Подобные гиперболы. Что такое гипербола: уравнения и свойства. Парабола и её каноническое уравнение

1. Гипербола лежит за полосой со сторонами x = ± a .

Действительно, согласно уравнению гиперболы, имеет место неравенство

2. Гипербола является симметричной относительно начала координат и относительно координатных осей. Это вытекает из того, что в уравнение гиперболы переменные x и y входят в квадратах х 2 и у 2 , и уравнению гиперболы удовлетворяют точки с координатами (х , у ),

(− х , у ), (х , − у ), (− х , − у ).

3. Гипербола имеет две асимптоты

к которым приближаются точки гиперболы при удалении их от начала координат.

4. Оси симметрии называются осями гиперболы, а центр симметрии (точка пересечения осей) - центром гиперболы. Одна из осей пересекается с гиперболой в двух точках А и С, которые называются ее вершинами. Эта ось называется действительной осью гиперболы. Другая ось не имеет общих точек с гиперболой и называется мнимой осью гиперболы. Прямоугольник со сторонами 2а и 2b называется основным прямоугольником гиперболы. Величины а и b называются, соответственно, действительной и мнимой полуосями.

5. Гипербола с равными полуосями а = b называется равносторонней и ее каноническое уравнение имеет вид

x 2 − y 2 = a 2 .

Так как основной прямоугольник равносторонней гиперболы является квадратом, то асимптоты равносторонней гиперболы перпендикулярны друг другу.

Эксцентриситет гиперболы (как и эллипса) обозначим буквой ε. Так как с > а : то ε > 1, т. е. эксцентриситет гиперболы больше единицы. Очевидно,

Из последнего равенства легко получается геометрическое истолкование эксцентриситета гиперболы. Чем меньше эксцентриситет, т. е. чем ближе он к единице, тем меньше отношение b a , а это означает, что основной прямоугольник более вытянут в направлении действительной оси. Таким образом, эксцентриситет гиперболы характеризует форму ее основного прямоугольника, а, значит, и форму самой гиперболы.

В случае равносторонней гиперболы (a = b ) ε = √2.

ОПР 2. . Две прямые, перпендикулярные действительной оси гиперболы и расположенные симметрично относительно центра на расстоянии а ⁄ ε от него, называются директрисами гиперболы.

Установленное свойство эллипса и гиперболы можно положить в основу общего определения этих линий: множество точек, для которых отношение расстояний до фокуса и до соответствующей директрисы является величиной постоянной, равной ε, является эллипсом, если ε < 1, и гиперболой, если ε > 1.

Определение 1

Гипербола в математике – это множество всех точек на плоскости, для любой из которых абсолютная разность расстояния между двумя точками $F_1$ и $F_2$, называемыми фокусами, всегда равна одному и тому же значению и равна $2a$.

Рисунок 1. Как выглядит гипербола: пример гиперболы

Свойства гиперболы

  • Если точки $F_1$ и $F_2$ являются фокусами гиперболы, то касательная, проведённая через любую точку $A$, принадлежащую кривой, является биссектрисой угла $F_1AF_2$;
  • Отношение расстояний от точки на гиперболе до фокуса и от этой же точки до директрисы – это константа, называемая эксцентриситетом $ε$;
  • Гиперболе свойственна зеркальная симметричность относительно действительной и мнимой осей, а также вращательная к центру при повороте на 180°;
  • Ограниченный действительными осями отрезок касательной, проведённой через точку $M$, делится пополам точкой $M$;
  • У каждой гиперболы есть сопряжённая гипербола, которая располагается в незанятых четвертях графика.

Основные определения

  • Ветви гиперболы – это две непересекающиеся кривые;
  • Вершинами гиперболы называются две ближайшие точки на разных ветвях гиперболы;
  • Формула для определения расстояния между вершинами гиперболы выглядит как $2\cdot a$;
  • Большой действительной осью называется прямая, проложенная через две ближайшие точки на гиперболе. На половине этого расстояния расположен центр гиперболы;
  • Полуосями гиперболы называется половина расстояния между вершинами гиперболы, формула для его определения $2\cdot a/2 = a$;
  • Мнимая ось – это прямая, проложенная через центр гиперболы и перпендикулярная действительной оси;
  • Геометрическое построение гиперболы производится по заданным вершинам и фокусам с помощью циркуля.

Уравнение гиперболы

Общая формула гиперболы и функция гиперболы описывается следующим уравнением: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, где $a, b$ - положительные действительные числа.

