 10 2 до 10 5 раз) последовательностей принадлежит к пестрому классу участков ДНК, играющих важную роль в процессах создания аппарата белкового синтеза. В эту фракцию входят гены рибосомных ДНК, которые могут быть повторены у разных видов от 100 до 1000 раз. В эту фракцию входят многократно повторенные участки для синтеза всех тРНК. Более того, некоторые структурные гены, ответственные за синтез определенных белков, также могут быть многократно повторены, представлены многими копиями. Такими являются гены для белков хроматина - гистонов, повторяющихся до 400 раз.

Кроме того, в эту фракцию входят участки ДНК с разными последовательностями (по 100-400 нуклеотидных пар), также многократно повторенными, но рассеянными по всему геному. Их роль еще не до конца ясна. Высказывается предположение, что такие участки ДНК могут представлять собой акцепторные или регуляторные участки разных генов.

Итак, ДНК эукариотических клеток гетерогенна по составу, содержит несколько классов последовательностей нуклеотидов: часто повторяющиеся последовательности (> 10 6 раз), входящие во фракцию сателлитной ДНК и не транскрибирующиеся; фракция умеренно повторяющихся последовательностей (10 2 -10 5), представляющих блоки истинных генов, а также короткие последовательности, разбросанные по всему геному; фракция уникальных последовательностей, несущая информацию для большинства белков клетки.

Исходя из этих представлений становятся понятными те различия в количестве ДНК, которые наблюдаются у разных организмов: они могут быть связаны с неодинаковой долей тех или иных классов ДНК в геноме организмов. Так, например, у амфибии Amphiuma (у которой ДНК в 20 раз больше, чем у человека) на долю повторяющихся последовательностей приходится до 80% от всей ДНК, у луков - до 70, у лосося - до 60% и т.п. Истинное же богатство генетической информации должна отображать фракция уникальных последовательностей. Не нужно забывать, что в нативной, нефрагментированной молекуле ДНК хромосомы все участки, включающие уникальные, умеренно и часто повторяющиеся последовательности, связаны в единую гигантскую ковалентную цепь ДНК.

Молекулы ДНК гетерогенны не только по участкам разной нуклеотидной последовательности, но и различны в отношении их синтетической активности.

Ядро – важнейший структурный компонент живых клеток эукариот.

Впервые ядро было описано Р. Броуном в 1831 г. Морфологию и функции ядра исследовали Флемминг, Страсбургер, Чистяков, Геккель, Баранецкий, Навашин, Герасимов, Беляев и др. Большинство клеток содержат одно ядро, но встречаются двуядерные (инфузория-туфелька) и многоядерные (скелетные мышцы, печень) клетки. Некоторые высокоспециализированные клетки утрачивают ядра (эритроциты млекопитающих и клетки ситовидных трубок у покрытосеменных).

Ядро представляет собой эластичное тело, отделенное от цитоплазмы ядерной оболочкой. Форма ядра, как правило, круглая, но бывает веретеновидная, нитевидная, сегментированная (лопастная) и др. Впячивания и выпячивания ядерной оболочки значительно увеличивают поверхность ядра, тем самым усиливая связь ядерных и цитоплазматических структур и веществ. Ядро всегда располагается в цитоплазме.

По физическим и химическим свойствам ядро близко к цитоплазме.

Рис. Схема ультраструктурой организации интерфазного ядра: 1 - ядерная мембрана с порами (2), 3 - плотный хроматин; 4 - рыхлый хроматин; 5 - ядрышко; 6 - интерхроматиновые гранулы; 7 - перихроматиновые гранулы; 8 - перихроматиновые фибриллы; 9 - кариоплазма.

Ядро состоит из ядерной оболочки, ядерного сока, ядрышка и хроматина.

