Внецентренное растяжение и сжатие. Экспериментальное исследование распределения напряжений при внецентренном растяжении или сжатии. Устойчивость сжатых стержней

Вторым практически важным случаем сложения деформаций от изгиба и от продольных сил является так называемое внецентренное сжатие или растяжение, вызываемое одними продольными силами. Этот вид нагружения довольно распространен в технике, так как в реальной ситуации почти невозможно приложить растягивающую нагрузку точно в центре тяжести.

Внецентренным растяжением-сжатием называется случай, когда равнодействующая сил, приложенных к отброшенной части стержня, направлена параллельно оси стержня, но не совпадает с этой осью (рис.8.10).

Рис. 8 .1 0

Внецентренное растяжение (сжатие) испытывают короткие стержни. Все сечения являются равноопасными, поэтому нет необходимости в построении эпюр внутренних силовых факторов.

Представим, что после проведения разреза равнодействующая F сил действующих на отброшенную часть и приложенная к оставшейся проходит через точку с координатами (x F ; y F) в главных центральных осях поперечного сечения (рис. 8.11).

Рис.8.11

Приведем силу F в центр тяжести сечения, т.е. направим вдоль оси стержня. При этом появятся две пары сил M x и M y относительно главных центральных осей (рис.8.11c).

Таким образом, в поперечном сечении стержня при внецентренном растяжении и сжатии возникают три внутренних силовых фактора: нормальная сила N = F и два изгибающих момента M x = F y F и M y = F x F относительно главных центральных осей поперечного сечения.

Величина нормальных напряжений вычисляется по формуле (8.1), которую можно преобразовать к виду

,

или, вынося первое слагаемое за скобки,

г
де

Мы получили формулу нормальных напряжений в поперечном сечении при внецентренном растяжении или сжатии. Если сила растягивающая, то перед скобкой ставится знак плюс, если сила сжимающая, то ставится – минус.

Т
огда уравнение нейтральной линии записывается в виде:

или в форме уравнения в отрезках:

г
де

Из формул (8.9) следуют некоторые закономерности, связывающие положения полюса (т. е. точки приложения силы) и нейтральной линии, которые удобно использовать для анализа решения задачи. Перечислим самые важные из этих закономерностей:

Нейтральная линия всегда расположена в квадранте, противоположном тому, в котором находится полюс (рис. 8.12);

Если полюс находится на одной из главных осей, то нейтральная линия перпендикулярна этой оси;

Если полюс приближается к центру тяжести сечения, то нейтральная линия удаляется от него.

Если полюс движется по прямой линии, то нейтральная линия поворачивается вокруг неподвижной точки.

Рис.8.12

Для сечений со сложным контуром знание положения нулевой линии очень важно. Наибольшие по величине нормальные напряжения возникают в точках поперечного сечения наиболее удаленных от нулевой линии.

Наибольшее растягивающее нормальное напряжение возникает в точке А (рис.8.12)

(8.10)

а наибольшее сжимающее нормальное напряжение возникает в точке В

(8.11)

Таким образом, при внецентренном растяжении кроме растягивающих нормальных напряжений в поперечном сечении могут возникнуть и сжимающие. При внецентренном сжатии – наоборот.

Если материал стержня одинаково сопротивляется растяжению и сжатию, то условие прочности получает такой вид:

.

Хрупкий материал обладает различными свойствами в условиях растяжения и сжатия – плохо сопротивляется растяжению и хорошо сжатию, условия прочности составляют для двух точек: где действуют максимальные растягивающие (т. A ) и максимальные сжимающие (т. B ) напряжения

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

КАМЫШИНСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ)

КАФЕДРА «ОБЩЕТЕХНИЧЕСКИЕ ДИСЦИПЛИНЫ»

НАПРЯЖЕНИЙ ПРИ ВНЕЦЕНТРЕННОМ

РАСТЯЖЕНИИ ИЛИ СЖАТИИ

Методические указания

РПК «Политехник»

Волгоград

2007

УДК 539. 3/.6 (07)

Экспериментальное исследование распределения напряжений при внецентренном растяжении или сжатии: Методические указания / Сост. , ; Волгоград. гос. техн. ун-т. – Волгоград, 2007. – 11 с.