Уравнение вырожденной гиперболы выглядит как уравнение двух асимтот к гиперболе: $\frac{x}{a} - \frac{y}{b} = 0$

Уравнение гиперболы со смещенным центром $\frac{(x - x_0)^2}{a^2} - \frac{(y - y_0)^2}{b^2} = 1$, где $x_0, y_0$ - координаты центра гиперболы.

Для нахождения уравнения смещенной гиперболы по графику сначала определяют смещение центра относительно оси координат, оно равно координатам центра. Затем по асимтоптам определяют значения $a$ и $b$.

Гиперболой называется геометрическое место точек плоскости, модуль разности расстояний от каждой из которых до двух заданных точек иесть величина постоянная, меньшая расстояниямежду этими заданными точками (рис.3.40,а). Это геометрическое определение выражаетфокальное свойство гиперболы .

Фокальное свойство гиперболы

Точки иназываются фокусами гиперболы, расстояниемежду ними - фокусным расстоянием, серединаотрезка- центром гиперболы, число- длиной действительной оси гиперболы (соответственно,- действительной полуосью гиперболы). Отрезкии, соединяющие произвольную точкугиперболы с ее фокусами, называются фокальными радиусами точки. Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

Отношение , где, называетсяэксцентриситетом гиперболы . Из определения следует, что.

Геометрическое определение гиперболы , выражающее ее фокальное свойство, эквивалентно ее аналитическому определению - линии, задаваемой каноническим уравнением гиперболы:

Действительно, введем прямоугольную систему координат (рис.3.40,б). Центр гиперболы примем за начало системы координат; прямую, проходящую через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точкик точке); прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координатоказалась правой).

Составим уравнение гиперболы, используя геометрическое определение, выражающее фокальное свойство. В выбранной системе координат определяем координаты фокусов и. Для произвольной точки, принадлежащей гиперболе, имеем:

Записывая это уравнение в координатной форме, получаем:

Выполняя преобразования, аналогичные преобразованиям, используемым при выводе уравнения эллипса (т.е. избавляясь от иррациональности), приходим к каноническому уравнению гиперболы:

где , т.е. выбранная система координат является канонической.

Проводя рассуждения в обратном порядке, можно показать, что все точки, координаты которых удовлетворяют уравнению (3.50), и только они, принадлежат геометрическому месту точек, называемому гиперболой. Таким образом, аналитическое определение гиперболы эквивалентно его геометрическому определению.

Директориальное свойство гиперболы

Директрисами гиперболы называются две прямые, проходящие параллельно оси ординат канонической системы координат на одинаковом расстоянии от нее (рис.3.41,а). При, когда гипербола вырождается в пару пересекающихся прямых, директрисы совпадают.

Гиперболу с эксцентриситетом можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки(фокуса) к расстоянию до заданной прямой(директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету(директориальное свойство гиперболы ). Здесь и- один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

В самом деле, например, для фокуса и директрисы(рис.3.41,а) условиеможно записать в координатной форме:

Избавляясь от иррациональности и заменяя , приходим к каноническому уравнению гиперболы (3.50). Аналогичные рассуждения можно провести для фокусаи директрисы:

Уравнение гиперболы в полярной системе координат

Уравнение правой ветви гиперболы в полярной системе координат (рис.3.41,б) имеет вид

, где -фокальный параметр гиперболы .

В самом деле, выберем в качестве полюса полярной системы координат правый фокус гиперболы, а в качестве полярной оси - луч с началом в точке, принадлежащий прямой, но не содержащий точки(рис.3.41,б). Тогда для произвольной точки, принадлежащей правой ветви гиперболы, согласно геометрическому определению (фокальному свойству) гиперболы, имеем. Выражаем расстояние между точкамии(см. пункт 2 замечаний 2.8):

Следовательно, в координатной форме уравнение гиперболы имеет в

Уединяем радикал, возводим обе части уравнения в квадрат, делим на 4 и приводим подобные члены:

Выражаем полярный радиус и делаем замены:

что и требовалось доказать. Заметим, что в полярных координатах уравнения гиперболы и эллипса совпадают, но описывают разные линии, поскольку отличаются эксцентриситетами (для гиперболы,для эллипса).

Геометрический смысл коэффициентов в уравнении гиперболы

Найдем точки пересечения гиперболы (рис.3.42,а) с осью абсцисс (вершины гиперболы). Подставляя в уравнение , находим абсциссы точек пересечения:. Следовательно, вершины имеют координаты. Длина отрезка, соединяющего вершины, равна. Этот отрезок называется действительной осью гиперболы, а число- действительной полуосью гиперболы. Подставляя, получаем. Длина отрезка оси ординат, соединяющего точки, равна. Этот отрезок называется мнимой осью гиперболы, а число- мнимой полуосью гиперболы. Гипербола пересекает прямую, содержащую действительную ось, и не пересекает прямую, содержащую мнимую ось.

