Объекты природы с осевой симметрией. Золотые пропорции в литературе. Поэзия и золотое сечение. Многими исследователями было замечено, что стихотворения подобны музыкальным произведениям; в них также существуют кульминационные пункты, которые делят стихотв

На протяжении веков симметрия остается предметом, который очаровывает философов, астрономов, математиков, художников, архитекторов и физиков. Древние греки были совершенно одержимы ею – и даже сегодня мы, как правило, сталкиваемся с симметрией во всем от расположения мебели до стрижки волос.

Просто имейте в виду: как только вы осознаете это, вы, вероятно, испытаете непреодолимое желание искать симметрию во всем, что видите.

(Всего 10 фото)

Спонсор поста: Программа для скачивания музыки ВКонтакте : Новая версия программы «Лови в контакте» предоставляет возможность легко и быстро скачивать музыку и видео, размещенные пользователями, со страниц самой известной социальной сети vkontakte.ru.

1. Брокколи романеско

Возможно увидев брокколи романеско в магазине, вы подумали, что это ещё один образец генномодифицированного продукта. Но на самом деле это ещё один пример фрактальной симметрии природы. Каждое соцветие брокколи имеет рисунок логарифмической спирали. Романеско внешне похожа на брокколи, а по вкусу и консистенции – на цветную капусту. Она богата каротиноидами, а также витаминами С и К, что делает её не только красивой, но и здоровой пищей.

На протяжении тысяч лет люди удивлялись идеальной гексагональной форме сот и спрашивали себя, как пчелы могут инстинктивно создать форму, которую люди могут воспроизвести только с помощью циркуля и линейки. Как и почему пчелы имеют страстное желание создавать шестиугольники? Математики считают, что это идеальная форма, которая позволяет им хранить максимально возможное количество меда, используя минимальное количество воска. В любом случае, все это продукт природы, и это чертовски впечатляет.

3. Подсолнухи

Подсолнухи могут похвастаться радиальной симметрией и интересным типом симметрии, известной как последовательность Фибоначчи. Последовательность Фибоначчи: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 и т.д. (каждое число определяется суммой двух предыдущих чисел). Если бы мы не спешили и подсчитали количество семян в подсолнухе, то мы бы обнаружили, что количество спиралей растет по принципам последовательности Фибоначчи. В природе есть очень много растений (в том числе и брокколи романеско), лепестки, семена и листья которых отвечают этой последовательности, поэтому так трудно найти клевер с четырьмя листочками.

Но почему подсолнечник и другие растения соблюдают математические правила? Как и шестиугольники в улье, все это – вопрос эффективности.

4. Раковина Наутилуса

Помимо растений, некоторые животные, например Наутилус, отвечают последовательности Фибоначчи. Раковина Наутилуса закручивается в «спираль Фибоначчи». Раковина пытается поддерживать одну и ту же пропорциональную форму, что позволяет ей сохранять её на протяжении всей жизни (в отличие от людей, которые меняют пропорции на протяжении жизни). Не все Наутилусы имеют раковину, выстроенную по правилам Фибоначчи, но все они отвечают логарифмической спирали.

Прежде, чем вы позавидуете моллюскам-математикам, вспомните, что они не делают этого специально, просто такая форма наиболее рациональна для них.

5. Животные

Большинство животных имеют двустороннюю симметрию, что означает, что они могут быть разделены на две одинаковых половинки. Даже люди обладают двусторонней симметрией, и некоторые ученые полагают, что симметрия человека является наиболее важным фактором, который влияет на восприятие нашей красоты. Другими словами, если у вас однобокое лицо, то остается надеяться, что это компенсируется другими хорошими качествами.

Некоторые доходят до полной симметрии в стремлении привлечь партнера, например павлин. Дарвин был положительно раздражен этой птицей, и написал в письме, что «Вид перьев в хвосте павлина, всякий раз, когда я смотрю на него, делает меня больным!» Дарвину, хвост казался обременительным и не имеющим эволюционного смысла, так как он не соответствовал его теории «выживания наиболее приспособленных». Он был в ярости, пока не придумал теорию полового отбора, которая утверждает, что животные развивают определенные функции, чтобы увеличить свои шансы на спаривание. Поэтому павлины имеют различные приспособления для привлечения партнерши.

Есть около 5000 типов пауков, и все они создают почти идеальное круговое полотно с радиальными поддерживающими нитями почти на равном расстоянии и спиральной тканью для ловли добычи. Ученые не уверены, почему пауки так любят геометрию, так как испытания показали, что круглое полотно не заманит еду лучше, чем полотно неправильной формы. Ученые предполагают, что радиальная симметрия равномерно распределяет силу удара, когда жертва попадает в сети, в результате чего получается меньше разрывов.


Дайте паре обманщиков доску, косилки и спасительную темноту, и вы увидите, что люди тоже создают симметричные формы. Из-за того, что круги на полях отличаются сложностью дизайна и невероятной симметрией, даже после того, как создатели кругов признались и продемонстрировали свое мастерство, многие люди до сих пор верят, что это сделали космические пришельцы.

По мере усложнения кругов все больше проясняется их искусственное происхождение. Нелогично предполагать, что пришельцы будут делать свои сообщения все более трудными, когда мы не смогли расшифровать даже первые из них.

Независимо от того, как они появились, круги на полях приятно рассматривать, главным образом потому, что их геометрия впечатляет.


Даже такие крошечные образования, как снежинки, регулируются законами симметрии, так как большинство снежинок имеет шестигранную симметрию. Это происходит в частности из-за того, как молекулы воды выстраиваются, когда затвердевают (кристаллизуются). Молекулы воды приобретают твердое состояние, образуя слабые водородные связи, они выравниваются в упорядоченном расположении, которое уравновешивает силы притяжения и отталкивания, формируя гексагональную форму снежинки. Но при этом каждая снежинка симметрична, но ни одна снежинка не похожа на другую. Это происходит потому, что падая с неба, каждая снежинка испытывает уникальные атмосферные условия, которые заставляют её кристаллы располагаться определенным образом.

9. Галактика Млечный Путь

Как мы уже видели, симметрия и математические модели существуют почти везде, но разве эти законы природы ограничиваются нашей планетой? Очевидно, нет. Недавно открыли новую секцию на краю Галактики Млечного Пути, и астрономы считают, что галактика представляет собой почти идеальное зеркальное отражение себя.

10. Симметрия Солнца-Луны

Если учесть, что Солнце имеет диаметр 1,4 млн. км, а Луна – 3474 км, кажется почти невозможным то, что Луна может блокировать солнечный свет и обеспечивать нам около пяти солнечных затмений каждые два года. Как это получается? Так совпало, что наряду с тем, что ширина Солнца примерно в 400 раз больше, чем Луна, Солнце также в 400 раз дальше. Симметрия обеспечивает то, что Солнце и Луна получаются одного размера, если смотреть с Земли, и поэтому Луна может закрыть Солнце. Конечно, расстояние от Земли до Солнца может увеличиваться, поэтому иногда мы видим кольцевые и неполные затмения. Но каждые один-два года происходит точное выравнивание, и мы становимся свидетелями захватывающих событий, известных как полное солнечное затмение. Астрономы не знают, как часто встречается такая симметрия среди других планет, но они думают, что это довольно редкое явление. Тем не менее, мы не должны предполагать, что мы особенные, так как все это дело случая. Например, каждый год Луна отдаляется примерно на 4 см от Земли, это означает, что миллиарды лет назад каждое солнечное затмение было бы полным затмением. Если и дальше все пойдет так, то полные затмения, в конце концов, исчезнут, и это будет сопровождаться исчезновением кольцевых затмений. Получается, что мы просто находимся в нужном месте в нужное время, чтобы увидеть это явление.