Ядерная оболочка (кариолемма) очень тонкая (300-500 А о); образована двумя мембранами (наружной и внутренней), между которыми имеется полость – перинуклеарное пространство . Наружная ядерная мембрана покрыта рибосомами, внутренняя мембрана гладкая. Ядерная оболочка пронизана порами (округлые отверстия диметром 200-300 А о), через которые между ядром и цитоплазмой происходит обмен различными веществами. Также вещества из ядра в цитоплазму и из цитоплазмы в ядро попадают путем отшнуровывания выростов и выпячиваний ядерной оболочки. Кроме того, мелкие молекулы могут диффундировать через ядерную оболочку. В определенных точках ядерная мембрана непосредственно переходит в мембрану эндоплазматической сети, с которой тождественна по своей физико-химической структуре. Несмотря на активный обмен веществ между ядром и цитоплазмой, ядерная оболочка отграничивает ядерное содержимое от цитоплазмы, делая возможным существование особой внутриядерной среды, отличной от окружающей цитоплазмы.

Рис. Пути обмена веществ между ядром и цитоплазмой. 1 - обмен веществ через ядерные поры, 2 - впячивание цитоплазмы внутрь ядра, 3 - впячивание ядерной оболочки, 4 - продвижение ядерной мембраны в эндоплазматическую сеть; 5 - выведение части каналов во внешнее межклеточное пространство.

Ядерный сок (кариоплазма, нуклеоплазма, кариолимфа) представляет собой желеобразный раствор – систему гидрофильных коллоидов – в котором находятся разнообразные белки, нуклеотиды, а также хромосомы и ядрышко. По химическому составу ядерный сок близок к матриксу цитоплазмы, однако в нем значительно выше содержание нуклеотидов. Функция ядерного сока – связь ядерных структур.

Ядрышко образование более плотное, чем основная масса ядра, собственной оболочки не имеет, состоит из крупных гранул, по форме и размерам близко к рибосомам. Матрикс ядрышка имеет жидку консистенцию. Формируется ядрышко в области вторичной перетяжки (ядрышковый организатор). Функция ядрышка – синтез р-РНК и соединение их с белками, т.е. сборка субъединиц рибосом.

Хроматин – глыбки, гранулы и нитчатые структуры, окрашивающиеся некоторыми красителями (гематоксилином, софранином, кармином и др.). С химической точки зрения хроматин – дезоксирибонуклеопротеид (ДНП, комплекс ДНК и белков-гистонов). Гистоны обладают основными (щелочными) свойствами благодаря высокому содержанию в них основных аминокислот. По преобладающему содержанию аминокислот выделяют пять важнейших гистонов:

Гистон Н1 имеет высокое содержание лизина;

Гистон Н2b лизина содержит меньше, чем Н1;

Гистон Н2a имеет высокое содержание лизина и аргинина;

Гистон Н3 содержит большое количество аргинина;

Гистон Н4 богат аргинином и глицином.

Все гистоны хорошо растворимы в кислых средах. Гистоновые белки с неодинаковой прочностью связываются с ДНК. Поэтому они обладают различной способностью менять пространственное расположение нити ДНК и влиять на участие ДНК в процессе транскрипции. Молекулы гистонов соединяются с ДНК в основном за счет электростатических связей между отрицательно заряженными фосфатными группами молекулы ДНК и положительно заряженными группами гистоновых аминокислот, обладающих щелочными свойствами. В результате образуется нуклеосома. Нуклеосома – это комплекс участка ДНК с гистонами. Он имеет небольшую длину и периодически повторяется по всей длине ДНК. В состав нуклеосомы входит от 160 до 240 нуклеотидных пар и по 2 молекулы каждой фракции гистонов Н2a, Н2b, Н3 и Н4 – всего 8 молекул, соединенных между собой при помощи своих гидрофобных участков. Основной участок нуклеосомы представляет собой цилиндр (октамер) диаметром 11 нм и толщиной 5,7 нм, вокруг которого двойная спираль образует около двух витков и переходит на следующий цилиндр. Длина «накрученного» фрагмента ДНК составляет примерно 60 нм.