Замечания 3.10.

1. Прямые ограничивают на координатной плоскости основной прямоугольник, вне которого находится гипербола (рис.3.42,а).

2. Прямые , содержащие диагонали основного прямоугольника, называются асимптотами гиперболы (рис.3.42,а).

Для равносторонней гиперболы , описываемой уравнением (т.е. при), основной прямоугольник является квадратом, диагонали которого перпендикулярны. Поэтому асимптоты равносторонней гиперболы также перпендикулярны, и их можно взять в качестве координатных осей прямоугольной системы координат(рис.3.42,б). В этой системе координат уравнение гиперболы имеет вид(гипербола совпадает с графиком элементарной функции, выражающей обратно-пропорциональную зависимость).

В самом деле, повернем каноническую систему координат на угол (рис.3.42,б). При этом координаты точки в старой и новой системах координат связаны равенствами

Подставляя эти выражения в уравнение равносторонней гиперболы и приводя подобные члены, получаем

3. Координатные оси (канонической системы координат) являются осями симметрии гиперболы (называются главными осями гиперболы), а ее центр - центром симметрии. Действительно, если точка принадлежит гиперболе. то и точкии, симметричные точкеотносительно координатных осей, также принадлежат той же гиперболе.

Ось симметрии, на которой располагаются фокусы гиперболы, является фокальной осью.

4. Из уравнения гиперболы в полярных координатах (см. рис.3.41,б) выясняется геометрический смысл фокального параметра - это половина длины хорды гиперболы, проходящей через ее фокус перпендикулярно фокальной оси (при).

5. Эксцентриситет характеризует форму гиперболы. Чем больше, тем шире ветви гиперболы, а чем ближек единице, тем ветви гиперболы уже (рис.3.43,а).

Действительно, величина угла между асимптотами гиперболы, содержащего ее ветвь, определяется отношением сторон основного прямоугольника:. Учитывая,чтои, получаем

Чем больше , тем больше угол. Для равносторонней гиперболыимееми. Дляуголтупой, а дляуголострый (рис.3.43,а).

6 . Две гиперболы, определяемые в одной и той же системе координат уравнениями иназываютсясопряженными друг с другом . Сопряженные гиперболы имеют одни и те же асимптоты (рис.3.43,б). Уравнение сопряженной гиперболы приводится к каноническому при помощи переименования координатных осей (3.38).7. Уравнение определяет гиперболу с центром в точке, оси которой параллельны координатным осям (рис.3.43,в). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36). Уравнениеопределяет сопряженную гиперболу с центром в точке.

Параметрическое уравнение гиперболы

Параметрическое уравнение гиперболы в канонической системе координат имеет вид

где - гиперболический косинус, aгиперболический синус.

Действительно, подставляя выражения координат в уравнение (3.50), приходим к основному гиперболическому тождеству .

Пример 3.21. Изобразить гиперболу в канонической системе координат. Найти полуоси, фокусное расстояние, эксцентриситет, фокальный параметр, уравнения асимптот и директрис.

Решение. Сравнивая заданное уравнение с каноническим, определяем полуоси: - действительная полуось,- мнимая полуось гиперболы. Строим основной прямоугольник со сторонамис центром в начале координат (рис.3.44). Проводим асимптоты, продлевая диагонали основного прямоугольника. Строим гиперболу, учитывая ее симметричность относительно координатных осей. При необходимости определяем координаты некоторых точек гиперболы. Например, подставляяв уравнение гиперболы, получаем

Следовательно, точки с координатами ипринадлежат гиперболе. Вычисляем фокусное расстояние

эксцентриситет ; фокальныи параметр. Составляем уравнения асимптот, то есть, и уравнения директрис:.

Парабола и её каноническое уравнение

Определение. Параболой называется геометрическое место точек, для каждой из которых расстояние до некоторой фиксированной точки плоскости, называемой фокусом, равно расстоянию до некоторой фиксированной прямой, не проходящей через фокус и называемой директрисой.

Определение. Расстояние от фокуса параболы до её директрисы называется параметром параболы. Эксцентриситет параболы принимается равным единице.

Опустим из фокуса перпендикуляр на директрисуи точку пересечения этого перпендикуляра с директрисой параболы обозначим буквой. Введём на плоскости ДПСК, поместив начало координатв центре отрезка, принимая за осьпрямую, с положительным направлением отк(См. рис.176).