ВВЕДЕНИЕ: Проблеме симметрии посвящена поистине необозримая литература. Отучебников и научных монографий до произведений, апеллирующих не столько к чертежу и формуле, сколько к художественному образу, и сочетающих в себе научную достоверность с литературной отточенностью. В "Кратком Оксфордском словаре" симметрия определяется как "красота,обусловленная пропорциональностью частей тела или любого целого,равновесием, подобием, гармонией, согласованностью" (сам термин "симметрия" по-гречески означает "соразмерность", которую древние философы понимали как частный случай гармонии - согласования частей в рамках целого) . Симметрия является одной из наиболее фундаментальных и одной из наиболее общих закономерностей мироздания: неживой, живой природы и общества. С симметрией мы встречаемся всюду. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Оно встречается уже у истоков человеческого знания; его широко используют все без исключения направления современной науки. Что же такое симметрия? Почему симметрия буквально пронизывает весь окружающий нас мир? Существуют, в принципе, две группы симметрий. К первой группе относится симметрия положений, форм, структур. Это та симметрия, которую можно непосредственно видеть. Она может быть названа геометрической симметрией. Вторая группа характеризует симметрию физических явлений и законов природы. Эта симметрия лежит в самой основе естественнонаучной картины мира: ее можно назвать физической симметрией. На протяжении тысячелетий в ходе общественной практики и познания законов объективной действительности человечество накопило многочисленные данные, свидетельствующие о наличии в окружающем мире двух тенденций: с одной стороны, к строгой упорядоченности, гармонии, а с другой - к их нарушению. Люди давно обратили внимание на правильность формы кристаллов, цветов, пчелиных сот и других естественных объектов и воспроизводили эту пропорциональность в произведениях искусства, в создаваемых ими предметах, через понятие симметрии. «Симметрия, - пишет известный ученый Дж. Ньюмен, - устанавливает забавное и удивительное родство между предметами, явлениями и теориями, внешне, казалось бы, ничем не связанными: земным магнетизмом, женской вуалью, поляризованным светом, естественным отбором, теорией групп, инвариантами и преобразованиями, рабочими привычками пчел в улье, строением пространства, рисунками ваз, квантовой физикой, лепестками цветов, интерференционной картиной рентгеновских лучей, делением клеток морских ежей, равновесными конфигурациями кристаллов, романскими соборами, снежинками, музыкой, теорией относительности...". Слово «симметрия» имеет двойственное толкование. В одном смысле симметричное означает нечто весьма пропорциональное, сбалансированное; симметрия показывает тот способ согласования многих частей, с помощью которого они объединяются в целое. Второй смысл этого слова - равновесие. Еще Аристотель говорил о симметрии как о таком состоянии, которое характеризуется соотношением крайностей. Из этого высказывания следует, что Аристотель, пожалуй, был ближе всех к открытию одной из самых фундаментальных закономерностей Природы - закономерности о ее двойственности. Характерно, что к наиболее интересным результатам наука приходила именно тогда, когда устанавливались факты нарушения симметрии. Следствия, вытекающие из принципа симметрии, интенсивно разрабатывались физиками в прошлом веке и привели к ряду важных результатов. Такими следствиями законов симметрии являются, прежде всего, законы сохранения классической физики. В настоящее время в естествознании преобладают определения категорий симметрии и асимметрии на основании перечисления определенных признаков. Например, симметрия определяется как совокупность свойств: порядка, однородности, соразмерности, гармоничности. Все признаки симметрии во многих ее определениях рассматриваются равноправными, одинаково существенными, и в отдельных конкретных случаях, при установлении симметрии какого-то явления, можно пользоваться любым из них. Так, в одних случаях симметрия - это однородность, в других - соразмерность и т. д. То же самое можно сказать и о существующих в частных науках определениях асимметрии. ЗНАЧЕНИЕ СИММЕТРИИ В ПОЗНАНИИ ПРИРОДЫ Идея симметрии часто являлась отправным пунктом в гипотезах и теориях ученых прошлого. Вносимая симметрией упорядоченность проявляется, прежде всего, в ограничении многообразия возможных структур, в сокращении числа возможных вариантов. В качестве важного физического примера можно привести факт существования определяемых симметрией ограничений разнообразия структур молекул и кристаллов. Поясним эту мысль на следующем примере. Допустим, что в некоторой отдаленной галактике обитают высокоразвитые существа, увлекающиеся среди прочих занятий также играми. Мы можем ничего не знать о вкусах этих существ, о строении их тела и особенностях психики. Однако достоверно, что их игральные кости имеют одну из пяти форм - тетраэдр, куб, октаэдр, додекаэдр, икосаэдр. Всякая иная форма игральной кости в принципе исключена, поскольку требование равновероятности выпадения при игре любой грани предопределяет использование формы правильного многогранника, а таких форм только пять. Идея симметрии часто служила ученым путеводной нитью при рассмотрении проблем мироздания. Наблюдая хаотическую россыпь звезд на ночном небе, мы понимаем, что за внешним хаосом скрываются вполне симметричные спиральные структуры галактик, а в них - симметричные структуры планетных систем. Симметрия внешней формы кристалла является следствием ее внутренней симметрии - упорядоченного взаимного расположения в пространстве атомов (молекул). Иначе говоря, симметрия кристалла связана с существованием пространственной решетки из атомов, так называемой кристаллической решетки. Согласно современной точке зрения, наиболее фундаментальные законы природы носят характер запретов. Они определяют, что может, а что не может происходить в природе. Так, законы сохранения в физике элементарных частиц являются законами запрета. Они запрещают любое явление, при котором изменялась бы "сохраняющаяся величина", являющаяся собственной «абсолютной» константой (собственным значением) соответствующего объекта и характеризующая его «вес» в системе других объектов. И эти значения являются абсолютными до тех пор, пока такой объект существует. В современной науке все законы сохранения рассматриваются именно как законы запрета. Так, в мире элементарных частиц многие законы сохранения получены как правила, запрещающие те явления, которые никогда не наблюдаются в экспериментах. Видный советский ученый академик В. И. Вернадский писал в 1927 году: "Новым в науке явилось не выявление принципа симметрии, а выявление его всеобщности". Действительно, всеобщность симметрии поразительна. Симметрия устанавливает внутренние связи между объектами и явлениями, которые внешне никак не связаны. Всеобщность симметрии не только в том, что она обнаруживается в разнообразных объектах и явлениях. Всеобщим является сам принцип симметрии, без которого по сути дела нельзя рассмотреть ни одной фундаментальной проблемы, будь то проблема жизни или проблема контактов с внеземными цивилизациями. Принципы симметрии лежат в основе теории относительности, квантовой механики, физики твердого тела, атомной и ядерной физики, физики элементарных частиц. Эти принципы наиболее ярко выражаются в свойствах инвариантности законов природы. Речь при этом идет не только о физических законах, но и других, например, биологических. Примером биологического закона сохранения может служить закон наследования. В основе его лежат инвариантность биологических свойств по отношению к переходу от одного поколения к другому. Вполне очевидно, что без законов сохранения (физических, биологических и прочих) наш мир попросту не смог бы существовать.

Следует выделить аспекты, без которых симметрия невозможна:

1) объект - носитель симметрии; в роли симметричных объектов могут выступать вещи, процессы, геометрические фигуры, математические выражения, живые организмы и т.д.