Почти вся ДНК клетки заключена в ядре. ДНК - это длинный линейный полимер, содержащий много миллионов нуклеотидов. Четыре типа нуклеотидов ДНК, различаются азотистыми основаниями . Нуклеотиды располагаются в последовательности, которая преставляет собой кодовую форму записи наследственной информации.
Для реализации этой информации она переписывается, или транскрибируется в более короткие цепи и-РНК. Символами генетического кода в и-РНК служат тройки нуклеотидов - кодоны . Каждый кодон обозначает одну из аминокислот. Каждой молекуле ДНК соответствует отдельная хромосома, а вся генетическая информация, хранящаяся в хромосомах организма, называется геном .
Геном высших организмов содержит избыточное количество ДНК, это не связано со сложностью организма. Известно, что геном человека содержит ДНК в 700 раз больше, чем бактерия кишечная палочка. В то же время геном некоторых земноводных и растений в 30 раз больше, чем геном человека. У позвоночных более чем 90% ДНК не имеет существенного значения. Информация, хранящаяся в ДНК, организуется, считывается и реплицируется разнообразными белками.
Основными структурными белками ядра являются белки-гистоны , характерные только для эукариотических клеток. Гистоны - небольшие сильноосновные белки. Это свойство связано с тем, что они обогащены основными аминокислотами - лизином и аргинином. Гистоны характеризует также отсутствие триптофана. Они относятся к наиболее консервативным из всех известных белков, например, Н4 у коровы и гороха отличает всего два аминокислотных остатка. Комплекс белков с ДНК в клеточных ядрах эукариот обозначается как хроматин.
При наблюдении клеток с помощью светового микроскопа хроматин выявляется в ядрах как зоны плотного вещества, хорошо окрашивающиеся основными красителями. Углубленное изучение структуры хроматина началось в 1974 г., когда супругами Адой и Дональдом Олинс была описана его основная структурная единица, она была названа нуклеосомой.
Нуклеосомы позволяют более компактно уложить длинную цепь молекулы ДНК. Так, в каждой хромосоме человека длина нити ДНК в тысячи раз превышает размер ядра. На электронных фотографиях нуклеосома имеет вид дисковидной частицы, имеющей диаметр около 11 нм. Ее сердцевиной является комплекс из восьми молекул гистонов, в котором четыре гистона Н2А, Н2В, Н3 и Н4 представлены двумя молекулами каждый. Эти гистоны образуют внутреннюю часть нуклеосомы - гистоновый кор. На гистоновый кор накручена молекула ДНК, содержащая 146 пар нуклеотидов. Она образует два неполных витка вокруг гистонового кора нуклеосомы, на один виток приходится 83 нуклеотидных пары. Каждая нуклеосома отделена от следующей линкерной последовательностью ДНК, длина которой может составлять до 80 нуклеотидов. Такая структура напоминает бусы на нитке.
Расчет показывает, что ДНК человека, имеющая 6х10 9 нуклеотидных пар, должна содержать 3х10 7 нуклеосом. В живых клетках хроматин редко имеет такой вид. Нуклеосомы связаны друг с другом в еще более компактные структуры. Большая часть хроматина имеет вид фибрилл диаметром 30 нм. Такая упаковка осуществляется с помощью еще одного гистона Н1. На каждую нуклеосому приходится одна молекула Н1, которая стягивает линкерный участок в тех точках, где ДНК входит на гистоновый кор и выходит с него.
Упаковка ДНК значительно уменьшает ее длину. Тем не менее средняя длина хроматиновой нити одной хромосомы на этой стадии должна превышать размеры ядра в 100 раз.
Структура хроматина более высокого порядка представляет собой серию петель, каждая из них содержит примерно от 20 до 100 тысяч пар нуклеотидов. В основании петли располагается сайт-специфический ДНК-связывающий белок. Такие белки узнают определенные нуклеотидные последовательности (сайты) двух отстоящих участков хроматиновой нити и сближают их.

ХРОМАТИН - материальный субстрат хромосом, представляющий собой многокомпонентную систему молекул, находящихся в определенных пространственных, химических и физических взаимоотношениях.