Расстояние от фокусадо директрисыобозначим буквой(это параметр параболы). В выбранной системе координат фокусимеет координаты. Уравнение директрисы.

Пусть - произвольная точка плоскости. Обозначим черезрасстояниеот точкидо фокусапараболы, а через- расстояниеот точкидо директрисы этой параболы.

Точка лежит на данной параболе тогда и

только тогда, когда . Так как,

а , то уравнение параболы имеет вид:

. Это уравнение эквивалентно следующему уравнению: .

Или: (1)

Определение. Уравнение (1) называется каноническим уравнением параболы.

Гипербола - это плоская кривая второго порядка, которая состоит из двух отдельных кривых, которые не пересекаются.
Формула гиперболы y = k/x , при условии, что k не равно 0 . То есть вершины гиперболы стремятся к нолю, но никогда не пересекаются с ним.

Гипербола - это множество точек плоскости, модуль разности расстояний которых от двух точек, называемых фокусами, есть величина постоянная.

Свойства:

1. Оптическое свойство: свет от источника, находящегося в одном из фокусов гиперболы, отражается второй ветвью гиперболы таким образом, что продолжения отраженных лучей пересекаются во втором фокусе.
Иначе говоря, если F1 и F2 фокусы гиперболы, то касательная в любой точки X гиперболы является биссектрисой угла ∠F1XF2.

2. Для любой точки, лежащей на гиперболе, отношение расстояний от этой точки до фокуса к расстоянию от этой же точки до директрисы есть величина постоянная.

3. Гипербола обладает зеркальной симметрией относительно действительной и мнимой осей , а также вращательной симметрией при повороте на угол 180° вокруг центра гиперболы.

4. Каждая гипербола имеет сопряженную гиперболу , для которой действительная и мнимая оси меняются местами, но асимптоты остаются прежними.

Свойства гиперболы:

1) Гипербола имеет две оси симметрии (главные оси гиперболы) и центр симметрии (центр гиперболы). При этом одна из этих осей пересекается с гиперболой в двух точках, называемых вершинами гиперболы. Она называется действительной осью гиперболы (ось Ох для канонического выбора координатной системы). Другая ось не имеет общих точек с гиперболой и называется ее мнимой осью (в канонических координатах – ось Оу ). По обе стороны от нее расположены правая и левая ветви гиперболы. Фокусы гиперболы располагаются на ее действительной оси.

2) Ветви гиперболы имеют две асимптоты, определяемые уравнениями

3) Наряду с гиперболой (11.3) можно рассмотреть так называемую сопряженную гиперболу, определяемую каноническим уравнением

для которой меняются местами действительная и мнимая ось с сохранением тех же асимптот.

4) Эксцентриситет гиперболы e > 1.

5) Отношение расстояния r i от точки гиперболы до фокуса F i к расстоянию d i от этой точки до отвечающей фокусу директрисы равно эксцентриситету гиперболы.

42. Гиперболой называется множество точек плоскости, для которых модуль разности расстояний до двух фиксированных точек F 1 и F 2 этой плоскости, называемых фокусами , есть величина постоянная.

Выведем каноническое уравнение гиперболы по аналогии с выводом уравнения эллипса, пользуясь теми же обозначениями.

|r 1 - r 2 | = 2a , откуда Если обозначить b ² = c ² - a ², отсюда можно получить

- каноническое уравнение гиперболы . (11.3)

Геометрическое место точек, для которых отношение расстояния до фокуса и до заданной прямой, называемой директрисой, постоянно и больше единицы, называется гиперболой. Заданная постоянная называется эксцентриситетом гиперболы

Определение 11.6. Эксцентриситетом гиперболы называется величина е = с / а.

Эксцентриситет:

Определение 11.7. Директрисой D i гиперболы, отвечающей фокусу F i , называется прямая, расположенная в одной полуплоскости с F i относительно оси Оу перпендикулярно оси Ох на расстоянии а / е от начала координат.

43.Случай сопряжённой,вырожденной гиперболы (НЕ ПОЛНОСТЬЮ)

Каждая гипербола имеет сопряженную гиперболу , для которой действительная и мнимая оси меняются местами, но асимптоты остаются прежними. Это соответствует замене a и b друг на друга в формуле, описывающей гиперболу. Сопряженная гипербола не является результатом поворота начальной гиперболы на угол 90°; обе гиперболы различаются формой.

Если асимптоты гиперболы взаимно перпендикулярны, то гипербола называется равнобочной . Две гиперболы, имеющие общие асимптоты, но с переставленными поперечной и сопряженной осями, называются взаимно сопряженными .