2) некоторые признаки - величины, свойства, отношения, процессы, явления - объекта, которые при преобразованиях симметрии остаются неизменными; их называют инвариантными или инвариантами.

3)изменения (объекта), которые оставляют объект тождественным самому себе по инвариантным признакам; такие изменения называются преобразованиями симметрии;

4) свойство объекта превращаться по выделенным признакам в самого себя после соответствующих его изменений.

Важно подчеркнуть, что инвариант вторичен по отношению к изменению; покой относителен, движение абсолютно.

Таким образом, симметрия выражает сохранение чего-то при каких-то изменениях или сохранение чего-то несмотря на изменение. Симметрия предполагает неизменность не только самого объекта, но и каких-либо его свойств по отношению к преобразованиям, выполненным над объектом. Неизменность тех или иных объектов может наблюдаться по отношению к разнообразным операциям - к поворотам, переносам, взаимной замене частей, отражениям и т.д. В связи с этим выделяют разные типы симметрии.

ПОВОРОТНАЯ СИММЕТРИЯ. Говорят, что объект обладает поворотной симметрией, если он совмещается сам с собой при повороте на угол 2?/n, где n может равняться 2, 3, 4 и т.д. до бесконечности. Ось симметрии называется ось осью n-го порядка.

ПЕРЕНОСНАЯ (ТРАНСЛЯЦИОННАЯ) СИММЕТРИЯ . О такой симметрии говорят тогда, когда при переносе фигуры вдоль прямой на какое-то расстояние а либо расстояние, кратное этой величине, она совмещается сама с собой.
Прямая, вдоль которой производится перенос, называется осью переноса, а расстояние а - элементарным переносом или периодом. С данным типом симметрии связано понятие периодических структур или решеток, которые могут быть и плоскими, и пространственными.

Скорее всего, вы неоднократно проходили в магазине мимо полки с капустой брокколи Романеско и из-за её необычного вида предполагали, что это генно-модифицированный продукт. Но на самом-то деле, это всего лишь ещё один из многих примеров фрактальной симметрии в природе - хотя и безусловно поразительный.

В геометрии фрактал — это сложный узор, каждая часть которого обладает тем же геометрическим рисунком, что и весь узор в целом.

Поэтому в случае капусты брокколи Романеско каждый цветок компактного соцветия обладает той же логарифмической спиралью, что и вся головка (просто в миниатюрном виде). По сути, вся головка этой капусты — это одна большая спираль, которая состоит из маленьких почек похожих на шишки, которые также растут в виде мини-спиралей. Кстати говоря, капуста брокколи Романеско является родственницей, как капусты брокколи, так и цветной капусты, хотя её вкус и консистенция больше напоминают цветную капусту.

Она также богата каротиноидами и витаминами С и К, что означает, что она является полезным и математически красивым дополнением к нашей пище.

Медовые соты

Пчёлы это не только ведущие производители мёда - они также знают толк в геометрии.

Тысячи лет люди поражались совершенству гексагональных форм в медовых сотах и задавались вопросом о том, как же пчёлы могут инстинктивно создавать такие формы, которые человек может создавать только с линейкой и компасом.

Медовые соты являются предметов обойной симметрии, где повторяющийся узор покрывает плоскость (например, плиточный пол или мозаика). Так каким же образом и почему пчёлы так любят строить шестиугольники?

Начнём с того, что математики считают, что эта совершенная форма позволяет пчёлам запасать самое большое количество мёда, используя наименьшее количество воска. При строительстве других форм у пчёл получались бы большие пространства, так как такие фигуры, как например круг - не прилегают друг к другу полностью.

Другие наблюдатели, которые менее склонны верить в сообразительность пчёл, считают, что они формируют гексагональную форму совершенно «случайно». Другими словами, пчёлы на самом деле делают круги, а воск сам по себе принимает гексагональную форму.

В любом случае - это произведение природы и довольно-таки потрясающее.

Подсолнухи

Подсолнухи могут похвастаться радиальной симметрией и интересным типом симметрии чисел, известным как последовательность Фибоначчи. Последовательность Фибоначчи это: 1, 2, 3, 5, 8, 13, 21, 24, 55, 89, 144 и т.д. (каждое число определяется суммой двух предыдущих чисел). Если не жалея времени заняться подсчётом количества семенных спиралей в подсолнечнике, мы бы обнаружили, что количество спиралей совпадает с числами Фибоначчи.

Более того, огромное количество растений (включая капусту брокколи Романеско) отпускают лепестки, листья и семена в соответствии с последовательностью Фибоначчи, именно поэтому так сложно найти четырёхлистный клевер.

Считать спирали на подсолнечнике может быть довольно трудно, поэтому, если вы хотите самостоятельно проверить этот принцип, попробуйте подсчитать спирали на более крупных вещах, таких как шишки, ананасы, и артишоки.

Но почему цветы подсолнечника и другие растения подчиняются математическим правилам? Как и в случае шестиугольников в улье, всё дело в эффективности. Чтобы не углубляться в технические особенности, можно просто сказать, что цветок подсолнечника может вместить наибольшее количество семян, если каждое семечко расположено под углом, представляющим собой иррациональное число.

Оказывается, самым иррациональным числом является золотое сечение, или Фи, и так уж случилось, что, если мы разделим любое число Фибоначчи или Лукаса на предыдущее число в последовательности, мы получим число, близкое к Фи (+1,618033988749895 …). Таким образом, в любом растении, растущем в соответствии с последовательностью Фибоначчи, должен быть угол, который соответствует Фи (углу равному числу золотого сечения) между каждым из семян, листьев, лепестков, или веток.

Раковина Наутилуса

Помимо растений существуют также некоторые животные, демонстрирующие собою числа Фибоначчи. Например, раковина Наутилуса выросла в «Спираль Фибоначчи». Спираль образуется в результате попытки раковины поддерживать ту же пропорциональную форму по мере своего роста наружу. В случае наутилуса, такая тенденция роста позволяет ему сохранять одинаковую форму тела в течение всей своей жизни (в отличие от людей, чьи тела изменяют свои пропорции по мере взросления). Как и следовало бы ожидать - в этом правиле существуют и исключения: не каждая раковина наутилуса вырастает в спираль Фибоначчи.

Но все они растут в виде своеобразных логарифмических спиралей. И, до того как вы начнёте задумываться над тем, что эти головоногие, пожалуй, знают математику лучше вас, помните, что их раковины растут в такой форме неосознанно для них, и что они просто пользуются эволюционным дизайном, который позволяет моллюску расти, не изменяя форму.

Животные

Большинство животных обладает двусторонней симметрией, это означает, что их можно разделить на две одинаковые половины, если линию деления провести по их центру тела. Даже люди обладают двусторонней симметрией, и некоторые учёные считают, что симметрия человека является самым важным фактором того, будем ли мы считать его физически привлекательным или нет.

Другими словами, если у вас кривобокое лицо, надейтесь, что у вас есть целая уйма компенсирующих, положительных качеств.

Одно животное, скорее всего, воспринимает важность симметрии в брачных ритуалах слишком серьёзно, и этим животным является павлин. Дарвина очень раздражал этот вид птиц, и в своём письма в 1860 году он написал, что «каждый раз, когда я смотрю на перо из павлиньего хвоста - меня тошнит!». Для Дарвина хвост павлина казался чем-то обременительным, так как, по его мнению, такой хвост не имел эволюционного смысла, так как он не подходил под его теорию «естественного отбора».

