Применение интеграла для нахождения площади криволинейной трапеции. Определенный интеграл. Как вычислить площадь фигуры


Готовые работы

ДИПЛОМНЫЕ РАБОТЫ

Многое уже позади и теперь ты - выпускник, если, конечно, вовремя напишешь дипломную работу. Но жизнь - такая штука, что только сейчас тебе становится понятно, что, перестав быть студентом, ты потеряешь все студенческие радости, многие из которых, ты так и не попробовал, всё откладывая и откладывая на потом. И теперь, вместо того, чтобы навёрстывать упущенное, ты корпишь над дипломной работой? Есть отличный выход: скачать нужную тебе дипломную работу с нашего сайта - и у тебя мигом появится масса свободного времени!
Дипломные работы успешно защищены в ведущих Университетах РК.
Стоимость работы от 20 000 тенге

КУРСОВЫЕ РАБОТЫ

Курсовой проект - это первая серьезная практическая работа. Именно с написания курсовой начинается подготовка к разработке дипломных проектов. Если студент научиться правильно излагать содержание темы в курсовом проекте и грамотно его оформлять, то в последующем у него не возникнет проблем ни с написанием отчетов, ни с составлением дипломных работ, ни с выполнением других практических заданий. Чтобы оказать помощь студентам в написании этого типа студенческой работы и разъяснить возникающие по ходу ее составления вопросы, собственно говоря, и был создан данный информационный раздел.
Стоимость работы от 2 500 тенге

МАГИСТЕРСКИЕ ДИССЕРТАЦИИ

В настоящее время в высших учебных заведениях Казахстана и стран СНГ очень распространена ступень высшего профессионального образования, которая следует после бакалавриата - магистратура. В магистратуре обучаются с целью получения диплома магистра, признаваемого в большинстве стран мира больше, чем диплом бакалавра, а также признаётся зарубежными работодателями. Итогом обучения в магистратуре является защита магистерской диссертации.
Мы предоставим Вам актуальный аналитический и текстовый материал, в стоимость включены 2 научные статьи и автореферат.
Стоимость работы от 35 000 тенге

ОТЧЕТЫ ПО ПРАКТИКЕ

После прохождения любого типа студенческой практики (учебной, производственной, преддипломной) требуется составить отчёт. Этот документ будет подтверждением практической работы студента и основой формирования оценки за практику. Обычно, чтобы составить отчёт по практике, требуется собрать и проанализировать информацию о предприятии, рассмотреть структуру и распорядок работы организации, в которой проходится практика, составить календарный план и описать свою практическую деятельность.
Мы поможет написать отчёт о прохождении практики с учетом специфики деятельности конкретного предприятия.

Фигура, ограниченная графиком непрерывной неотрицательной на отрезке $$ функции $f(x)$ и прямыми $y=0, \ x=a$ и $x=b$, называется криволинейной трапецией.

Площадь соответствующей криволинейной трапеции вычисляется по формуле:

$S=\int\limits_{a}^{b}{f(x)dx}.$ (*)

Задачи на нахождение площади криволинейной трапеции мы будем условно делить на $4$ типа. Рассмотрим каждый тип подробнее.

I тип: криволинейная трапеция задана явно. Тогда сразу применяем формулу (*).

Например, найти площадь криволинейной трапеции, ограниченной графиком функции $y=4-(x-2)^{2}$, и прямыми $y=0, \ x=1$ и $x=3$.

Нарисуем эту криволинейную трапецию.

Применяя формулу (*), найдём площадь этой криволинейной трапеции.

$S=\int\limits_{1}^{3}{\left(4-(x-2)^{2}\right)dx}=\int\limits_{1}^{3}{4dx}-\int\limits_{1}^{3}{(x-2)^{2}dx}=4x|_{1}^{3} – \left.\frac{(x-2)^{3}}{3}\right|_{1}^{3}=$

$=4(3-1)-\frac{1}{3}\left((3-2)^{3}-(1-2)^{3}\right)=4 \cdot 2 – \frac{1}{3}\left((1)^{3}-(-1)^{3}\right) = 8 – \frac{1}{3}(1+1) =$

$=8-\frac{2}{3}=7\frac{1}{3}$ (ед.$^{2}$).

