Найти полуоси фокусы и эксцентриситет эллипса. Канонические уравнения линий второго порядка. Что такое канонический вид уравнения

Кривыми второго порядка на плоскости называются линии, определяемые уравнениями, в которых переменные координаты x и y содержатся во второй степени. К ним относятся эллипс, гипербола и парабола.

Общий вид уравнения кривой второго порядка следующий:

где A, B, C, D, E, F - числа и хотя бы один из коэффициентов A, B, C не равен нулю.

При решении задач с кривыми второго порядка чаще всего рассматриваются канонические уравнения эллипса, гиперболы и параболы. К ним легко перейти от общих уравнений, этому будет посвящён пример 1 задач с эллипсами.

Эллипс, заданный каноническим уравнением

Определение эллипса. Эллипсом называется множество всех точек плоскости, таких, для которых сумма расстояний до точек, называемых фокусами, есть величина постоянная и бОльшая, чем расстояние между фокусами.

Фокусы обозначены как и на рисунке ниже.

Каноническое уравнение эллипса имеет вид:

где a и b (a > b ) - длины полуосей, т. е. половины длин отрезков, отсекаемых эллипсом на осях координат.

Прямая, проходящая через фокусы эллипса, является его осью симметрии. Другой осью симметрии эллипса является прямая, проходящая через середину отрезка перпендикулярно этому отрезку. Точка О пересечения этих прямых служит центром симметрии эллипса или просто центром эллипса.

Ось абсцисс эллипс пересекает в точках (a , О ) и (- a , О ), а ось ординат - в точках (b , О ) и (- b , О ). Эти четыре точки называются вершинами эллипса. Отрезок между вершинами эллипса на оси абсцисс называется его большой осью, а на оси ординат - малой осью. Их отрезки от вершины до центра эллипса называются полуосями.

Если a = b , то уравнение эллипса принимает вид . Это уравнение окружности радиуса a , а окружность - частный случай эллипса. Эллипс можно получить из окружности радиуса a , если сжать её в a /b раз вдоль оси Oy .

Пример 1. Проверить, является ли линия, заданная общим уравнением , эллипсом.

Решение. Производим преобразования общего уравнения. Применяем перенос свободного члена в правую часть, почленное деление уравнения на одно и то же число и сокращение дробей:

Ответ. Полученное в результате преобразований уравнение является каноническим уравнением эллипса. Следовательно, данная линия - эллипс.

Пример 2. Составить каноническое уравнение эллипса, если его полуоси соответственно равны 5 и 4.

Решение. Смотрим на формулу канонического уравения эллипса и подставляем: бОльшая полуось - это a = 5 , меньшая полуось - это b = 4 . Получаем каноническое уравнение эллипса:

Точки и , обозначенные зелёным на большей оси, где

называются фокусами .

называется эксцентриситетом эллипса.

Отношение b /a характеризует "сплюснутость" эллипса. Чем меньше это отношение, тем сильнее эллипс вытянут вдоль большой оси. Однако степень вытянутости эллипса чаще принято выражать через эксцентриситет, формула которого приведена выше. Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы.

Пример 3. Составить каноническое уравнение эллипса, если расстояние между фокусами равно 8 и бОльшая ось равна 10.

Решение. Делаем несложные умозаключения:

Если бОльшая ось равна 10, то её половина, т. е. полуось a = 5 ,

Если расстояние между фокусами равно 8, то число c из координат фокусов равно 4.

Подставляем и вычисляем:

Результат - каноническое уравнение эллипса:

Пример 4. Составить каноническое уравнение эллипса, если его бОльшая ось равна 26 и эксцентриситет .

Решение. Как следует и из размера большей оси, и из уравнения эксцентриситета, бОльшая полуось эллипса a = 13 . Из уравнения эсцентриситета выражаем число c , нужное для вычисления длины меньшей полуоси:

.