Основным структурным и химическим компонентом хроматина служит комплекс дезоксирибонуклеиновой кислоты (см.) с гистонами (см.) и негистоновыми белками (см. Нуклеопротеиды), иногда - с протаминами (см.). Другие компоненты хроматина - РНК (см. Рибонуклеиновые кислоты), липиды (см.), углеводы (см.), неорганические вещества прямо или косвенно связаны с белками (см.). Количественные соотношения компонентов хроматина существенно зависят от типа клеток; их относительное содержание чаще всего соответствует следующим величинам: ДНК 30-45%, гистоны 30-50%, негистоновые белки 2-35%, РНК и другие компоненты 1 -10%.

Термин «хроматин» был введен в 1880 году немецким ученым В. Флеммингом для обозначения окрашивающихся структур фиксированных ядер клеток (за исключением ядрышек). Преобладающая часть таких структур окрашивается основными красителями (базохроматин), а некоторые - кислотными (оксихроматин). Выделяемые в ядре хроматиновые структуры имеют вид глыбок или сети фибрилл, различающихся в одной клетке и в клетках разных объектов по степени дисперсности. Наиболее интенсивно окрашивающиеся глыбки - хромоцентры (кариосомы) иногда называли ложными ядрышками. Хромо центры имеют, по-видимому, повышенную адгезивную способность, поскольку они легко входят в контакт с ядерной оболочкой, а также агрегируют друг с другом.

Структура хроматина в ядрах интерфазных клеток, то есть клеток, находящихся в периоде между следующими друг за другом митозами (см.), зависит от стадии развития организма (см. Онтогенез , Эмбриональное развитие). У ряда исследованных объектов в первых 2-4-х бластомерах хроматиновые структуры не выявляются, на стадии 8-10 бластомеров в ядре выявляются мелкие хроматиновые глыбки, приобретающие в неделящихся дифференцированных клетках высокоспецифичный характер для каждого типа клеток (см. Деление клетки). В процессе старения этих клеток наблюдают усиление конденсации хроматина.

Изоэлектрическая точка (см.) хроматина зависит от количества белков, входящих в комплекс с ДНК, и находится в интервале значений pH 3,0-5,0. Патологические изменения хроматина как морфологические структуры сопровождаются изменениями pH, при которых находится изоэлектрическая точка. Это отмечают, например, при воздействиях ионизирующего излучения, старении и др. При различных патологических состояниях может меняться и степень дисперсности хроматина. Так, опухолевые клетки характеризуются наличием большого числа хромоцентров, имеющих иногда достаточно крупные размеры; при болезни Дауна (см. Дауна болезнь) хроматин по сравнению с нормой более конденсирован, изменены константы его связывания с красителями; при синдроме Блума (см. Пойкилодермия) хроматин имеет пылевидную или сегментированную структуру. При некоторых видах патологии отмечено усиление конденсации хроматина и концентрация его крупных глыбок на внутренней поверхности ядерной оболочки (гиперхроматоз).

Структуры хроматина и половой хроматин (см.) наблюдают с помощью световой микроскопии. Форма и размер этих структур зависят от способа фиксации клеток. Это свидетельствует о том, что выявляемая после фиксации морфология хроматина отражает не его истинную структуру в живой клетке, а лишь возможность разных способов его организации. В ядрах живых клеток, как правило, компоненты, соответствующие хроматиновым структурам, не выявляются. Однако незначительные повреждения (раздражения) в ряде случаев приводят к обратимому появлению таких структур в прежде гомогенном ядре (напр., при воздействии наркотических анальгетиков и др.). Известен и противоположный эффект - обратимая «гомогенизация» структур, выявляемая в норме в ядрах живых клеток. Естественно, что оптическая гомогенность ядра не тождественна структурной гомогенности хроматина на уровнях более низких, чем позволяет видеть разрешающая способность световой микроскопии. Поэтому сейчас термин «хроматин» утрачивает свое морфологическое содержание, его чаще относят к химическому субстрату хромосом (см.) - сложному комплексу биополимеров. Организующие этот комплекс в единую систему в основном слабые (нековалентные) взаимодействия, равно как и конформация (см.) образующих его молекул, существенным образом зависят от хим. состава, количественного соотношения взаимодействующих компонентов и внешних факторов. Это определяет возможность различных способов организации комплекса в целом и (или) благодаря структурной динамике организации его отдельных структурных компонентов. Полагают, что набор таких способов организации (состояний) ограничен, а переходы между ними имеют характер фазовых переходов. Реализация состояния хроматина, по тем или иным причинам не соответствующего состоянию данной клетки в норме, является признаком патологии.