Подготовлены в соответствии с рабочей программой по дисциплине «Сопротивление материалов» и предназначены в помощь студентам, обучающимся по направлениям: 140200.

Ил. 5. Табл. 2. Библиогр.: 4 назв.

Рецензент: к. т. н., доцент

Печатается по решению редакционно-издательского совета

Волгоградского государственного технического университета

Составители: Александр Владимирович Белов, Наталья Георгиевна Неумоина

Анатолий Александрович Поливанов

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ РАСПРЕДЕЛЕНИЯ

НАПРЯЖЕНИЙ ПРИ ВНЕЦЕНТРЕННОМ

РАСТЯЖЕНИИ ИЛИ СЖАТИИ

Методические указания

Темплан 2007 г., поз. № 18.


Подписано в печать г. Формат 60×84 1/16.

Бумага листовая. Печать офсетная.

Усл. печ. л. 0,69. Усл. авт. л. 0,56.

Тираж 100 экз. Заказ №

Волгоградский государственный технический университет

400131 Волгоград, просп. им. , 28.

РПК «Политехник»

Волгоградского государственного технического университета

400131 Волгоград, ул. Советская, 35.

© Волгоградский

государственный

технический

Университет 2007

ЛАБОРАТОРНАЯ РАБОТА № 10

Тема: Экспериментальное исследование распределения напряжений при внецентренном растяжении или сжатии.

Цель работы : Определить опытным путем величину нормальных напряжений в заданных точках поперечного сечения.

Время проведения : 2 часа.

1. Краткие теоретические сведения



Внецентренное растяжении (сжатие) прямого бруса имеет место в том случае, если внешняя сила, приложенная к брусу направлена параллельно его продольной оси, но действует на некотором расстоянии от центра тяжести поперечного сечения бруса (рис. 1).

Внецентренное сжатие – сложная деформация. Её можно представить как совокупность 3-х простых деформаций (общий случай – см. рис. 1) или 2-х простых деформаций (частный случай – см. рис.2).

Общий случай

Внецентренное сжатие

центральное

чистый изгиб

относительно оси х

у

Частный случай

Внецентренное сжатие

центральное сжатие

чистый изгиб относительно оси у

Все поперечные сечения бруса, испытывающего внецентренное сжатие являются равноопасными.

Там возникают одновременно три внутренних силовых фактора (общий случай):

· продольная сила N ;

· изгибающий момент М x ;

· изгибающий момент М y ,

и два внутренних силовых фактора (частный случай):

· продольная сила N ;

· изгибающий момент Мх и М y .

Этим внутренним силовым фактором соответствуют только нормальные напряжения, величину которых можно определить по формулам:

где А – площадь поперечного сечения бруса (м2 );

Ix ; Iy – главные центральные моменты инерции (м4 ).

Для прямоугольного сечения:

у х ;

х – расстояние от точки, в которой определяется напряжение, до оси у .

Согласно принципу независимости действия сил, напряжение в любой точке поперечного сечения при внецентренном сжатии определяется по формулам:

, (3)

. (4)

А при внецентренном растяжении:

. (5)

Знак перед каждым слагаемым выбирается в зависимости от вида сопротивления: растяжению соответствует знак «+», сжатию «-».

Для определения напряжения в угловой точке сечения используется формула:

, (6)

где Wx , Wy – моменты сопротивления поперечного сечения относительно главных центральных осей инерции поперечного сечения (м3 ).

Для прокатных профилей: двутавра, швеллера и т. п. моменты сопротивления приводятся в таблицах.

DIV_ADBLOCK127">


Аналогично определится знак у напряжения σМу . В этом случае сечение закрепляется по оси у (см. рис. 3 в).

2. Краткие сведения об оборудовании и образце

Схема испытания

На машине УММ-50 .

На машине Р-10.

Испытание на внецентренное растяжение производят на машине УММ-50 . Образец – стальная полоса прямоугольного поперечного сечения размерами в ´ h = 1,5 ´ 15 см . Испытание на внецентренное сжатие производят на разрывной машине Р-10 . Образец – короткая двутавровая стойка. Номер профиля 12 .

Описание используемых в данной работе машин подробно приводится в руководстве для выполнения лабораторной работы № 1.

В качестве измерительной аппаратуры здесь используются тензометрические датчики и прибор ИДЦ-I, принцип действия которых подробно изложен в руководстве для выполнения лабораторной работы № 3.