Он злился до тех пор, пока он не разработал теорию сексуального отбора, которая заключается в том, что животное развивает у себя определённые качества, которые обеспечат ему лучший шанс спариться. Очевидно, для павлинов сексуальный отбор считается невероятно важным, так как они отрастили себе различные варианты узоров, чтобы привлечь своих дам, начиная с ярких цветов, большого размера, симметрии своих тел и повторяющемся узоре их хвостов.

Паутины пауков

Существует примерно 5 000 видов пауков-кругопрядов, и все они создают практически совершенно круглые паутины с почти равноудаленными радиальными опорами, исходящими из центра и связанными по спирали для более эффективной ловли добычи.

Ученые до сих пор не нашли ответа на вопрос, почему пауки-кругопряды делают такой большой акцент на геометрию, так как исследования показали, что округлая паутина не удерживает добычу лучше, чем паутина неправильной формы. Некоторые ученые предполагают, что пауки строят круглые паутины из-за того, что они более прочные, и радиальная симметрия помогает равномерно распределить силу удара, когда жертва попадает в сети, в результате чего в паутине оказывается меньше разрывов.

Но остается вопрос: если это действительно лучший способ создания паутины, то почему не все пауки его используют?

У некоторых пауков, не являющихся кругопрядами, есть возможность создавать такую же паутину, однако они этого не делают. Например, недавно обнаруженный в Перу паук строит отдельные части сети одинакового размера и длины (что доказывает его способность «замерять»), но затем он просто соединяет все эти части одинакового размера в случайном порядке в большую паутину, которая не обладает какой-то определённой формой. Может быть эти пауки из Перу знают что-то, чего не знают пауки-кругопряды, или же они ещё просто не оценили всю прелесть симметрии?

Круги на полях с урожаем

Дайте парочке шутников доску, кусок верёвки и покров тьмы и окажется, что люди тоже хороши в создании симметричных форм.

На самом деле, именно из-за невероятной симметрии и сложности дизайна кругов на полях с урожаем, люди продолжают верить, что только пришельцы из космоса способны сотворить такое, даже несмотря на то, что люди, создавшие эти круги, сознались. Возможно, когда-то и была смесь кругов сделанных людьми с теми, которые сделали пришельцы, но прогрессирующая сложность кругов является самым явным доказательством того, что их сделали именно люди.

Было бы нелогичным предположить, что пришельцы сделают свои послания ещё сложнее, учитывая то, что люди ещё толком не разобрались в значении простых посланий. Скорее всего, люди учатся друг у друга по примерам созданного и всё больше и больше усложняют свои творения. Если отбросить в стороны разговоры об их происхождении, можно точно сказать, что на круги приятно смотреть, по большей части из-за того, что они так геометрически впечатляющи.

Физик Ричард Тейлор (Richard Taylor) провёл исследование кругов на полях и обнаружил, что помимо того факта, что за ночь на земле создается по крайней мере один круг, большинство их дизайнов отображают широкий спектр симметрии и математических моделей, в том числе фракталов и спиралей Фибоначчи.

Снежинки

Даже такие крошечные вещи как снежинки тоже образуются по законам порядка, так как большинство снежинок формируются в виде шестикратной радиальной симметрии со сложными, идентичными рисунками на каждой из её ветвей.

Понять, почему растения и животные выбирают симметрию, сложно само по себе, но неодушевлённые объекты - как же им это удаётся? По-видимому, всё сводится к химии, и в частности к тому, как молекулы воды выстраиваются по мере своего замерзания (кристаллизуются).

Молекулы воды приходят в твёрдое состояние путём образования слабых водородных связей друг с другом. Эти связи выравниваются в упорядоченном расположении, которое максимизирует силы притяжения и снижает силы отталкивания, что как раз и является причиной образования гексагональной формы снежинки. Однако всем нам известно, что двух одинаковых снежинок не бывает, так как же снежинка формируется в абсолютной симметрии сама с собой, но не похожа на другие снежинки? По мере того как каждая снежинка падает с неба она проходит через уникальные атмосферные условия, такие как температура и влажность, которые влияют на то, как кристаллы «растут» на ней. Все ветви снежинки проходят через одни и те же условия и следовательно кристаллизуются одинаковым образом — каждая ветвь является точной копией другой. Ни одна другая снежинка не проходит через те же условия по мере своего спуска, поэтому они все выглядят немного по-разному.

Галактика Млечный Путь

Как мы уже видели, симметрия и математические узоры существуют повсюду, куда бы мы ни посмотрели - но ограничены ли эти законы природы только нашей планетой? По всей видимости - нет.

Недавно обнаружив новую часть Млечного Пути, астрономы считают, что наша галактика является почти совершенным отражением самой себя. Основываясь на новой информации, учёные получили подтверждение своей теории о том, что в нашей галактике есть только два огромных рукава: Персей и Рукав Центавра. В дополнение к зеркальной симметрии, Млечный Путь обладает ещё одним удивительным дизайном - похожим на раковины наутилуса и подсолнуха, где каждый рукав галактики представляет собой логарифмическую спираль, берущую начало в центре галактики и расширяющуюся к внешнему краю.

Симметрия Солнца и Луны

Учитывая, что диаметр солнца составляет 1,4 миллиона километров, а диаметр луны всего 3,474 километра, очень сложно представить себе, что Луна может закрывать собой солнечный свет и давать нам около пяти солнечных затмений каждые два года.

Так как же это всё-таки происходит?

По совпадению, несмотря на то, что ширина солнца примерно в четыреста раз больше ширины луны, оно расположено от нас в четыреста раз дальше, чем луна. Симметрия этого соотношения приводит к тому, что нам кажется, что солнце и луна, одинаковые по размеру, если смотреть с Земли, поэтому луна может с лёгкостью блокировать солнце, когда они находятся на одной линии по отношению к Земле.

Расстояние от Земли до солнца, конечно, может вырасти во время её выхода на орбиту, и когда в это время случается затмение, мы можем полюбоваться ежегодным или неполным затмением, так как солнце не полностью закрыто. Но каждый год или два, всё становится абсолютно симметричным, и мы можем посмотреть на великолепное событие, которое мы называем полным солнечным затмением.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение.

Я иногда невольно задалась вопросом: а нет ли чего-то общего в формах растений, животных? Возможно, существует какая-то закономерность, какие-то причины, придающие такое неожиданное сходство самым разнообразным листьям, цветам, животным? Кроме того, когда папа мне рассказывал кое-что о животных, он упомянул, что симметричным быть очень удобно. Так, если у вас со всех сторон есть глаза, уши, носы, рты и конечности, то вы успеете вовремя почувствовать что-то подозрительное, с какой бы стороны оно ни подкрадывалось, и, в зависимости от того, какое оно, это подозрительное, — съесть его или, наоборот, от него удрать.

На уроках биологии я выяснила, что базовое свойство большинства живых существ является симметрия. Возможно, именно законами симметрии можно объяснить такую похожесть в листьях, цветах, животном мире.

Целью моей работы будет определение роли симметрии в живой и неживой природе.

Для достижения цели исследования необходимо реализовать следующие задачи:

    познакомиться подробнее с понятием симметрии;

    найти подтверждение существования симметрии в природе;

    подготовить презентацию;

    представить презентацию.

Теоретическая часть.

    1. Основные понятия о симметрии

К слову «симметрия» мы привыкаем с детства, и кажется, что в этом ясном понятии ничего загадочного быть не может. Законам симметрии подчиняются все формы на свете. Даже «вечно свободные» облака обладают симметрией, хотя и искаженной. Замирая на голубом небе, они напоминают медленно движущихся в морской воде медуз, явно тяготея к поворотной симметрии, а потом, гонимые поднявшимся ветерком, меняют симметрию на зеркальную.