II тип: криволинейная трапеция задана неявно. У этого случая обычно не задаются или задаются частично прямые $x=a, \ x=b$. В этом случае нужно найти точки пересечения функций $y=f(x)$ и $y=0$. Эти точки и будут точками $a$ и $b$.

Например, найти площадь фигуры, ограниченной графиками функций $y=1-x^{2}$ и $y=0$.

Найдём точки пересечения. Для этого приравняем правые части функций.

Таким образом, $a=-1$, а $b=1$. Нарисуем эту криволинейную трапецию.

Найдём площадь этой криволинейной трапеции.

$S=\int\limits_{-1}^{1}{\left(1-x^{2}\right)dx}=\int\limits_{-1}^{1}{1dx}-\int\limits_{-1}^{1}{x^{2}dx}=x|_{-1}^{1} – \left.\frac{x^{3}}{3}\right|_{-1}^{1}=$

$=(1-(-1))-\frac{1}{3}\left(1^{3}-(-1)^{3}\right)=2 – \frac{1}{3}\left(1+1\right) = 2 – \frac{2}{3} = 1\frac{1}{3}$ (ед.$^{2}$).

III тип: площадь фигуры, ограниченной пересечением двух непрерывных неотрицательных функций. Эта фигура не будет криволинейной трапецией, а значит с помощью формулы (*) её площадь не вычислишь. Как же быть? Оказывается, площадь этой фигуры можно найти как разность площадей криволинейных трапеций, ограниченных верхней функцией и $y=0$ ($S_{uf}$), и нижней функцией и $y=0$ ($S_{lf}$), где в роли $x=a, \ x=b$ выступают координаты по $x$ точек пересечения данных функций, т.е.

$S=S_{uf}-S_{lf}$. (**)

Самое главное при вычислении таких площадей – не “промахнуться” с выбором верхней и нижней функции.

Например, найти площадь фигуры, ограниченной функциями $y=x^{2}$ и $y=x+6$.

Найдём точки пересечения этих графиков:

По теореме Виета,

$x_{1}=-2, \ x_{2}=3.$

То есть, $a=-2, \ b=3$. Изобразим фигуру:

Таким образом, верхняя функция – $y=x+6$, а нижняя – $y=x^{2}$. Далее, найдём $S_{uf}$ и $S_{lf}$ по формуле (*).

$S_{uf}=\int\limits_{-2}^{3}{(x+6)dx}=\int\limits_{-2}^{3}{xdx}+\int\limits_{-2}^{3}{6dx}=\left.\frac{x^{2}}{2}\right|_{-2}^{3} + 6x|_{-2}^{3}= 32,5$ (ед.$^{2}$).

$S_{lf}=\int\limits_{-2}^{3}{x^{2}dx}=\left.\frac{x^{3}}{3}\right|_{-2}^{3} = \frac{35}{3}$ (ед.$^{2}$).

Подставим найденное в (**) и получим:

$S=32,5-\frac{35}{3}= \frac{125}{6}$ (ед.$^{2}$).

IV тип: площадь фигуры, ограниченной функцией (-ями), не удовлетворяющей(-ими) условию неотрицательности. Для того, чтобы найти площадь такой фигуры нужно симметрично относительно оси $Ox$ (иными словами, поставить “минусы” перед функциями) отобразить область и с помощью способов, изложенных в типах I – III, найти площадь отображённой области. Эта площадь и будет искомой площадью. Предварительно, возможно, вам придётся найти точки пересечения графиков функций.

Например, найти площадь фигуры, ограниченной графиками функций $y=x^{2}-1$ и $y=0$.