3. Выполнение лабораторной работы

3.1. Подготовка к эксперименту

1. Записать в отчет цель работы, сведения об оборудовании и материале испытываемых образцов.

2. Вычертите схему испытания, занести в отчет требуемые размеры образца.

3. Определить требуемые геометрические характеристики:

· для прямоугольника по формулам (2);

· для двутавра из таблицы сортамента.

Определить расстояния от заданных точек до оси х . Определить максимальное и минимальное значение силы F, а также значение ступени нагружения ΔF. Занести нагрузку в первую графу табл. 1.

(Примечание : максимальное значение силы F определяется по паспорту установки с учетом коэффициента концентрации напряжений исходя из условия, что расчетное значение напряжения не должно превышать предела текучести материала образца.)

Вычислить значение внутренних силовых факторов:

N = F ; Mx = F × y .

В зависимости от схемы испытания вычислить нормальное напряжение в указанных точках поперечного сечения по формулам (5) или (6). Значение напряжений записать в графу 3 табл. 2.

3.2. Экспериментальная часть

1. Произвести испытание, зафиксировав при заданных значениях нагрузки показание всех трех тензодатчиков по прибору ИДЦ-I.

2. Число измерений по каждому тензодатчику должно составлять не менее пяти. Данные записать в табл. 1.

3.3. Обработка опытных данных

1. Определить приращение показаний каждого тензодатчика

2. Определить среднее значение приращений:

https://pandia.ru/text/78/445/images/image021_18.gif" width="121" height="40 src=">.

7. Сделать выводы по работе.

Лабораторная работа №10

Тема:

Цель работы:

Теоретическое определение напряжений

Опытное определение напряжений

Таблица 1

Нагруз-

ка, F , кН

Показания прибора и их приращения

Сравнение теоретических и опытных результатов

Таблица 2

Нормальные напряжения МПа

% расхождения

опытные значения

теоретические значения

σ I

σ II

σ III

Эпюры напряжений с нанесением нулевой линии

Выводы
Работу выполнил студент:

Контрольные вопросы

1. Как получить деформацию внецентренное сжатие (растяжение)?

2. Из каких простых деформаций состоит сложная деформация внецентренное сжатие (растяжение)?

3. Какие внутренние силовые факторы возникают в поперечном сечении внецентренно сжатого бруса?

4. Как определяется их величина?

5. Какое сечение внецентренного сжатого бруса является опасным?

6. Как определить величину напряжений от каждого из внутренних силовых факторов в любой точке поперечного сечения?

7. По каким формулам определяются моменты инерций прямоугольного сечения относительно главных центральных осей инерции? Каковы единицы их измерения?

8. Как определить знак у напряжения от внутренних силовых факторов при внецентренном растяжении (сжатии)?

9. Какая гипотеза положена в основу определения напряжений при внецентренном сжатии? Сформулируйте её.

10. Формула для определения напряжений в любой точке поперечного сечения при внецентренном сжатии.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Феодосьев материалов. М.:Изд-во МГТУ, 2000 – 592c.

2. и др. Сопротивление материалов. Киев: Высшая школа, 1986. – 775с.

3. Степин материалов. М.: Высшая школа, 1988. – 367с.

4. Сопротивление материалов. Лабораторный практикум./, и др. М.: Дрофа, 2004. – 352с.

Внецентренным растяжением или сжатием называется такой вид деформации, когда в поперечном сечении бруса одновременно действуют продольная (растягивающая или сжимающая) сила и. изгибающий момент; в этом сечении может действовать и поперечная сила.

Внецентренно растянутый или сжатый брус, при расчете которого можно не учитывать дополнительные изгибающие моменты, равные произведениям продольных внешних сил Р на прогибы , называется жестким, а брус, при расчете которого их следует учитывать, - гибким.

Жесткими являются внецентренно сжатые и растянутые брусья, изображенные на рис. 10.9, а, г, д, если наибольшие их прогибы малы по сравнению с расстояниями сил Р от осей брусьев, и брусья, изображенные на рис. 10.9, б, в, в тех случаях, когда произведения малы по сравнению с внешними моментами

Рассмотрим расчет жестких брусьев; метод расчета гибких брусьев изложен ниже в § 5.13.