Вычисляем квадрат длины меньшей полуоси:

Составляем каноническое уравнение эллипса:

Пример 5. Определить фокусы эллипса, заданного каноническим уравнением .

Решение. Следует найти число c , определяющее первые координаты фокусов эллипса:

.

Получаем фокусы эллипса:

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) расстояние между фокусами 30, а большая ось 34

2) малая ось 24, а один из фокусов находится в точке (-5; 0)

3) эксцентриситет , а один из фокусов находится в точке (6; 0)

Продолжаем решать задачи на эллипс вместе

Если - произвольная точка эллипса (на чертеже обозначена зелёным в верхней правой части эллипса) и - расстояния до этой точки от фокусов , то формулы для расстояний - следующие:

Для каждой точки, принадлежащей эллипсу, сумма расстояний от фокусов есть величина постоянная, равная 2a .

Прямые, определяемые уравнениями

называются директрисами эллипса (на чертеже - красные линии по краям).

Из двух вышеприведённых уравнений следует, что для любой точки эллипса

,

где и - расстояния этой точки до директрис и .

Пример 7. Дан эллипс . Составить уравнение его директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет эллипса, т. е. . Все данные для этого есть. Вычисляем:

.

Получаем уравнение директрис эллипса:

Пример 8. Составить каноническое уравнение эллипса, если его фокусами являются точки , а директрисами являются прямые .

1. Окружность. 2Окружностью называется геометрическое место точек, равноудаленных от одной фиксированной точки, называемой центром окружности. Расстояние от произвольной точки окружности до его центра называется радиусом окружности .

g Если центр окружности находится в точке , а радиус равен R , то уравнение окружности имеет вид:

4Обозначим через (рис. 3.5) произвольную точку окружности. Используя формулу расстояния между двумя токами (3.1) и определение окружности, получим: . Возводя полученное равенство в квадрат, мы получим формулу (3.13).3

2. Эллипс. 2 Эллипсом называется геометрическое место точек, сумма расстояний которых до двух фиксированных точек, называемых фокусами, есть величина постоянная.

Для того, чтобы вывести каноническое (простейшее) уравнение эллипса, примем за ось Ox прямую, соединяющую фокусы F 1 и F 2 . Пусть при этом фокусы будут симметричны относительно начала координат, т.е. будут иметь координаты: и . Здесь через 2с обозначено расстояние между фокусами. Обозначим через x и y координаты произвольной точки М эллипса (рис 3.6). Тогда по определению эллипса, сумма расстояний от точки М до точек F 1 и F а ).

Уравнение (3.14) является уравнением эллипса. Упростим данное уравнение, избавившись от квадратных корней. Для этого перенесем один из радикалов в правую часть равенства (3.14) и возведем обе части полученного равенства в квадрат:

Возводя последнее равенство в квадрат, получим

Разделим обе части на :

.

Так как сумма расстояний от произвольной точки эллипса до его фокусов больше расстояния между фокусами, т.е. 2а > 2c , то .

Обозначим через b 2 . Тогда простейшее (каноническое) уравнение эллипса будет иметь вид:

где положено

Оси координат являются осями симметрии эллипса, заданного уравнением (3.15). Действительно, если точка с текущими координатами (x ; y ) принадлежит эллипсу, то и точки при любом сочетании знаков принадлежат эллипсу.

2Ось симметрии эллипса, на которой расположены фокусы, называется фокальной осью. Точки пересечения эллипса с его осями симметрии называются вершинами эллипса. Подставляя x = 0 или y = 0 в уравнение эллипса найдем координаты вершин:

А 1 (a ; 0), А 2 (– a ; 0), B 1 (0; b ), B 2 (0; – b ).

2Отрезки А 1 А 2 и B 1 B 2 , соединяющие противоположные вершины эллипса, а также их длины 2a и 2b , называют соответственно большой и малой осями эллипса. Числа a и b , называют соответственно большой и малой полуосями эллипса.