Найдём точки пересечения графиков функций:

т.е. $a=-1$, а $b=1$. Начертим область.

Симметрично отобразим область:

$y=0 \ \Rightarrow \ y=-0=0$

$y=x^{2}-1 \ \Rightarrow \ y= -(x^{2}-1) = 1-x^{2}$.

Получится криволинейная трапеция, ограниченная графиком функции $y=1-x^{2}$ и $y=0$. Это задача на нахождение криволинейной трапеции второго типа. Мы её уже решали. Ответ был такой: $S= 1\frac{1}{3}$ (ед.$^{2}$). Значит, площадь искомой криволинейной трапеции равна:

$S=1\frac{1}{3}$ (ед.$^{2}$).









Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Ключевые слова: интеграл, криволинейная трапеция, площадь фигур, ограниченных лилиями

Оборудование : маркерная доска, компьютер, мультимедиа-проектор

Тип урока : урок-лекция

Цели урока :

  • воспитательные: формировать культуру умственного труда, создавать для каждого ученика ситуацию успеха, формировать положительную мотивацию к учению; развивать умение говорить и слушать других.
  • развивающие: формирование самостоятельности мышления ученика по применению знаний в различных ситуациях, умения анализировать и делать выводы, развитие логики, развитие умения правильно ставить вопросы и находить на них ответы. Совершенствование формирования вычислительных, расчётных навыков, развитие мышления учащихся в ходе выполнения предложенных заданий, развитие алгоритмической культуры.
  • образовательные : сформировать понятия о криволинейной трапеции, об интеграле, овладеть навыками вычисления площадей плоских фигур

Метод обучения: объяснительно-иллюстративный.

Ход урока

В предыдущих классах мы научились вычислять площади фигур, границами которых являются ломаные. В математике существуют методы, позволяющие вычислять площади фигур, ограниченных кривыми. Такие фигуры называются криволинейными трапециями, и вычисляют их площадь с помощью первообразных.

Криволинейная трапеция (слайд 1 )

Криволинейной трапецией называется фигура, ограниченная графиком функции , (щ.м. ), прямыми x = a и x = b и осью абсцисс

Различные виды криволинейных трапеций (слайд 2)

Рассматриваем различные виды криволинейных трапеций и замечаем: одна из прямых вырождена в точку, роль ограничивающей функции играет прямая

Площадь криволинейной трапеции (слайд 3)

Зафиксируем левый конец промежутка а, а правый х будем менять, т. е., мы двигаем правую стенку криволинейной трапеции и получаем меняющуюся фигуру. Площадь переменной криволинейной трапеции, ограниченной графиком функции , является первообразной F для функции f

И на отрезке [a; b ] площадь криволинейной трапеции, образованной функцией f, равна приращению первообразной этой функции:

Задание 1:

Найти площадь криволинейной трапеции, ограниченной графиком функции: f(x) = х 2 и прямыми у = 0, х = 1, х = 2.

Решение: (по алгоритму слайд 3 )

Начертим график функции и прямые

Найдём одну из первообразных функции f(x) = х 2 :

Самопроверка по слайду

Интеграл

Рассмотрим криволинейную трапецию, заданную функцией f на отрезке [a; b ]. Разобьём этот отрезок на несколько частей. Площадь всей трапеции разобьётся на сумму площадей более мелких криволинейных трапеций. (слайд 5) . Каждую такую трапецию можно приближённо считать прямоугольником. Сумма площадей этих прямоугольников даёт приближённое представление о всей площади криволинейной трапеции. Чем мельче мы разобьём отрезок [a; b ], тем точнее вычислим площадь.

Запишем эти рассуждения в виде формул.

Разделим отрезок [a; b ] на n частей точками х 0 =а, х1,… ,хn = b. Длину k- го обозначим через хk = xk – xk-1 . Составим сумму

Геометрически эта сумма представляет собой площадь фигуры, заштрихованной на рисунке (щ.м .)