На рис. 11.9, а изображен жесткий брус; в его верхнем поперечном сечении одновременно действуют продольная сила N и изгибающий момент М, составляющие которого относительно главных осей и у инерции сечения равны Нормальное напряжение в произвольной точке С сечения с координатами у и равно сумме напряжений от продольной силы N и изгибающих моментов , т. е.

Продольная сила N и моменты могут рассматриваться как результат воздействия на брус внецентренно приложенной силы

Именно поэтому случай одновременного действия в поперечном сечении продольной силы и изгибающего момента называют внецентренным растяжением (при растягивающей продольной силе) или сжатием (при сжимающей).

Координаты точки А приложения силы Р называются эксцентриситетами этой силы относительно главных осей инерции и у, соответственно:

Точку А приложения силы Р называют центром давления или полюсом.

Подставим в формулу (10.9) выражения [на основании формул (11.9) и рис. 1.9, б]:

Знаки плюс перед всеми членами этой формулы поставлены потому, что положительная продольная сила а также изгибающие моменты (при положительных эксцентриситетах ) вызывают в точках поперечного сечения с положительными координатами у и z растягивающие (положительные) напряжения.

В формулу (12.9) величина растягивающей силы Р подставляется со знаком плюс, а сжимающей - со знаком минус; координаты у и z в эту формулу подставляются со своими знаками. Знак нормальных напряжений, возникающих в какой-либо точке сечения от изгибающего момента вызванного эксцентрично (внецентренно) приложенной силой Р, можно установить также, представив поперечное сечение в виде пластинки, закрепленной на валу, ось которого совпадает с осью ; пластинка опирается на жесткое основание через систему пружин (рис. 12.9).

Момент от силы Р, показанной, например, на рис. 12.9, вызывает поворот пластинки вокруг оси z, в результате чего пружины, расположенные под заштрихованной частью пластинки, оказываются сжатыми; следовательно, в этой части сечения бруса от момента возникают сжимающие напряжения. Аналогично, для того чтобы установить знак напряжений от момента надо пластинку представить закрепленной на валу, ось которого совпадает с осью у.

Формула (12.9) служит для определения нормальных напряжений в любой точке поперечного сечения при внецентренном растяжении и сжатии.

Формулу (12.9) можно представить в следующем виде:

где - радиусы инерции поперечного сечения бруса относительно главных центральных осей инерции гну соответственно.

Следует иметь в виду, что в формулах (10.9)-(14.9) оси у и z являются главными центральными осями инерции поперечного сечения бруса.

Формулы (12.9)-(14.9) удобно использовать, когда известны равнодействующая внутренних усилий в поперечном сечении бруса (т. е. сила Р) и координаты точки ее приложения (полюса). Формулу же (10.9) удобно применять, когда известны внутренние усилия действующие в поперечном сечении.

Варианты эпюр нормальных напряжений, возникающих в поперечном сечении бруса при внецентренном сжатии (т. е. при отрицательной силе Р), изображены в аксонометрии на рис. 13.9.

Они ограничены с одной стороны плоскостью поперечного сечения 1-2-3-4, а с другой - плоскостью 1-2-3-4. Ординаты эпюр в центре тяжести сечения (при y = z = 0) равны

Все ординаты эпюры, показанной на рис. 13.9, а, отрицательны, так как плоскость ограничивающая их, не пересекает плоскость 1-2-3-4 в пределах поперечного сечения бруса. Ординаты же эпюры, изображенной на рис. 13.9, б, по одну сторону от прямой отрицательны, а по другую - положительны.

Прямая пп представляет собой линию пересечения плоскости 1-2-3-4 с плоскостью поперечного сечения бруса. Во всех точках, расположенных на прямой пп, напряжения а равны нулю, и, следовательно, эта прямая является нейтральной осью (нулевой линией).