Проблеме симметрии посвящено поистине необозримо много литературы. От учебников и научных монографий до произведений, апеллирующих не столько к чертежу и формуле, сколько к художественному образу, и сочетающих в себе научную достоверность с литературной отточенностью.

Понятие симметрии исторически вырастает из эстетических представлений. Она широко проявляется в наскальных рисунках, первобытных изделиях труда и быта, что свидетельствует о ее древности.

Понятие симметрии берет начало с Древней Греции. Оно впервые были введено в V в. до н. э. скульптором Пифагором из Региума, который понимал под симметрией красоту человеческого тела и красоту вообще, а отклонение от симметрии определил термином «асимметрия». В трудах древнегреческих философов (пифагорейцев, Платона, Аристотеля) чаще встречаются понятия «гармония», «пропорция», чем «симметрия».

Существует множество определений симметрии:

      • словарь иностранных слов: «Симметрия - [греч. symmetria] - полное зеркальное соответствие в расположении частей целого относительно средней линии, центра; соразмерность»;

        краткий Оксфордский словарь: «Симметрия - красота, обусловленная пропорциональностью частей тела или любого целого, равновесием, подобием, гармонией, согласованностью»;

        словарь С. И. Ожегова: «Симметрия - соразмерность, пропорциональность частей чего-нибудь, расположенных по обе стороны от середины, центра»;

        «Химическое строение биосферы Земли и ее окружения» В. И. Вернадского: «В науках о природе симметрия есть выражение геометрически пространственных правильностей, эмпирически наблюдаемых в природных телах и явлениях. Она, следовательно, проявляется, очевидно, не только в пространстве, но и на плоскости и на линии».

Но наиболее полным и обобщающим все вышеперечисленные определения мне кажется мнение Ю. А. Урманцева: «Симметрией называется всякая фигура, которая может совмещаться сама с собой в результате одного или нескольких последовательно произведенных отражений в плоскостях.»

Слово «симметрия» имеет двойственное толкование.

В одном смысле симметричное означает нечто весьма пропорциональное, сбалансированное; симметрия показывает тот способ согласования многих частей, с помощью которого они объединяются в целое.

Второй смысл этого слова - равновесие. Еще Аристотель говорил о симметрии как о таком состоянии, которое характеризуется соотношением крайностей. Из этого высказывания следует, что Аристотель, пожалуй, был ближе всех к открытию одной из самых фундаментальных закономерностей Природы - закономерности о ее двойственности. Первоначальное понятие о геометрической симметрии как о гармонии пропорций, как о «соразмерности», что и означает в переводе с греческого слово «симметрия», с течением времени приобрело универсальный характер и было осознано как всеобщая идея инвариантности (т. е. неизменности) относительно некоторых преобразований. Таким образом, геометрический объект или физическое явление считаются симметричными, если с ними можно сделать что-то такое, после чего они останутся неизменными. Равенство и одинаковость расположения частей фигуры выявляют посредством операций симметрии. Операциями симметрии называют повороты, переносы, отражения.

    1. Симметрия в геометрии

2.1 Симметрия геометрических фигур (тел) .

Зеркальная симметрия. Геометрическая фигура (рис. 1) называется симметричной относительно плоскости S, если для каждой точки E этой фигуры может быть найдена точка E’ этой же фигуры, так что отрезок EE’ перпендикулярен плоскости S и делится этой плоскостью пополам (EA = AE). Плоскость S называется плоскостью симметрии. Симметричные фигуры, предметы и тела не равны друг другу в узком смысле слова (например, левая перчатка не подходит для правой руки и наоборот). Они называются зеркально равными.

Центральная симметрия. Геометрическая фигура (рис. 2) называется симметричной относительно центра C , если для каждой точки A этой фигуры может быть найдена точка E этой же фигуры, так что отрезок AE проходит через центр C и делится в этой точке пополам (AC = CE). Точка C называется центром симметрии.

Симметрия вращения. Тело (рис. 3) обладает симметрией вращения, если при повороте на угол 360°/n (здесь n - целое число) вокруг некоторой прямой AB (оси симметрии) оно полностью совпадает со своим начальным положением. При n = 2 мы имеем осевую симметрию. Треугольники имеют также осевую симметрию.

Примеры вышеупомянутых видов симметрии (рис. 4).

Шар (сфера) обладает и центральной, и зеркальной, и симметрией вращения. Центром симметрии является центр шара; плоскостью симметрии является плоскость любого большого круга; осью симметрии - диаметр шара.

Круглый конус обладает осевой симметрией; ось симметрии - ось конуса.

Прямая призма обладает зеркальной симметрией. Плоскость симметрии параллельна её основаниям и расположена на одинаковом расстоянии между ними.

2.2 Симметрия плоских фигур .

Зеркально-осевая симметрия. Если плоская фигура ABCDE (рис. 5 справа) симметрична относительно плоскости S (что возможно, если только плоская фигура перпендикулярна плоскости S), то прямая KL, по которой эти плоскости пересекаются, является осью симметрии второго порядка фигуры ABCDE. В этом случае фигура ABCDE называется зеркально-симметричной.

Центральная симметрия. Если плоская фигура ABCDEF имеет ось симметрии второго порядка, перпендикулярную плоскости фигуры - прямая MN (рис. 5 слева), то точка O, в которой пересекаются прямая MN и плоскость фигуры ABCDEF, является центром симметрии.

Примеры симметрии плоских фигур (рис. 6).

Параллелограмм имеет только центральную симметрию. Его центр симметрии - точка пересечения диагоналей.

Равнобочная трапеция имеет только осевую симметрию. Её ось симметрии - перпендикуляр, проведенный через середины оснований трапеции.

Ромб имеет и центральную, и осевую симметрию. Его ось симметрии - любая из его диагоналей; центр симметрии - точка их пересечения.

    1. Виды симметрии в природе

Самая безупречная, «самая симметричная» из всех симметрий — сферическая, когда у тела не отличаются верхняя, нижняя, правая, левая, передняя и задняя части, и оно совпадает само с собой при повороте вокруг центра симметрии на любой угол. Однако это возможно только в такой среде, которая сама идеально симметрична во всех направлениях и в которой со всех сторон на тело действуют одни и те же силы. Но на нашей земле подобной среды нет. Существует по крайней мере одна сила — сила тяжести, — которая действует только по одной оси (верх-низ) и не влияет на остальные (вперед-назад, вправо-влево). Она всё тянет вниз. И живым существам приходится к этому приспосабливаться.

Так возникает следующий тип симметрии — радиальная. У радиально-симметричных существ есть верхняя и нижняя части, но правой и левой, передней и задней нет. Они совпадают сами с собой при вращении только вокруг одной оси. К ним относятся, например, морские звезды и гидры. Эти создания малоподвижны и занимаются «тихой охотой» за проплывающей мимо живностью. Радиальная симметрия присуща медузам и полипам, поперечным разрезам плодов яблок, лимонов, апельсинов, хурмы (рис. 7) и т. д

Но если какое-то существо собирается вести активный образ жизни, гоняясь за жертвами и удирая от хищников, для него приобретает важность еще одно направление — передне-заднее. Та часть тела, которая находится впереди, когда животное двигается, становится более значимой. Сюда «переползают» все органы чувств, а заодно и нервные узлы, которые анализируют полученную от органов чувств информацию (у некоторых счастливчиков эти узлы потом превратятся в головной мозг). К тому же, спереди должен находиться рот, чтобы успеть ухватить настигнутую добычу. Всё это обычно располагается на отдельном участке тела — голове (у радиально-симметричных животных головы нет в принципе). Так возникает билатеральная (или двусторонняя) симметрия. У билатерально-симметричного существа отличаются верхняя и нижняя, передняя и задняя части, и только правая и левая идентичны и являются зеркальным отображением друг друга. В неживой природе этот вид симметрии не имеет преобладающего значения, но зато чрезвычайно богато представлен в живой природе (рис. 8).