Суммы вида называются интегральными суммами для функции f . (щ.м.)

Интегральные суммы дают приближённое значение площади. Точное значение получается при помощи предельного перехода. Представим, что мы измельчаем разбиение отрезка [a; b ] так, что длины всех маленьких отрезков стремятся к нулю. Тогда площадь составленной фигуры будет приближаться к площади криволинейной трапеции. Можно сказать, что площадь криволинейной трапеции равна пределу интегральных сумм, Sк.т. (щ.м.) или интегралу, т. е.,

Определение:

Интегралом функции f (х) от a до b называется предел интегральных сумм

= (щ.м.)

Формула Ньютона- Лейбница.

Помним, что предел интегральных сумм равен площади криволинейной трапеции, значит можно записать:

Sк.т. =(щ.м.)

С другой стороны, площадь криволинейной трапеции вычисляется по формуле

S к. т.(щ.м.)

Сравнивая эти формулы, получим:

= (щ.м.)

Это равенство называется формулой Ньютона- Лейбница.

Для удобства вычислений формулу записывают в виде:

= = (щ.м.)

Задания: (щ.м.)

1. Вычислить интеграл по формуле Ньютона- Лейбница: (проверяем по слайду 5 )

2. Составить интегралы по чертежу (проверяем по слайду 6 )

3. Найти площадь фигуры, ограниченной линиями: у = х 3 , у = 0, х = 1, х = 2. (Слайд 7 )

Нахождение площадей плоских фигур (слайд 8 )

Как найти площадь фигур, которые не являются криволинейными трапециями?

Пусть даны две функции, графики которых вы видите на слайде. (щ.м.) Необходимо найти площадь закрашенной фигуры. (щ.м.) . Фигура, о которой идёт речь, является криволинейной трапецией? А как можно найти её площадь, пользуясь свойством аддитивности площади? Рассмотреть две криволинейные трапеции и из площади одной из них вычесть площадь другой (щ.м.)

Составим алгоритм нахождения площади по анимации на слайде:

  1. Построить графики функций
  2. Спроецировать точки пересечения графиков на ось абсцисс
  3. Заштриховать фигуру, полученную при пересечении графиков
  4. Найти криволинейные трапеции, пересечение или объединение которых есть данная фигура.
  5. Вычислить площадь каждой из них
  6. Найти разность или сумму площадей

Устное задание: Как получить площадь заштрихованной фигуры (рассказать при помощи анимации, слайд 8 и 9)

Домашнее задание: Проработать конспект, №353 (а), № 364 (а).

Список литературы

  1. Алгебра и начала анализа: учебник для 9-11 классов вечерней (сменной) школы/ под ред. Г.Д. Глейзера. - М: Просвещение, 1983.
  2. Башмаков М.И. Алгебра и начала анализа: учебное пособие для 10-11 кл.сред.шк./ Башмаков М.И. - М: Просвещение, 1991.
  3. Башмаков М.И. Математика: учебник для учреждений нач. и сред. проф. образования/ М.И. Башмаков. - М: Академия, 2010.
  4. Колмогоров А.Н. Алгебра и начала анализа: учебник для 10-11 кл. общеобразовательных учреждений/ А.Н.Колмогоров. - М: Просвещение, 2010.
  5. Островский С.Л. Как сделать презентацию к уроку?/ C.Л. Островский. – М.: Первое сентября, 2010.

Пример1 . Вычислить площадь фигуры, ограниченной линиями: х + 2у – 4 = 0, у = 0, х = -3, и х = 2


Выполним построение фигуры (см. рис.) Строим прямую х + 2у – 4 = 0 по двум точкам А(4;0) и В(0;2). Выразив у через х, получим у = -0,5х + 2. По формуле (1), где f(x) = -0,5х + 2, а = -3, в = 2, находим

S = = [-0,25=11,25 кв. ед

Пример 2. Вычислить площадь фигуры, ограниченной линиями: х – 2у + 4 = 0, х + у – 5 = 0 и у = 0.