Определим положение нейтральной оси (рис. 14.9). Для этого приравняем нулю правую часть выражения (14.9):

Так как , то

Выражение (15.9) является уравнением прямой (так как координаты у и входят в него в первой степени) и представляет собой уравнение нейтральной оси. Для определения положения нейтральной оси найдем ординату точки В ее пересечения с осью у (рис. 14.9); абсцисса этой точки а потому на основании выражения (15.9)

Абсцисса точки С пересечения нейтральной оси с осью равна (рис. 14.9), а ордината этой точки Подставляя значения в выражение (15.9), находим

Итак, величины отрезков, отсекаемых нейтральной осью (нулевой линией) на осях координат, определяются выражениями:

Из этих выражений следует:

1) положение нулевой линии не зависит от величины и знака силы Р;

2) нулевая линия и полюс лежат по разные стороны от начала координат;

4) если полюс расположен на одной из главных центральных осей инерции, то нулевая линия перпендикулярна этой оси; например, когда полюс расположен на оси , то т. е. нейтральная ось параллельна оси у.

При внецентренном растяжении и сжатии нормальные напряжения в каждой точке поперечного сечения бруса, как и при изгибе, прямо пропорциональны расстоянию от этой точки до нейтральной оси. Наибольшие напряжения возникают в точках поперечного сечения, наиболее удаленных от нейтральной оси.

Эпюра нормальных напряжений, значения которых отложены от линии, перпендикулярной нейтральной оси, показана на рис. 14.9.

Каждая ордината этой эпюры определяет величину нормальных напряжений, возникающих в точках поперечного сечения, расположенных на прямой DD, проходящей через эту ординату параллельно нейтральной оси. Для построения этой эпюры достаточно определить положение нейтральной оси и вычислить нормальные напряжения в одной из точек поперечного сечения (не расположенной на этой оси), например в центре тяжести сечения. С помощью такой эпюры наиболее просто определяются значения нормальных напряжений в любых точках поперечного сечения.

Расчет на прочность стержня, сжатого или растянутого внецентренно приложенными продольными внешними силами (т. е. при отсутствии поперечных сил), производится наиболее просто, так как в таком случае внутренние усилия одинаковы во всех поперечных сечениях каждого участка стержня. Это исключает необходимость определения опасного поперечного сечения, так как при стержне с постоянными поперечными размерами в пределах каждого участка все сечения одного участка являются равноопасными. При стержне же с переменными поперечными размерами опасным в пределах каждого участка является сечение наименьшего размера.

При наличии в поперечных сечениях стержня поперечных сил изгибающие моменты непрерывно изменяются по длине стержня, а потому определение опасного сечения становится более сложным. Обычно в таких случаях проводят проверку прочности, определяя нормальные напряжения в ряде сечений (которые предположительно могут оказаться опасными) и сопоставляя их с допускаемыми напряжениями.

Для определения положения опасных точек в сечении следует параллельно нейтральной оси провести линии, касающиеся контура сечения. Таким путем находят точки сечения, расположенные по обе стороны от нейтральной оси и наиболее удаленные от нее, которые и могут быть опасными.

Внецентренное растяжение (сжатие) вызывается силой, параллельной оси бруса, но не совпадающей с ней (рис. 9.4).

Проекция точки приложения силы на поперечное сечение называется полюсом или силовой точкой, а прямая, проходящая через полюс и центр сечения, - силовой линией.

Внецентренное растяжение (сжатие) может быть сведено к осевому растяжению (сжатию) и косому изгибу, если перенести силу Р в центр тяжести сечения. Так, сила Р, отмеченная на рис. 9.4 одной черточкой Г вызовет осевое растяжение бруса, а пара сил, отмеченных двумя черточками, - косой изгиб.

На основании принципа независимости действия сил напряжения в точках поперечного сечения при внецентренном растяжении (сжатии) определяются по формуле

В эту формулу осевую силу изгибающие моменты а также координаты точки сечения, в которой определяется напряжение, надо подставлять с их знаками. Для изгибающих моментов примем такое же правило знаков, как и при косом изгибе, а осевую силу будем считать положительной, когда она вызывает растяжение.

Если координаты полюса обозначить через , то момент Формула (9.5) принимает вид

Из этого уравнения видно, что концы векторов напряжений в точках сечения расположены на плоскости. Линия пересечения плоскости напряжений с плоскостью поперечного сечения является нейтральной линией, уравнение которой находим, приравнивая правую часть равенства (9.6) нулю. После сокращения на Р получим

Таким образом, нейтральная линия при внецентренном растяжении (сжатии) не проходит через центр тяжести сечения и не перпендикулярна плоскости действия изгибающего момента. Нейтральная линия отсекает на осях координат отрезки

Представим моменты инерции как произведения площади сечения на квадрат соответствующего радиуса инерции

Тогда выражения (9.8) можно записать так:

Из формул (9.8) видно, что полюс и нейтральная линия всегда расположены по разные стороны от центра тяжести сечения, причем положение нейтральной линии определяется координатами полюса.