Гиперболой называется геометрическое место точек плоскости, координаты которых удовлетворяют уравнению

Параметры гиперболы:

Точки F 1 (–c, 0), F 2 (c , 0), где называются фокусами гиперболы, при этом величина 2с (с > a > 0) определяет междуфокусное расстояние . Точки А 1 (–а , 0), А 2 (а , 0) называются вершинами гиперболы , при этом А 1 А 2 = 2а образует действительную ось гиперболы, а В 1 В 2 = 2b мнимую ось (В 1 (0, –b ), B 2 (0, b )), О центр гиперболы.


Величина называется эксцентриситетом гиперболы, она характеризует меру «сжатости» гиперболы;

фокальные радиусы гиперболы (точка М принадлежит гиперболе), причем r 1 = a + εx , r 2 = –a + εx для точек правой ветви гиперболы, r 1 = – (a + εx ), r 2 = – (–a + εx ) – для точек левой ветви;

директрисы гиперболы;

уравнения асимптот .

Для гиперболы справедливо: ε > 1, директрисы не пересекают границу и внутреннюю область гиперболы, а также обладают свойством

Говорят, что уравнение

задает уравнение гиперболы, сопряженной данной (рис. 20). Его можно записать также в виде

В таком случае ось мнимая, фокусы лежат на оси . Все остальные параметры определяются аналогично как для гиперболы (25).


Точки гиперболы обладают важным характеристическим свойством: абсолютное значение разности расстояний от каждой из них до фокусов есть величина постоянная, равная 2a (рис. 19).

Для параметрического задания гиперболы в качестве параметра t может быть взята величина угла между радиус-вектором точки, лежащей на гиперболе, и положительным направлением оси Ox :

Пример 1. Привести уравнение гиперболы

9x 2 – 16y 2 = 144

к каноническому виду, найти еепараметры, изобразить гиперболу.

Решение. Разделим левую и правую части заданного уравнения на 144: Из последнего уравнения непосредственно следует: a = 4, b = 3, c = 5, O (0, 0) – центр гиперболы. Фокусы находятся в точках F 1 (–5, 0) и F 2 (5, 0), эксцентриситет ε = 5/4, директрисы D 1 и D 2 описываются уравнениями D 1: x = –16/5, D 2: x = 16/5, асимптоты l 1 и l 2 имеют уравнения

Сделаем чертеж. Для этого по осям Ox и Oy симметрично относительно точки (0, 0) отложим отрезки А 1 А 2 = 2а = 8 и В 1 В 2 = 2b = 6 соответственно. Через полученные точки А 1 (–4, 0), А 2 (4, 0), В 1 (0, –3), В 2 (0, 3) проведем прямые, параллельные координатным осям. В результате получим прямоугольник (рис. 21), диагонали которого лежат на асимптотах гиперболы. Строим гиперболу




Для нахождения угла φ между асимптотами гиперболы воспользуемся формулой

.

,

откуда получаем

Пример 2. Определить тип, параметры и расположение на плоскости кривой, уравнение которой

Решение. С помощью метода выделения полных квадратов упростим правую часть данного уравнения:

Получаем уравнение

которое делением на 30 приводится к виду

Это уравнение гиперболы, центр которой лежит в точке действительная полуось – мнимая полуось – (рис. 22).


Пример 3. Составить уравнение гиперболы, сопряженной относительно гиперболы определить ее параметры и сделать чертеж.

Решение. Уравнение гиперболы, сопряженной данной, –

Действительная полуось b = 3, мнимая – а = 4, половина междуфокусного расстояния Вершинами гиперболы служат точки B 1 (0, –3) и В 2 (0, 3); ее фокусы находятся в точках F 1 (0, –5) и F 2 (0, 5); эксцентриситет ε = с /b = 5/3; директрисы D 1 и D 2 задаются уравнениями D 1: y = –9/5, D 2: y = 9/5; уравнения являются уравнениями асимптот (рис. 23).


Заметим, что для сопряженных гипербол общими элементами являются вспомогательный «прямоугольник» и асимптоты.

Пример 4. Написать уравнение гиперболы с полуосями a и b (a > 0, b > 0), если известно, что ее главные оси параллельны координатным осям. Определить основные параметры гиперболы.

Решение. Искомое уравнение можно рассматривать как уравнение гиперболы которое получается в результате параллельного переноса старой системы координат на вектор где (x 0 , y 0) – центр гиперболы в «старой» системе координат. Тогда, используя соотношения между координатами произвольной точки М плоскости в заданной и преобразованной системах