Решение. Выполним построение фигуры.

Построим прямую х – 2у + 4 = 0: у = 0, х = - 4, А(-4; 0); х = 0, у = 2, В(0; 2).

Построим прямую х + у – 5 = 0: у = 0, х = 5, С(5; 0), х = 0, у = 5, D(0; 5).

Найдем точку пересечения прямых, решив систему уравнений:

х = 2, у = 3; М(2; 3).

Для вычисления искомой площади разобьем треугольник АМС на два треугольника АМN и NМС, так как при изменении х от А до N площадь ограничена прямой, а при изменении х от N до С - прямой


Для треугольника АМN имеем: ; у = 0,5х + 2, т. е. f(x) = 0,5х + 2, a = - 4, b = 2.

Для треугольника NМС имеем: y = - x + 5, т. е. f(x) = - x + 5, a = 2, b = 5.

Вычислив площадь каждого из треугольников и сложив результаты, находим:

кв. ед.

кв. ед.

9 + 4, 5 = 13,5 кв. ед. Проверка: = 0,5АС = 0,5 кв. ед.

Пример 3. Вычислить площадь фигуры, ограниченной линиями: y = x 2 , y = 0, x = 2, x = 3.

В данном случае требуется вычислить площадь криволинейной трапеции, ограниченной параболой y = x 2 , прямыми x = 2 и x = 3и осью Ох(см. рис.) По формуле (1) находим площадь криволинейной трапеции


= = 6кв. ед.

Пример 4. Вычислить площадь фигуры, ограниченной линиями: у = - x 2 + 4 и у = 0

Выполним построение фигуры. Искомая площадь заключена между параболой у = - x 2 + 4 и осью Ох.


Найдем точки пересечения параболы с осью Ох. Полагая у = 0, найдем х = Так как данная фигура симметрична относительно оси Оу, то вычислим площадь фигуры, расположенной справа от оси Оу, и полученный результат удвоим: = +4x]кв. ед. 2 = 2 кв. ед.

Пример 5. Вычислить площадь фигуры, ограниченной линиями: y 2 = x, yx = 1, x = 4

Здесь требуется вычислить площадь криволинейной трапеции, ограниченной верхней ветвью параболыy 2 = x, осью Ох и прямыми x = 1иx = 4 (см. рис.)


По формуле (1), где f(x) = a = 1 и b = 4 имеем = (= кв. ед.

Пример 6 . Вычислить площадь фигуры, ограниченной линиями:y = sinx, y = 0, x = 0, x= .

Искомая площадь ограничена полуволной синусоиды и осью Ох (см. рис.).


Имеем - cosx = - cos = 1 + 1 = 2 кв. ед.

Пример 7. Вычислить площадь фигуры, ограниченной линиями: y = - 6х, у = 0 и х = 4.

Фигура расположена под осью Ох (см. рис.).

Следовательно, её площадь находим по формуле (3)


= =

Пример 8. Вычислить площадь фигуры, ограниченной линиями:y = и х = 2. Кривую y = построим по точкам (см. рис.). Таким образом, площадь фигуры находим по формуле (4)

Пример 9 .

х 2 + у 2 = r 2 .

Здесь требуется вычислить площадь, ограниченную окружностью х 2 + у 2 = r 2 , т. е. площадь круга радиуса r с центром в начале координат. Найдем четвертую часть этой площади, взяв пределы интегрирования от 0

доr; имеем: 1 = = [

Следовательно, 1 =

Пример 10. Вычислить площадь фигуры, ограниченной линиями: у= х 2 и у = 2х

Данная фигура ограничена параболой у= х 2 и прямой у = 2х (см. рис.) Для определения точек пересечения заданных линий решим систему уравнений:х 2 – 2х = 0 х = 0 и х = 2


Используя для нахождения площади формулу (5), получим

= }