У некоторых животных, например у кольчатых червей, помимо билатеральной есть и еще одна симметрия — метамерная . Их тело (за исключением самой передней части) состоит из одинаковых члеников-метамеров, и если сдвигаться вдоль тела, червь сам с собой «совпадает». У более развитых животных, включая человека, сохраняется слабое «эхо» такой симметрии: в каком-то смысле, наши позвонки и рёбра тоже можно назвать метамерами (рис. 9).

Итак, согласно многочисленным литературным данным в природе действуют законы симметрии, которые обеспечивают её красоту и гармонию, и объясняются действием естественного отбора.

Я подошла к зеркалу и увидела, что у меня две руки, две ноги, два уха, два глаза, которые расположены зеркально-симметрично. Но когда я пригляделась к себе, то заметила, что один глаз чуточку больше прищурен, другой меньше, одна бровь изогнута более, другая — менее; одно ухо выше, другое ниже, большой палец левой руки чуть меньше пальца правой. Так есть ли симметрия в природе и можно ли её измерить, а не просто оценить визуально «на глазок»? А может быть существуют единицы измерения симметрии?

Практическая часть.

    Описание методики сбора и обработки данных

Для проведении исследования по доказательству наличия и измерению симметрии живых организмов (по совету папы) была использована методика «Оценка экологического состояния леса по асимметрии листьев», разработанная группой ученых Калужского государственного педагогического университета имени К. Э. Циолковского. В качестве объекта исследования авторы методики используют листья берёзы.

Исследования были проведены 19 сентября 2016 года. Во дворе моего дома растут березы: пять взрослых высоких деревьев. С каждого дерева я собрала по десять листьев (рис. 10). Материал был обработан сразу после сбора.

Для измерения я складывала лист поперек, пополам, прикладывая макушку листа к основанию, потом разгибала и по образовавшейся складке производила измерения (рис. 12).

1 - ширина половинки листа (считая от макушки листа к основанию);

2 - длина второй жилки второго порядка от основания листа;

3 - расстояние между основаниями первой и второй жилок второго порядка;

4 - расстояние между концами этих жилок.

Данные измерений я заносила в таблицу в программе excel, чтобы затем было проще обработать данные.

    Вычисление среднего относительного различия признака

Величину симметричности я оценивала с помощью интегрального показателя - величины среднего относительного различия признака (среднее арифметическое отношение разности к сумме промеров листа слева и справа, отнесенное к числу признаков).

С помощью программе excel в первом действии я находила относительное различие между значениями каждого признака слева и справа - Yi: находила разность значений измерений по одному признаку для каждого листа, затем сумму этих же значений и разность делила на сумму.

Yi = (Xл - Хп) : (Xл + Хп);

Найденные значения по каждому признаку Y1- Y4 вписывала в таблицу.

Во втором действии я находила значение среднего относительного различия между сторонами на признак для каждого листа (Z). Для этого сумму относительных различий делила на число признаков.

Y1 + Y2 + Y3 + Y4

Z1 = ________________________________,

где N - число признаков. В моем случае N = 4.

Подобные вычисления производила для каждого листа, а значения заносила в таблицу.

В третьем действии я вычисляла среднее относительное различие на признак для всей выборки (Х). Для этого все значения Z складывала и делила на число этих значений:

Z1 + Z2 + Z3 + Z4 + Z5 + Z6 + Z7 + Z8 + Z9 + Z10

X = ____________________________________________ ,

где n - число значений Z, т.е. число листьев (в нашем примере - 10).

Полученный показатель Х характеризует степень симметричности организма.

Для определения наличия симметричности я использовала рекомендованную в методике шкалу, в которой 1 балл - условная норма и наличие симметрии, а 5 балл - критическое отклонение от норы симметрии.

Сводная таблица данных.

№ дерева

1. Ширина половинок листа, мм

2. Длина 2-й жилки, мм

3. Расстояние между основаниями 1-й и 2-й жилок, мм

4. Расстояние между концами 1-й и 2-й жилок, мм

    Результаты исследования

Номер дерева

Значение показателя (Х)

Симметричность

Из представленной таблицы данных и диаграммы (рис. 13) видно, что все значения оказались в диапазоне до 0,055, что соответствует норме по шкале симметричности. Таким образом, все пять берез в моем дворе имели симметричные листья.

Заключение.

В результате моего исследования я убедилась, что симметрия в природе существует и её можно измерить.

СПИСОК ЛИТЕРАТУРЫ

    Демьяненко Т. В. «Симметрия в природе», Украина.

    Захаров В. М., Баранов А.С., Борисов В.И., Валецкий А.В., Кряжева Н.Г., Чистякова Е.К., Чубинишвили А.Т. Здоровье среды: методика оценки. - М., Центр экологической политики России, 2000.

    Рослова Л.О., Шарыгин И.Ф. Симметрия: Учебное пособие, М.: Изд-во гимназии «Открытый мир», 1995.

    Детская энциклопедия для среднего и старшего возраста т.3.- М.: Издательство Академии Педагогических Наук РСФСР, 1959.

    Я познаю мир: Детская энциклопедия: Математика / Сост. А.П. Савин, В.В. Станцо, А.Ю. Котова: Под общ.ред. О.Г. Хинн. - М.: ООО «Издательство АСТ - ЛТД», 1998.

    И.Ф. Шарыгин, Л.Н. Ерганжиева Наглядная геометрия 5-6 классы. - М.: Дрофа, 2005.

    Большая компьютерная энциклопедия Кирилла и Мефодия.

    Андрущенко А.В. Развитие пространственного воображения на уроках математики. М.: Владос, 2003.

    Иванова О. Интегрированный урок «Этот симметричный мир»// газета Математика. 2006. №6 с.32-36.

    Ожегов С.И. Толковый словарь русского языка. М. 1997.

    Вульф Г.В. Симметрия и ее проявления в природе. М., Изд. Отд. Нар. ком. Просвещение, 1991. с. 135.

    Шубников А.В.. Симметрия. М., 1940.

    http://kl10sch55.narod.ru/kl/sim.htm#_Toc157753210

    http://www.wikiznanie.ru/ru-wz/index.php/

Взгляните на лица окружающих вас людей: один глаз чуточку больше прищурен, другой меньше, одна бровь изогнута более, другая -- менее; одно ухо выше, другое ниже. К сказанному добавим, что человек больше пользуется правым глазом, чем левым. Понаблюдайте-ка, например, за людьми, которые стреляют из ружья или лука.

Из приведенных примеров видно, что в строении тела человека, его привычках ясно выражено стремление резко выделить какое-либо направление -- правое или левое. Это не случайность. Подобные явления можно отметить также и у растений, животных и микроорганизмов.

Ученые давно обратили на это внимание. Еще в XVIII в. ученый и писатель Бернарден де Сен Пьер указывал, что все моря наполнены одностворчатыми брюхоногими моллюсками бесчисленного множества видов, у которых все завитки направлены слева направо, подобно движению Земли, если поставить их отверстиями к северу и острыми концами к Земле.

Но прежде чем приступить к рассмотрению явлений подобной асимметрии, мы выясним сначала, что такое симметрия.