2Эксцентриситетом эллипса называется отношение расстояния между фокусами (2с ) к большой оси (2a ), т.е.

Так как а и с положительны, причем c < a , то эксцентриситет эллипса больше нуля, но меньше единицы ().

Если фокусы эллипса расположены на оси Oy (рис.3.7), то уравнение эллипса останется таким же, как и в предыдущем случае:

Однако в этом случае полуось b будет больше, чем a (эллипс вытянут вдоль оси Oy ). Формулы (3.16) и (3.17) претерпят следующие изменения соответственно:

3. Гипербола. 2Гиперболой называется геометрическое место точек, модуль разности расстояний которых до двух фиксированных точек, называемых фокусами, есть величина постоянная.

Выводится каноническое уравнение гиперболы аналогично тому как это делалось в случае эллипса. За ось Ox принимаем прямую, соединяющую фокусы F 1 и F 2 (рис.3.8). Пусть при этом фокусы будут симметричны относительно начала координат, т.е. будут иметь координаты: и . Через 2с , как и прежде, обозначено расстояние между фокусами.

Обозначим через (x ; y М гиперболы. Тогда по определению гиперболы, разность расстояний от точки М до точек F 1 и F 2 равно константе (обозначим эту константу через 2а ).

Производя преобразования аналогичные тем, которые применялись при упрощении уравнения эллипса, мы придем к каноническому уравнению гиперболы:

, (3.21)
где положено

Оси координат являются осями симметрии гиперболы.

2Ось симметрии гиперболы, на которой расположены фокусы, называется фокальной осью. Точки пересечения гиперболы с ее осями симметрии называются вершинами гиперболы. С осью Oy гипербола не пересекается, т.к. уравнение не имеет решения. Подставляя y = 0 в уравнение (3.21) найдем координаты вершин гиперболы: А 1 (a ; 0), А 2 (– a ; 0).

2Отрезок 2a , длина которого равна расстоянию между вершинами гиперболы, называют действительной осью гиперболы. Отрезок 2b называют мнимой осью гиперболы. Числа a и b , называют соответственно действительной и мнимой полуосями гиперболы.

Можно доказать, что прямые линии

являются асимптотами гиперболы, т.е. такими прямыми, к которым неограниченно приближаются точки гиперболы при их неограниченном удалении от начала координат ().

2Эксцентриситетом гиперболы называется отношение расстояния между фокусами (2с ) к действительной оси (2a ), т.е., как и в случае эллипса

Однако в отличии от эллипса эксцентриситет гиперболы больше единицы.

Если фокусы гиперболы расположены на оси Oy , то в левой части уравнения гиперболы изменятся знаки на противоположные:

. (3.25)

В этом случае полуось b будет действительной, а полуось a – мнимой. Ветви гиперболы будут симметричны относительно оси Oy (рис 3.9). Формулы (3.22) и (3.23) не изменятся, формула (3.24) будет выглядеть следующим образом:

4. Парабола. Параболой называется геометрическое место точек, равноудаленных от данной точки, называемой фокусом и от данной прямой, называемой директрисой (предполагается, что фокус не лежит на директрисе).

Для того, чтобы составить простейшее уравнение параболы примем за ось Ox прямую, проходящую через ее фокус перпендикулярно директрисе, и направленную от директрисы к фокусу. За начало координат примем середину отрезка O от фокуса F до точки А пересечения оси Ox с директрисой. Длина отрезка AF обозначается через p и называется параметром параболы.

В данной системе координат координаты точек А и F будут, соответственно, , . Уравнение директрисы параболы будет . Обозначим через (x ; y ) координаты произвольной точки М параболы (рис. 3.10). Тогда по определению параболы:

. (3.27)

Возведем обе части равенства (3.27) в квадрат:

, или

, откуда

Свойства кривых второго порядка

Эллипс, гипербола, парабола

Если в уравнении F(x , y ) = 0 линии на плоскости функция F(x , y ) есть многочлен некоторой степени от двух переменных, то такая линия называется алгебраической , степень многочлена называется порядком кривой. Например, прямая – алгебраическая линия первого порядка. Рассмотрим линии второго порядка.