При приближении полюса по силовой линии к центру тяжести сечения нейтральная линия будет удаляться от центра, оставаясь параллельной своему первоначальному направлению. В пределе при нейтральная линия удалится в бесконечность. В этом случае будет иметь место центральное растяжение (сжатие) бруса.

На силовой линии всегда можно найти такое положение полюса, при котором нейтральная линия будет касаться контура сечения, нигде не пересекая его. Если провести все возможные нейтральные линии так, чтобы они касались контура сечения, нигде не пересекая его, и найти соответствующие им полюсы, то окажется, что полюсы будут расположены на вполне определенной для каждого сечения замкнутой линии. Область, ограниченная этой линией, называется ядром сечения. В круглом сечении, например, ядро представляет собой круг диаметром в 4 раза меньшим диаметра сечения, а в прямоугольных и двутавровых сечениях ядро имеет форму параллелограмма (рис. 9.5).

Из самого построения ядра сечения следует, что до тех пор, пока полюс находится внутри ядра, нейтральная линия не пересечет контур сечения и напряжения во всем сечении будут одного знака. Если, же полюс расположен вне ядра, то нейтральная линия пересечет контур сечения, и тогда в сечении будут действовать напряжения разного знака. Указанное обстоятельство необходимо учитывать при расчете на виецентренное сжатие стоек из хрупких материалов. Поскольку хрупкие материалы плохо воспринимают растягивающие нагрузки, то желательно внешние силы прикладывать к стойке так, чтобы во всем сечении действовали только напряжения сжатия. Для этого точка приложения равнодействующей внешних сил, сжимающих стойку, должна находиться внутри ядра сечения.

Расчет на прочность при внецентренном растяжении и сжатии производится так же, как и при косом изгибе, - по напряжению в опасной точке поперечного сечения. Опасной является точка сечения, наиболее удаленная от его нейтральной линии. Однако в тех случаях, когда в этой точке действует напряжение сжатия, а материал стойки хрупкий, опасной может быть точка, в которой действуй наибольшее растягивающее напряжение.

Эпюра напряжений строится на оси, перпендикулярной к нейтральной линии сечения, и ограничена прямой линией (см. рис. 9,4).

Условие прочности запишется так.

Многие элементы строительных конструкций (колонны, стойки, опоры) находятся под воздействием сжимающих сил, приложенных не в центре тяжести сечения. На рис. 12.9 показана колонна, на которую опирается балка перекрытия. Как видно, сила действует по отношению к оси колонны с эксцентриситетом е, и таким образом, в произвольном сечении а-а колонны наряду с продольной силой N = возникает изгибающий момент, величина которого равна Ре. Внецентренное растяжение (сжатие) стержня представляет такой вид деформирования, при котором равнодействующие внешних сил действуют вдоль прямой, параллельной оси стержня. В дальнейшем будем рассматривать главным образом задачи внецентренного сжатия. При внецентренном растяжении во всех приводимых расчетных формулах следует изменить знак перед силой Р на противоположный.

Пусть стержень произвольного поперечного сечения (рис. 12.10) нагружен на торце внецентренно приложенной сжимающей силой Р, направленной параллельно оси Ох. Примем положительные

направления главных осей инерции сечения Оу и Oz таким образом, чтобы точка приложения силы Р находилась в первой четверти осей координат. Обозначим координаты точки приложения силы Р через у р и z P -

Внутренние усилия в произвольном сечении стержня равны

Знаки минус у изгибающих моментов обусловлены тем, что в первой четверти осей координат эти моменты вызывают сжатие. Величины внутренних усилий в данном примере не изменяются по длине стержня, и таким образом, распределение напряжений в сечениях, достаточно удаленных от места приложения нагрузки, будет одинаковым.