Для того чтобы разобраться хотя бы в главных результатах, достигнутых при изучении симметрии организмов, нужно начать с основных понятий самой теории симметрии. Вспомните, какие тела в быту обычно считают равными. Только такие, которые совершенно одинаковы или, точнее, которые при взаимном наложении совмещаются друг с другом во всех своих деталях, как, например, два верхних лепестка на рисунке 1. Однако в теории симметрии, помимо совместимого равенства, выделяют еще два вида равенства -- зеркальное и совместимо-зеркальное. При зеркальном равенстве левый лепесток из среднего ряда рисунка 1 можно точно совместить с правым лепестком лишь после предварительного отражения в зеркале. А при совместимо-зеркальном равенстве двух тел их можно совместить друг с другом как до, так и после отражения в зеркале. Лепестки нижнего ряда на рисунке 1 равны друг другу и совместимо, и зеркально.

Из рисунка 2 видно, что наличия одних равных частей в фигуре еще недостаточно, чтобы признать фигуру симметричной: слева они расположены незакономерно и мы имеем несимметричную фигуру, справа -- однообразно и мы имеем симметричный венчик. Такое закономерное, однообразное расположение равных частей фигуры относительно друг друга и называют симметрией.

Равенство и одинаковость расположения частей фигуры выявляют посредством операций симметрии. Операциями симметрии называют повороты, переносы, отражения.

Для нас наиболее важны здесь повороты и отражения. Под поворотами понимают обычные повороты вокруг оси на 360°, в результате которых равные части симметричной фигуры обмениваются местами, а фигура в целом совмещается с собой. При этом ось, вокруг которой происходит поворот, называется простой осью симметрии. (Это название не случайно, так как в теории симметрии различают еще и различного рода сложные оси.) Число совмещений фигуры с самой собой при одном полном обороте вокруг оси называется порядком оси. Так, изображение морской звезды на рисунке 3 обладает одной простой осью пятого порядка, проходящей через его центр.

Это означает, что, поворачивая изображение звезды вокруг ее оси на 360°, мы сумеем наложить равные части ее фигуры друг на друга пять раз.

Под отражениями понимают любые зеркальные отражения -- в точке, линии, плоскости. Воображаемая плоскость, которая делит фигуры на две зеркально равные половины, называется плоскостью симметрии. Рассмотрим на рисунке 3 цветок с пятью лепестками. Он обладает пятью плоскостями симметрии, пересекающимися на оси пятого порядка. Симметрию этого цветка можно обозначить так: 5*m. Цифра 5 здесь означает одну ось симметрии пятого порядка, а m -- плоскость, точка -- знак пересечения пяти плоскостей на этой оси. Общая формула симметрии подобных фигур записывается в виде n*m, где n -- символ оси. Причем он может иметь значения от 1 до бесконечности (?).

При изучении симметрии организмов было установлено, что в живой природе наиболее часто встречается симметрия вида n*m. Симметрию этого вида биологи называют радиальной (лучевой). Помимо показанных на рисунке 3 цветка и морской звезды, радиальная симметрия присуща медузам и полипам, поперечным разрезам плодов яблок, лимонов, апельсинов, хурмы (рис. 3) и т. д.

С возникновением на нашей планете живой природы возникли и развились новые виды симметрии, которых до этого либо совсем не было, либо было немного. Это особенно хорошо видно на примере частного случая симметрии вида n*m, который характеризуется лишь одной плоскостью симметрии, делящей фигуру на две зеркально равные половины. В биологии этот случай называется билатеральной (двусторонней) симметрией. В неживой природе этот вид симметрии не имеет преобладающего значения, но зато чрезвычайно богато представлен в живой природе (рис. 4).

Он характерен для внешнего строения тела человека, млекопитающих, птиц, пресмыкающихся, земноводных, рыб, многих моллюсков, ракообразных, насекомых, червей, а также многих растений, например цветков львиного зева.

Полагают, что такая симметрия связана с различиями движения организмов вверх-- вниз, вперед -- назад, тогда как их движения направо -- налево совершенно одинаковы. Нарушение билатеральной симметрии неизбежно приводит к торможению движения одной из сторон и изменению поступательного движения в круговое. Поэтому не случайно активно подвижные животные двусторонне симметричны.

Билатеральность же неподвижных организмов и их органов возникает вследствие неодинаковости условий прикрепленной и свободной сторон. По-видимому, так обстоит дело у некоторых листьев, цветков и лучей коралловых полипов.

Здесь уместно отметить, что среди организмов до сих пор не встречалась симметрия, которая исчерпывается наличием только центра симметрии. В природе этот случай симметрии распространен, пожалуй, только среди кристаллов; сюда относятся, между прочем, и синие, великолепно вырастающие из раствора кристаллы медного купороса.

Другой основной вид симметрии характеризуется лишь одной осью симметрии n-го порядка и называется аксиальным или осевым (от греческого слова «аксон» -- ось). До самого последнего времени организмы, форме которых присуща аксиальная симметрия (за исключением простейшего, частного случая, когда n=1), биологам известны не были. Однако недавно обнаружено, что эта симметрия широко распространена в растительном мире. Она присуща венчикам всех тех растений (жасмина, мальвы, флоксов, фуксии, хлопчатника, желтой горечавки, золототысячника, олеандра и др.), края лепестков которых лежат друг на друге веерообразно по ходу часовой стрелки или против нее (рис. 5).

Эта симметрия присуща и некоторым животным, например медузе аурелиа инсулинда (рис. 6). Все эти факты привели к установлению существования нового класса симметрии в живой природе.

Объекты аксиальной симметрии -- это особые случаи тел диссимметрической, т. е. расстроенной, симметрии. От всех остальных объектов они отличаются, в частности, своеобразным отношением к зеркальному отражению. Если яйцо птицы и тело речного рака после зеркального отражения совсем не изменяют своей формы, то (рис. 7)

аксиальный цветок анютиных глазок (а), асимметрическая винтовая раковина моллюска (б) и для сравнения часы (в), кристалл кварца (г), асимметричная молекула (д) после зеркального отражения изменяют свою фигуру, приобретая ряд противоположных признаков. Стрелки действительных часов и зеркальных движутся в противоположных направлениях; строки на странице журнала написаны слева направо, а зеркальные -- справа налево, все буквы как будто вывернуты наизнанку; стебель вьющегося растения и винтовая раковина брюхоногого моллюска перед зеркалом идут слева вверх направо, а зеркальных -- справа вверх налево и т. д.

Что касается простейшего, частного случая осевой симметрии(n=1),о котором упоминается выше, то биологам он известен давно и называется асимметрическим. Для примера достаточно сослаться на картину внутреннего строения подавляющего большинства видов животных, включая и человека.

Уже из приведенных примеров нетрудно заметить, что диссимметрические объекты могут существовать в двух разновидностях: в виде оригинала и зеркального отражения (руки человека, раковины моллюсков, венчики анютиных глазок, кристаллы кварца). При этом одна из форм (не важно, какая) называется правой П, а другая левой -- Л. Здесь очень важно уяснить себе, что правыми и левыми могут называться и называются не только известные в этом отношении руки или ноги человека, но и любые диссимметрические тела -- продукты производства людей (винты с правой и левой резьбой), организмы, неживые тела.

Обнаружение и в живой природе П-Л-форм поставило перед биологией сразу ряд новых и очень глубоких вопросов, многие из которых сейчас решаются сложными математическими и физико-химическими методами.

Первый вопрос -- это вопрос о закономерностях формы и строения П- и Л-биологических объектов.