К кривым второго порядка относятся эллипс, гипербола и парабола. Эти кривые играют большую роль в прикладных вопросах.

Определение 1.

Эллипсом называется геометрическое место точек плоскости, сумма расстояний которых до двух фиксированных точек, принадлежащих этой же плоскости и называемых фокусами, есть величина постоянная, большая, чем расстояние между фокусами.

Найдем уравнение эллипса. Для этого возьмем систему координат так, чтобы ось ОХ проходила через фокусы, а ось OY делила расстояние между фокусами пополам. Пусть расстояние между фокусами F 1 и F 2 равно 2с , а сумма расстояний от текущей точки М(х , у ) эллипса до фокусов равна 2а : r 1 + r 2 = 2a , 2a > 2с .

Тогда фокусы имеют координаты F 1 (с , 0) и F 2 (–с , 0), расстояния от т. М(х , у ) до фокусов равны соответственно

r 1 = , r 2 = .

Из определения получаем уравнение эллипса

+ = 2а

Упрощая это уравнение, получим

Полагая здесь а 2 – с 2 = b 2 , получим уравнение

, (1)

которое называется каноническим уравнением эллипса .

Исследуем форму эллипса, используя это уравнение.

1) Нетрудно видеть, что если точка (х , у ) принадлежит эллипсу, то ему принадлежат и точки (–х , у ), (х , –у ) , (–х , –у ), т.е. эллипс симметричен относительно осей координат и относительно начала координат.

2) Запишем уравнение (1) в виде откуда следует, что х Î[–a ; a ], y Î [–b , b ].

3) В силу симметрии достаточно изучить характер линии при х Î.

Когда х растет от 0 до а , убывает от b до 0, т.к. у ¢ = < 0 для всех х Î и отразим его симметрично относительно осей координат и начала координат.

Точки А, В, С, D пересечения эллипса с осями координат называются вершинами эллипса , точка О называется центром эллипса, отрезок АО = ОС = а называется большой полуосью, а ОВ = OD = b малой полуосью эллипса, расстояния r 1 и r 2 от точки эллипса до фокусов называются фокальными радиусами .

Если бы мы расположили фокусы эллипса на оси ОУ, уравнение эллипса имело бы точно такой же вид, как и уравнение (1), только большой полуосью была бы b . В дальнейшем, договоримся, что большая полуось соответствует оси, на которой лежат фокусы эллипса и, наоборот, из уравнения эллипса по большему параметру а или b можно определить, на какой оси координат лежат фокусы эллипса.

На практике по заданному каноническому уравнению построить эллипс можно так: от начала координат влево и вправо по оси ОХ отложить отрезки длиной а , а по оси ОУ вверх и вниз – отрезки длины b . Через полученные точки-вершины провести гладкую замкнутую овальную линию.

Если а = b = , то с = 0, фокусы эллипса сливаются в одну точку – начало координат – и эллипс вырождается в окружность

х 2 +у 2 = а 2

с центром в начале координат и радиусом а .

Определение 2.

Гиперболой называется геометрическое место точек плоскости, модуль разности расстояний которых до двух заданных точек той же плоскости, называемых фокусами, есть величина постоянная, меньшая, чем расстояние между фокусами.

Если расположить фокусы гиперболы на оси ОХ так, чтобы начало координат оказалось в середине между ними, обозначить расстояние между фокусами 2с , модуль разности расстояний – 2а , 2a > 2с , то символьное уравнение гиперболы будет иметь вид |r 1 – r 2 | = 2a , а в координатной форме оно запишется так:

½ ½= 2а .