Подставляя (12.11) в (12.1), получим формулу для нормальных напряжений при внецентренном сжатии:

Эту формулу можно преобразовать к виду

где i , i- главные радиусы инерции сечения. При этом

Положив в (12.12) о = 0, получим уравнение нулевой линии:

Здесь у 0 и z 0 - координаты точек нулевой линии (рис. 12.11). Уравнение (12.14) является уравнением прямой, не проходящей через центр тяжести сечения. Чтобы провести нулевую линию, найдем точки ее пересечения с осями координат. Полагая в (12.14) последовательно у 0 = 0 и z 0 = 0, соответственно найдем

где a z и а у - отрезки, отсекаемые нулевой линией на осях координат (рис. 12.11).

Установим особенности положения нулевой линии при вне- центренном сжатии.

  • 1. Из формул (12.15) следует, что а у и a z имеют знаки, противоположные знакам соответственно у р и z P - Таким образом, нулевая линия проходит через те четверти осей координат, которые не содержат точку приложения силы (рис. 12.12).
  • 2. С приближением точки приложения силы Р по прямой к центру тяжести сечения координаты этой точки у р и z P уменьшаются. Из (12.15) следует, что при этом абсолютные значения длин отрезков а у и a z увеличиваются, то есть нулевая линия удаляется от центра тяжести, оставаясь параллельной самой себе (рис. 12.13). В пределе при Z P = y P = 0 (сила приложена в центре тяжести) нулевая линия удаляется в бесконечность. В этом случае в сечении напряжения будут постоянными и равными о = -P/F.
  • 3. Если точка приложения силы Р находится на одной из главных осей, нулевая линия параллельна другой оси. Действительно, положив в (12.15), например, у р = 0, получим, что а у = то есть нулевая линия не пересекает ось Оу (рис. 12.14).
  • 4. Если точка приложения силы перемещается по прямой, не проходящей через центр тяжести, то нулевая линия поворачивается вокруг некоторой точки. Докажем это свойство. Точкам приложения сил Р х и Р 2 , расположенным на осях координат, соответствуют нулевые линии 1 - 1 и 2-2, параллельные осям (рис. 12.15), которые пересекаются в точке D. Так как эта точка принадлежит двум нулевым линиям, то напряжения в этой точке от одновременно приложенных сил Р х и Р 2 будут равны нулю. Поскольку любую силу Р 3 , точка приложения которой расположена на прямой Р { Р 2 , можно

разложить на две параллельные составляющие, приложенные в точках Pj и Р 2 , то отсюда следует, что напряжения в точке D от действия силы Р 3 также равны нулю. Таким образом, нулевая линия 3-3, соответствующая силе Р 3 , проходит через точку D.

Другими словами, множеству точек Р, расположенных на прямой Р { Р 2 , соответствует пучок прямых, проходящих, через точку D. Справедливо и обратное утверждение: при вращении нулевой линии вокруг некоторой точки точка приложения силы перемещается по прямой, не проходящей через центр тяжести.

Если нулевая линия пересекает сечение, то она делит его на зоны сжатия и растяжения. Так же как и при косом изгибе, из гипотезы плоских сечений следует, что напряжения достигают наибольших значений в точках, наиболее удаленных от нулевой линии. Характер эпюры напряжений в этом случае показан на рис. 12.16, а.

Если нулевая линия расположена вне сечения, то во всех точках сечения напряжения будут одного знака (рис. 12.16, б).

Пример 12.3. Построим эпюру нормальных напряжений в произвольном сечении внецентренно сжатой колонны прямоугольного сечения с размерами b х h (рис. 12.17). Квадраты радиусов инерции сечения согласно (12.22) равны


Отрезки, отсекаемые нулевой линией на осях координат, определяются по формулам (12.15):

Подставляя последовательно в (12.12) координаты наиболее удаленных от нулевой линии точек С и В (рис. 12.18)

найдем

Эпюра о показана на рис. 12.18. Наибольшие сжимающие напряжения по абсолютной величине в четыре раза превосходят значения напряжений, которые были бы в случае центрального приложения силы. Кроме того, в сечении появились значительные растягивающие напряжения. Заметим, что из (12.12) следует, что в центре тяжести (у = z = 0) напряжения равны о = -P/F.

Пример 12.4. Полоса с вырезом нагружена растягивающей силой Р (рис. 12.19, а). Сравним напряжения в сечении ЛВ, достаточно удаленном от торца и места выреза, с напряжениями в сечении CD в месте выреза.