Установлено существование, по крайней мере, двух классов хроматина: 1) эухроматина, который деконденсируется во время интерфазы и конденсируется в митозе; 2) гетерохроматина, который остается компактным не только в митозе, но и в интерфазе, где его микроскопически идентифицируют в виде хромоцентров. Эухроматин является основной информационной частью генома, в которой преимущественно локализованы структурные гены с соответствующими регуляторными областями. Для гетерохроматина характерна поздняя репликация (см.) ДНК, входящей в его состав. В отличие от эухроматина гетерохроматин в структурном отношении более лабилен: иногда наблюдают его деконденсацию при голодании, действии низких температур и др. Установлено, что при воздействии ряда мутагенных факторов (см. Мутагены) химической и физической природы структурные повреждения чаще локализуются в гетерохроматиновых областях хромосом. Различают два типа гетерохроматина. Первым из них является структурный, постоянно конденсированный хроматин. Как правило, в нем не содержится генов (см. Ген), его ДНК представлена в основном короткими повторяющимися нуклеотидными последовательностями (у некоторых организмов - сателлитной ДНК). При пространственном сближении в результате хромосомных перестроек участков структурного гетерохроматина и эухроматина в ряде случаев ингибируется фенотипическое проявление генов (так называемый эффект положения гена). Активация генов, локализованных в эухроматине, при пространственном разобщении последнего с гетерохроматином может быть, согласно некоторым представлениям, одной из причин активации онкогенов, локализованных в ДНК хромосомы. В целом роль структурного гетерохроматина недостаточно ясна. Полагают, что он существен для процессов конъюгации хромосом (см.), взаимного расположения хромосом в ядре, прикрепления участков хромосом к ядерной оболочке, укладки хроматиновых фибрилл, защиты жизненно важных элементов хромосом, сближения ядрышкообразующих хромосом, эволюции кариотипа и др. Таким образом, предполагаемая роль структурного гетерохроматина заключается в регуляции пространственной организации и соответственно - функциональной активности хромосом.

У человека структурный гетеро-хроматин локализован в центромерных участках всех хромосом, в районах вторичных перетяжек хромосом 1, 9, 16-й пар, коротких плечах акроцентрических хромосом, в дистальной части длинного плеча Y -хромосомы и обрамляет блоки генов рибосомной РНК (ядрышкообразующие районы). На долю структурного гетерохроматина у человека приходится 10-15% всего хроматина. У разных лиц количество структурного гетерохроматина варьирует даже в пределах гомологичных хромосом. Обнаружено, что полиморфные варианты структурного гетерохроматина (см. Полиморфизм в генетике) у людей могут коррелировать с некоторыми наследственными заболеваниями, а возможно определять их или указывать на предрасположенность к ним.

Вторым типом гетерохроматина принято считать факультативный гетерохроматин, или инактивированный эухроматин. Этот тип хроматина сходен с гетерохроматином только в морфол. отношении: микроскопически он выявляется в интерфазном ядре в виде интенсивно красящихся глыбок разного размера. Основываясь на молекулярной организации и функциях, его правильнее считать одним из типов эухроматина. Он содержит структурные гены, фенотипически инактивированные путем конденсации (гетерохроматини-зации) эухроматина. Одним из типичных примеров факультативного гетерохроматина являются тельца Барра (X-хроматин).