Преобразовав это уравнение так же как в случае уравнения эллипса, и обозначив b 2 = с 2 – а 2 , получим каноническое уравнение гиперболы

, (2).

Исследуя форму гиперболу, находим, что

1) кривая симметрична относительно осей и начала координат, поэтому исследование формы достаточно провести для части кривой, расположенной в первой четверти и являющейся графиком функции , х Î [а , +¥), ;

2) точки пересечения с осью ОХ (–а , 0) и (а , 0) – эти точки называются вершинами гиперболы ; с осью ОУ кривая не пересекается;

3) прямые у = являются асимптотами гиперболы. При изменении х от а до бесконечности функция возрастает от 0 до бесконечности, т.к. у ¢ = > 0 для всех х Î[a , +¥). Кроме того, эта часть кривой выпуклая: у ¢¢= >0 при х Î[a , +¥). Изобразив часть гиперболы в первой четверти в соответствии с этими исследованиями, затем отобразим эту линию симметрично относительно осей и начала координат на остальные четверти, получим искомую гиперболу.


На практике по заданному каноническому уравнению гиперболу строят так.

1. Сначала строят осевой прямоугольник: слева и справа от начала координат на расстоянии а проводят прямые, параллельные оси ОУ, а сверху и снизу на расстоянии b от начала координат – прямые, параллельные оси ОХ.

2. Прямые, на которых лежат диагонали полученного прямоугольника, есть асимптоты гиперболы.

3. Точки пересечения сторон прямоугольника с осью ОХ – вершины гиперболы. От вершин к асимптотам в левой и правой полуплоскости проводят ветви гиперболы.

Точки А(–а , 0) и С(а , 0) называются вершинами гиперболы, точка О (начало координат) – центром гиперболы. Отрезок ОА = ОС = а называется действительной полуосью гиперболы, отрезок ОВ = OD = b мнимой полуосью . Оси координат при этом так же называют соответственно действительной осью (ее гипербола пересекает в двух точках) и мнимой осью (ее гипербола не пересекает). Расстояния r 1 и r 2 от точки гипербол до фокусов называются фокальными радиусами .

Если фокусы гиперболы расположить на оси ОУ, то ее уравнение будет иметь вид

, или , (3).

где а –мнимая полуось, b – действительная. Гиперболы (2) и (3) называются сопряженными . Они имеют одни и те же асимптоты.

Таким образом, по каноническому уравнению гиперболы легко определить, какая из осей является действительной (ось, квадрат переменной которой входит в уравнение со знаком плюс), а какая – мнимой (квадрат соответствующей переменной входит со знаком минус).

Если а = b , гипербола называется равносторонней (равнобочной), ее асимптоты перпендикулярны друг другу.

Определение 3.

Параболой называется геометрическое место точек, равноудаленных от заданной точки (фокуса) и от заданной прямой (директрисы), лежащих в одной плоскости.

Найдем уравнение параболы, используя это определение.

Пусть р – расстояние между фокусом F и директрисой D . Расположим систему координат так чтобы директриса была параллельна оси ОУ, фокус находился на оси ОХ, начало координат располагалось посередине между фокусом и директрисой. Пусть М(х , у ) – текущая точка параболы, фокус F( ,0), уравнение директрисы х =– , проекция точки М на директрису – точка К(– , х ). Тогда символьное уравнение параболы |FM| = |MK| в координатной форме примет вид

После преобразований получаем у 2 = 2рх .

Если фокус параболы поместить в точку F(– , 0), а директрисой взять прямую х = , то уравнение приобретет вид у 2 = –2рх . Поэтому каноническим уравнением параболы называют уравнение вида

у 2 = 2рх , (4)

где р – параметр произвольного знака.

Исследуем расположение параболы по ее каноническому уравнению (4).

1) Проходит через начало координат (0, 0).

2) Кривая симметрична относительно оси ОХ: точки (х , у ) и (х , –у ) принадлежат параболе. Ось ОХ при этом называют осью параболы .