В сечении АВ (рис. 12.19, б) сила Р вызывает центральное растяжение и напряжения равны а = P/F = P/bh.

В сечении CD (рис. 12.19, в) линия действия силы Р не проходит через центр тяжести сечения, и поэтому возникает внецентренное растяжение. Изменив знак в формуле (12.12) на противоположный и приняв у р = 0, получим для этого сечения

Принимая

Нулевая линия в сечении CD параллельна оси Оу и пересекает ось Oz на расстоянии а = -i 2 y /z P - Ь/ 12. В наиболее удаленных от нулевой линии точках сечения C(z - -Ь/ 4) и D(z - Ь/ 4) напряжения согласно (12.16) равны

Эпюры нормальных напряжений для сечений ЛВ и CD показаны на рис. 12.19, б, в.

Таким образом, несмотря на то что сечение CD имеет площадь в два раза меньшую, чем сечение АВ, за счет внецентренного приложения силы растягивающие напряжения в ослабленном сечении возрастают не в два, а в восемь раз. Кроме того, в этом сечении появляются значительные по величине сжимающие напряжения.

Следует заметить, что в приведенном расчете не учитываются дополнительные местные напряжения, возникающие вблизи точки С из-за наличия выточки. Эти напряжения зависят от радиуса выточки (с уменьшением радиуса они увеличиваются) и могут значительно превысить по величине найденное значение а с = 8P/bh. При этом характер эпюры напряжений вблизи точки С будет существенно отличаться от линейного. Определение местных напряжений (концентрация напряжений) рассматривается в главе 18.

Многие строительные материалы (бетон, кирпичная кладка и др.) плохо сопротивляются растяжению. Их прочность на растяжение во много раз меньше, чем на сжатие. Поэтому в элементах конструкций из таких материалов нежелательно появление растягивающих напряжений. Чтобы это условие выполнялось, необходимо, чтобы нулевая линия находилась вне сечения. В противном случае нулевая линия пересечет сечение и в нем появятся растягивающие напряжения. Если нулевая линия является касательной к контуру сечения, то соответствующее положение точки приложения силы является предельным. В соответствии со свойством 2 нулевой линии, если точка приложения силы будет приближаться к центру тяжести сечения, нулевая линия будет удаляться от него. Геометрическое место предельных точек, соответствующих различным касательным к контуру сечения, является границей ядра сечения. Ядром сечения называется выпуклая область вокруг центра тяжести, обладающая следующим свойством: если точка приложения силы находится внутри или на границе этой области, то во всех точках сечения напряжения имеют один знак. Ядро сечения является выпуклой фигурой, поскольку нулевые линии должны касаться огибающей контура сечения и не пересекать его.

Через точку А (рис. 12.20) можно провести бесчисленное множество касательных (нулевых линий); при этом только касательная АС является касательной к огибающей, и ей должна соответствовать определенная точка контура ядра сечения. В то же время, например, нельзя провести касательную к участку АВ контура сечения, поскольку она пересекает сечение.

Построим ядро сечения для прямоугольника (рис. 12.21). Для касательной 1 - 1 а 7 - Ь/ 2; а = . Из (12.15) находим для точки 1, соответствующей этой касательной, z P = -i 2 y / а 7 =-Ь/6; у р - 0. Для касательной 2-2 а у - к/ 2; а 7 =°°, и координаты точки 2 будут равны у р - -h/6; z P - 0. Согласно свойству 4 нулевой линии точки приложения силы, соответствующие различным касательным к правой нижней угловой точке сечения, расположены на прямой 1-2. Положение точек 3 и 4 определяется из условий симметрии. Таким образом, ядро сечения для прямоугольника представляет собой ромб с диагоналями Ь /3 и И/З .

Чтобы построить ядро сечения для круга, достаточно провести одну касательную (рис. 12.22). При этом а = R; а = °о.

"У У ^ ^

Учитывая, что для круга i у - J у /F - R / 4, из (12.15) получим

Таким образом, ядро сечения для круга представляет собой круг с радиусом R/4.

На рис. 12.23, а, 6 показаны ядра сечения для двутавра и швеллера. Наличие четырех угловых точек ядра сечения в каждом из этих примеров обусловлено тем, что огибающая контура и у двутавра и у швеллера является прямоугольником.