Таким образом, функционирование хроматина как системы, в которой происходит начальный этап реализации наследственной информации, в значительной степени определяется пространственным распределением ее взаимозависимых конденсированных и де-конденсированных зон (согласно представлениям о физических процессах, лежащих в основе самоорганизации пространственной структуры хроматина,- микрофазовое расслоение системы). Распределение конденсированных и деконденсированных зон является отражением состояния системы в целом, что не исключает, однако, относительной автономности этих участков в ряде процессов. Известны случаи, когда путем конденсации хроматина осуществляется инактивация целых хромосом (например, одной из X-хромосом у женщин) или почти всего генома (напр., в эритроцитах птиц). В большинстве типов клеток доля активного хроматина составляет 2- 15%. По данным молекулярно-биол. анализа, в ряде случаев инактивация связана с появлением определенных подфракций гистона Н1 или замещением последнего другими гистонами, в частности гистоном Н5 (см. Нуклеопротеиды). В сперматозоидах некоторых животных репрессия генома реализуется на фоне замещения гистонов протаминами или подобными им белками.

Существенную роль в организации транскрипции (см.), в том числе через дифференциальную деконденсацию хроматина, отводят негистоновым белкам хроматина (НГБ). В их число входят также ферментные комплексы, ответственные за репарацию (см. Репарация генетических повреждений), репликацию, транскрипцию и модификацию нуклеиновых кислот (см.) и за некоторые ферментативные превращения ряда хромосомных белков. В ядрах клеток, в которых не происходит активной транскрипции, количество негистоновых белков хроматина существенно уменьшено. Например, зрелые гаметы в значительной степени освобождены от таких белков. Полагают, что в организации или поддержании транскрипции принимают участие негистоновые белки хроматина, прочно связанные с ДНК, среди которых, по-видимому, находится компонент, специфически связывающий комплекс гормон - рецептор, а также тесно связанные с нуклеосомами белки HMG14 и HMG17. Последние способны ингибировать деацетилирование гистонов, а этот процесс наряду с недометилированием ДНК представляет собой модификации, характерные для компонентов активных участков хроматина.

Важным для структурных переходов хроматина является способность белка хроматина А24 к расщеплению на гистон Н2а и полипептид убиквитин. Общей характеристикой участков транскрипционно активного хроматина из разных источников является повышенная чувствительность их ДНК к воздействию ряда нуклеаз (см.). При активации транскрипции такая чувствительность распространяется на участок молекулы ДНК в составе хроматина по протяженности примерно на два порядка больше, чем занимает ген. Все изложенное выше свидетельствует о значении в организации транскрипции более высоких уровней упаковки хроматина, чем его элементарная фибрилла, видимая в электронный микроскоп. Последняя при участии гистона Н1, расположенного наряду с негистоновыми белками хроматина HMG1 и HMG2 в основном на межнуклеосомной ДНК, представляет волокно диаметром около 10 нм. При этом монотонность нуклеосомной организации дезоксирибонуклеопротеидного (ДНП) волокна может нарушаться благодаря структурной динамике нуклеосом (см. Клетка), модификации гистонов при их фосфорилировании, ацетилировании, метилировании и рибозилировании.