3) В силу симметрии исследование достаточно провести при у > 0. Рассмотрим функцию , при р > 0 область определения этой функции х Î. Производные этой функции равны у ¢ = , у ¢¢= .Для р >0 эта функция возрастает при х Î(0, +¥), убывает при х Î(–¥, 0), а в точке (0, 0) имеет минимум. Для р < 0, наоборот, при х Î(0, +¥) убывает, при х Î(–¥, 0) возрастает, в точке (0, 0) – максимум. Точку (0, 0) называют вершиной параболы . При р >0 и при у ¢¢ < 0, значит, кривая выпуклая.

4) По этим исследованиям вырисовывается следующая кривая



Если фокус параболы расположить на оси ОУ, директрису провести параллельно оси ОХ, начало координат расположить по-прежнему посередине между фокусом и директрисой, то получим уравнение параболы в виде

х 2 = 2ру , (5)

которое также называется каноническим уравнением параболы. Эта парабола имеет вершиной начало координат, осью симметрии ось ОУ; при р >0 ветви параболы направлены вверх, при р < 0 – вниз.

Свойства кривых второго порядка

Для всех рассмотренных кривых есть общая характеристика: фокус.

Фокус в переводе с латинского означает очаг . С фокусами кривых второго порядка связаны их оптические свойства

Представим себе, что эллипс, гипербола, парабола вращаются вокруг оси, содержащей фокусы. При этом образуется поверхность, которую называют соответственно эллипсоидом, гиперболоидом, параболоидом. Если реальную поверхность такого вида покрыть (со стороны фокусов) амальгамой, то получится соответственно эллиптическое, гиперболическое, параболическое зеркало. Известные из физики законы отражения света позволяют сделать такие выводы:

1) Если источник света поместить в одном из фокусов эллиптического зеркала, то его лучи, отразившись от зеркала, соберутся в другом фокусе.

Этим свойством пользовались фокусники: помещали источник света в одном фокусе эллиптического зеркала, в другом – воспламеняющееся вещество, которое загоралось без видимых причин, что поражало зрителей. Поэтому слово «фокус» получило тот смысл, в котором мы привыкли его употреблять.

2) Если источник света поместить в фокусе параболического зеркала, то его лучи, отразившись, пойдут параллельно оси параболы. На этом основано устройство прожектора.

3) Если источник света поместить в одном из фокусов гиперболического зеркала, то его лучи пойдут так, как если бы они исходили из второго фокуса.

Наряду с фокусами, характерными компонентами кривых второго порядка являются директрисы и эксцентриситет.

Определение 4.

Прямая D называется директрисой кривой, если отношение расстояния d от любой точки кривой до L к расстоянию r от этой точки до фокуса F кривой есть величина постоянная. Величина называется эксцентриситетом кривой.

Эллипс имеет две директрисы D 1 и D 2 , расположенные вне эллипса, и перпендикулярные большой оси (параллельные малой) эллипса.

У гиперболы также две директрисы, расположены они между ветвями гиперболы перпендикулярно действительной оси (параллельно мнимой оси).

Уравнения директрис эллипса и гиперболы имеют вид , где а – большая или действительная полуось; директриса и фокус, расположенные по одну сторону от центра кривой, называются соответствующими друг другу. Постоянным является отношение расстояний от точки кривой до соответствующих друг другу фокусов и директрис.

У параболы один фокус и одна директриса, перпендикулярная оси параболы. Уравнения директрис в зависимости от расположения фокуса имеют вид .

Эксцентриситет кривой второго порядка характеризует форму этой кривой. Для эллипса эксцентриситет e < 1, для гиперболы e >1, у параболы e = 1, у окружности e = 0. Если а – большая или действительная полуось, с – половина фокусного расстояния, то эксцентриситет равен . Зависимость формы кривой второго порядка с одними и теми же фокусом и директрисой от эксцентриситета показана на рисунке.