Совсем недавно ученые установили глубокое структурное единство диссимметрических объектов живой и неживой природы. Дело в том, что правизна-левизна свойство, одинаково присущее живым и неживым телам. Общими для них оказались и связанные с правизной-левизной различные явления. Укажем лишь на одно такое явление -- диссимметрическую изомерию. Она показывает, что в мире существует множество объектов различного строения, но при одном и том же наборе составляющих эти объекты частей.

На рисунке 8 показаны предсказанные, а затем и обнаруженные 32 формы венчиков лютика. Здесь в каждом случае число частей (лепестков) одно и то же -- по пяти; различно лишь их взаимное расположение. Стало быть, здесь перед нами пример диссимметрической изомерии венчиков.

В качестве другого примера могут служить объекты совершенно иной природы молекулы глюкозы. Их мы можем рассматривать наряду с венчиками лютика как раз из-за одинаковости законов их строения. Состав глюкозы следующий: 6 атомов углерода, 12 атомов водорода, 6 атомов кислорода. Этот набор атомов может быть распределен в пространстве весьма различно. Ученые считают, что молекулы глюкозы могут существовать по крайней мере в 320 различных видах.

Второй вопрос: насколько часто встречаются в природе П- и Л-формы живых организмов?

Самое важное в этом отношении открытие было сделано при изучении молекулярного строения организмов. Оказалось, что протоплазма всех растений, животных и микроорганизмов усваивает в основном только П-сахара. Таким образом, каждый день мы питаемся правым сахаром. Зато аминокислоты встречаются главным образом в Л-форме, а построенные из них белки -- в основном в П-форме.

Возьмем для примера два белковых продукта: яичный белок и овечью шерсть. Оба они -- «правши». Шерсть и яичный белок «левши» в природе до сих пор не найдены. Если бы удалось каким-либо образом создать Л-шерсть, т. е. такую шерсть, аминокислоты в которой были бы расположены по стенкам вьющегося влево винта, то проблема борьбы с молью была бы решена: моль может питаться только П-шерстью, точно так же, как люди усваивают только П-белок мяса, молока, яиц. И это нетрудно понять. Моль переваривает шерсть, а человек -- мясо посредством особых белков -- ферментов, по своей конфигурации тоже правых. И подобно тому как Л-винт нельзя ввернуть в гайки с П-резьбой, посредством П-ферментов невозможно переварить Л-шерсть и Л-мясо, если таковые были бы найдены.

Возможно, в этом же кроется загадка и болезни, известной под названием рака: есть сведения, что в ряде случаев раковые клетки строят себя не из правых, а из левых, не перевариваемых нашими ферментами белков.

Широко известный антибиотик пенициллин вырабатывается плесневым грибком только в П-форме; искусственно приготовленная Л-форма его антибиотически не активна. В аптеках продается антибиотик левомицетин, а не его антипод -- правомицетин, так как последний по своим лечебным свойствам значительно уступает первому.

В табаке содержится Л-никотин. Он в несколько раз более ядовит, чем П-никотин.

Если рассматривать внешнее строение организмов, то и здесь мы увидим то же самое. В подавляющем большинстве случаев целые организмы и их органы встречаются в П- или Л-форме. Задняя часть тела волков и собак при беге несколько заносится вбок, поэтому их разделяют на право- и левобегающих. Птицы-левши складывают крылья так, что левое крыло накладывается на правое, а правши -- наоборот. Некоторые голуби при полете предпочитают кружиться вправо, а другие влево. За это голубей издавна в народе делят на «правухов» и «левухов». Раковина моллюска фрутицикола лантци встречается главным образом в П-закрученной форме. Замечательно, что при питании морковью преобладающие П-формы этого моллюска прекрасно растут, а их антиподы -- Л-моллюски -- резко теряют в весе. Инфузория туфелька из-за спирального расположения на ее теле ресничек передвигается в капельке воды, как и многие другие простейшие, по лево завивающемуся штопору. Инфузории, вбуравливающиеся в среду по правому штопору, встречаются редко. Нарцисс, ячмень, рогоз и др.-- правши: их листья встречаются только в П-винтовой форме (рис. 9). Зато фасоль -- левша: листья первого яруса чаще бывают Л-формы. Замечательно, что по сравнению с П-листьями Л-листья больше весят, имеют большую площадь, объем, осмотическое давление клеточного сока, скорость роста.

Много интересных фактов может сообщить наука симметрии и о человеке. Как известно, в среднем на земном шаре примерно 3% левшей (99 млн.) и 97% правшей (3 млрд. 201 млн.). По некоторым сведениям, в США и на Африканском континенте левшей значительно больше, чем, например, в СССР.

Интересно отметить, что центры речи в головном мозгу у правшей расположены слева, а у левшей -- справа (по другим данным --в обоих полушариях). Правая половина тела управляется левым, а левая -- правым полушарием, и в большинстве случаев правая половина тела и левое полушарие развиты лучше. У людей, как известно, сердце на левой стороне, печень -- на правой. Но на каждые 7--12 тыс. человек встречаются люди, у которых все или часть внутренних органов расположены зеркально, т. е. наоборот.

Третий вопрос -- это вопрос о свойствах П- и Л-форм. Уже приведенные примеры дают понять, что в живой природе целый ряд свойств у П- и Л-форм неодинаковы. Так, на примерах с моллюсками, фасолью и антибиотиками была показана разница в питании, скорости роста и антибиотической активности у их П- и Л-форм.

Такая черта П- и Л-форм живой природы имеет очень большое значение: она позволяет с совершенно новой стороны резко отличить живые организмы от всех тех П- и Л-тел неживой природы, которые по своим свойствам так или иначе равны, например, от элементарных частиц.

В чем же причина всех этих особенностей диссимметрических тел живой природы?

Было установлено, что, выращивая микроорганизмы бациллюс микоидес на агар-агаре с П- и Л-соединениями (сахарозой, винной кислотой, аминокислотами), Л-колонии его можно превратить в П-, а П- в Л-формы. В ряде случаев эти изменения носили длительный, возможно, наследственный характер. Эти опыты говорят о том, что внешняя П- или Л-форма организмов зависит от обмена веществ и участвующих в этом обмене П- и Л-молекул.

Иногда превращения П- в Л-формы и наоборот происходят без вмешательства человека.

Академик В. И. Вернадский отмечает, что все раковины ископаемых моллюсков фузус антиквуус, найденные в Англии, левые, а современные раковины правые. Очевидно, причины, вызывавшие такие перемены, менялись в течение геологических эпох.

Конечно, смена видов симметрии по мере эволюции жизни происходила не только у диссимметрических организмов. Так, некоторые иглокожие когда-то были двустороннесимметричными подвижными формами. Затем они перешли к сидячему образу жизни и у них выработалась радиальная симметрия (правда, личинки их до сих пор сохранили двустороннюю симметрию). У части иглокожих, вторично перешедших к активному образу жизни, радиальная симметрия вновь заменилась билатеральной (неправильные ежи, голотурии).

До сих пор мы говорили о причинах, определяющих форму П- и Л-организмов и их органов. А почему эти формы встречаются не в равных количествах? Как правило, бывает больше либо П-, либо Л-форм. Причины этого не известны. Согласно одной очень правдоподобной гипотезе причинами могут быть диссимметрические элементарные частицы, например преобладающие в нашем мире правые нейтрино, а также правый свет, который в небольшом избытке всегда существует в рассеянном солнечном свете. Все это первоначально могло создать неодинаковую встречаемость правых и левых форм диссимметрических органических молекул, а затем привести к неодинаковой встречаемости П- и Л-организмов и их частей.

Таковы лишь некоторые вопросы биосимметрики -- науки о процессах симметризации и диссимметризации в живой природе.