Существенную роль отводят меж-молекулярным контактам, способным регулировать конденсацию ДНК на уровне нуклеосом. Нек-рые структурные переходы нуклеосом происходят при изменении ионной силы среды. В ядре клетки количество низкомолекулярных противоионов (ионов К+, Na+ и др.) по порядку величины равно числу фиксированных на макромолекулах (например, фосфатные группы ДНК) зарядов. Поэтому небольшие колебания в абсолютном количестве низкомолекулярных противоионов в ядре (например, при увеличении или уменьшении объема последнего) должны вызвать структурные переходы нуклеосом. Наконец, гистон Н1 может замещаться другими гистонами или их комплексами, имеющими большее сродство к ДНК, с соответствующей реорганизацией структуры фибриллы. Таким образом, возможность различных способов упаковки хроматина заложена уже на уровне различных полиморфных структурных вариантов элементарной фибриллы хроматина. Стабильность следующего уровня организации хроматина - неравномерных по диаметру (20-30 нм) фибрилл - обеспечивается, по-видимому, и гистоном Н1. Дальнейшая упаковка хроматиновых фибрилл реализуется, как полагают, путем самоорганизации системы с образованием конденсированных (глобулярных) зон и петель или независимых суперспирализованных областей (доменов). Домены характеризуются участком двойной спирали ДНК, специальным образом расположенным в пространстве, концы этой двойной спирали фиксированы, что ограничивает или исключает возможность ее вращения. Длина петли ДНК по контуру для разных объектов соответствует мол. весу (массе) ДНК порядка 10 000000- 100 000000. Изменение степени суперспирализации ДНК является еще одним важным фактором регуляции процессов экспрессии генов (см. Экспрессивность гена) через модификацию надмолекулярных систем хроматина. Суперспирализация ДНК изменяется также при действии ионизирующего излучения, некоторых химических соединений, активации нуклеаз и др. Указанные факторы вызывают однонитевые разрывы в молекулах ДНК, что приводит к релаксации в отдельных петлях ее исходной суперспиральной структуры. Этот процесс может вызывать перераспределение белков хроматина, поскольку ряд белков имеет различные константы связывания с линейной, кольцевой и суперспиральной ДНК.

Воздействие агентов, вызывающих диссоциацию белков, в частности гистонов хроматина (некоторые химимечсие мутагены, ионизирующие излучение, высокие концентрации солей, ионов водорода и др.), также приводит к изменению степени суперспиральности, поскольку сам процесс образования нуклеосом связан с реорганизацией суперспирали ДНК.

Полагают, что динамические возможности структуры хроматина нельзя рассматривать только как один из факторов, регулирующих транскрипцию. Действие всех остальных факторов регуляции, как внутри-, так и внеклеточных, реализуется через создание структуры хроматина, специфичной для каждого типа клеток, различающихся по характеру синтеза РНК. В этой связи все воздействия, изменяющие нормальные взаимоотношения между компонентами хроматина и тем самым - его структуру, должны приводить к патологическому функционированию этой системы. Существенное значение имеют изменения структуры хроматина, предрасполагающие к последующему генетическому неблагополучию. Так, полагают, что важное значение может иметь реализация состояний хроматина, при которых снижена вероятность узнавания ферментами репарации повреждений ДНК - явления, которое, по-видимому, служит одной из ведущих причин феномена нестабильности хромосом и характерной для них группы наследственных болезней (см. Хромосомные болезни). Отмечена связь некоторых изменений структуры хроматина с увеличением частоты конъюгации негомологичных хромосом - одной из возможных причин анеуплоидий (см. Мутация). При действии генетически опасных агентов на клетки и организмы кроме генетических повреждений самой ДНК (генные мутации) и указанных выше перестроек структуры хроматина как системы возникают многочисленные нарушения во взаимодействиях между компонентами хроматина: частичная диссоциация белков хроматина, образование межмолекулярных «сшивок» между ДНК и белками, распад фибриллы хроматина на нуклеосомы и др., что в свою очередь усиливает патологический эффект такого агента.

Библиогр.: Андрееве. Г. и Спитковский Д. М. Биофизические модели самоорганизации пространственной структуры хроматина, Докл. АН СССР, т. 269, № 6, с. 1500, 1983; Георгиев Г. П. и Бакаев В. В. Три уровня структурной организации хромосом эукариот, Молек. биол., т. 12, № 6, с. 1205, 1978, библиогр.; Нейфах А. А. и Тимофеева М. Я. Проблемы регуляции в молекулярной биологии развития, М., 1978; Прокофьева-Бельговская А. А. Значение негистоновых белков в преобразованиях и генетическом функционировании хромосом, Молек. биол., т. 16, Na 4, с. 771, 1982; Теоретические проблемы медицинской генетики, под ред. А. Ф. Захарова, с. 52, М., 1979; Chromatin structure and function, ed. by C. A. Nicolini, N. Y. -L., 1979.

Д. М. Спитковский, H. А. Ляпунова.