Молния, природа и причины возникновения молнии. Что такое молния и отчего возникает

Грозовые разряды (молнии ) - это наиболее распространенный источник мощных электромагнитных полей естественного происхождения. Молния представляет собой разновидность газового разряда при очень большой длине искры. Общая длина канала молнии достигает нескольких километров, причем значительная часть этого канала находится внутри грозового облака. молнии Причиной возникновения молний является образование большого объемного электрического заряда.

Обычным источником молний являются грозовые кучево-дождевые облака, несущие в себе скопление положительных и отрицательных электрических зарядов в верхней и нижней частях облака и образующие вокруг этого облака электрические поля возрастающей напряженности. Образование таких объемных зарядов различной полярности в облаке (поляризация облака) связано с конденсацией вследствие охлаждения водяных паров восходящих потоков теплого воздуха на положительных и отрицательных ионах (центрах конденсации) и разделением заряженных капелек влаги в облаке под действием интенсивных восходящих тепловых воздушных потоков. Из-за того, что в облаке образуется несколько изолированных друг от друга скоплений зарядов (в нижней части облака скапливаются преимущественно заряды отрицательной полярности).

Грозовые разряды по внешним признакам могут быть разделены на несколько типов. Обычный тип - линейная молния , с разновидностями: ленточная, ракетообразная, зигзагообразная и разветвленная. Наиболее редкий тип разрядов - шаровая молния. Известны разряды, носящие названия "Огни святого Эльма" и "Свечение Анд". Молния обычно бывает многократной, т.е. состоит из нескольких единичных разрядов, развивающихся по одному и тому же пути, причем каждый разряд, так же как и разряд, получаемый в лабораторных условиях, начинается лидерным и завершается обратным (главным) разрядом. Скорость опускания лидера первого единичного разряда примерно равна 1500 км/с, скорости лидеров последующих разрядов достигают 2000 км/с, а скорость обратного разряда изменяется в пределах 15000 -150000 км/с, т. е. от 0,05 до 0,5 скорости света. Канал лидера, как и канал всякого стримера, заполнен плазмой, следовательно, обладает определенной проводимостью.

Верхним концом лидерный канал соединен с одним из заряженных центров в облаке, поэтому часть зарядов этого центра стекает в канал лидера. Распределение заряда в канале должно быть неравномерным, возрастая к его концу. Однако некоторые косвенные измерения позволяют предположить, что абсолютная величина заряда на головке лидера невелика и в первом приближении канал можно считать равномерно заряженным с линейной плотностью зарядов S. Общий заряд в канале лидера в этом случае равен Q = S*l, где l - длина канала, причем обычно значение его составляет около 10% значения заряда, стекающего в землю во время единичного разряда молнии. В 70-80% всех случаев этот заряд имеет отрицательную полярность. По мере продвижения канала лидера под действием создаваемого им электрического поля в земле происходит смещение зарядов, причем заряды, противоположные по знаку зарядам лидера (обычно это положительные заряды), стремятся расположиться как можно ближе к головке лидерного канала. В случае однородного грунта эти заряды скапливаются непосредственно под лидерным каналом.

Если грунт неоднородный и основная его часть обладает большим удельным сопротивлением, заряды сосредоточиваются в участках с повышенной проводимостью (реки, грунтовые воды). При наличии заземленных возвышающихся объектов (молниеотводы, дымовые трубы, высокие здания, смоченные дождем деревья) заряды стягиваются к вершине объекта, создавая там значительную напряженность поля. На первых стадиях развития лидерного канала напряженность электрического поля на его головке определяется собственными зарядами лидера и находящимися под облаком скоплениями объемных зарядов. Траектория движения лидера не связана с земными объектами. По мере опускания лидера все большее влияние начинают оказывать скопления зарядов на земле и возвышающихся объектах. Начиная с определенной высоты головки лидера (высота ориентировки), напряженность поля по одному из направлений оказывается наибольшей, и происходит ориентирование лидера на один из наземных объектов. Естественно, что при этом преимущественно поражаются возвышающиеся объекты и участки земли с повышенной проводимостью (избирательная поражаемость). С очень высоких объектов навстречу лидеру развиваются встречные лидеры, наличие которых способствует ориентированию молнии на данный объект.

После того, как канал лидера достигнет земли или встречного лидера, начинается обратный разряд, во время которого канал лидера приобретает потенциал, практически равный потенциалу земли. На головке развивающегося вверх обратного разряда имеется область повышенной напряженности электрического поля, под действием которой происходит перестройка канала, сопровождающаяся увеличением плотности зарядов плазмы от 10^13 - 10^14 до 10^16 - 10^19 1/м3, благодаря чему проводимость канала увеличивается по крайней мере в 100 раз. Во время развития обратного разряда через место удара проходит ток iM = v, где v - скорость обратного разряда. Процесс, происходящий при переходе лидерного разряда в обратный разряд, во многом аналогичен процессу замыкания на землю вертикального заряженного провода.

Если заряженный провод замыкается на землю через сопротивление r, то ток в месте заземления равен: где z = волновое сопротивление провода. Таким образом, и при разряде молнии ток в месте удара будет равен v только при сопротивлении заземления, равном нулю. При сопротивлениях заземления, отличных от нуля, ток в месте удара уменьшается. Количественно определить это уменьшение довольно трудно, так как волновое сопротивление канала молнии можно оценить лишь грубо приближенно. Имеются основания предполагать, что волновое сопротивление канала молнии уменьшается при увеличении тока, причем среднее значение примерно равно 200 - 300 Ом. В таком случае при изменении сопротивления заземления объекта от 0 до 30 Ом ток в объекте изменяется всего на 10%. Такие объекты в дальнейшем мы будем называть хорошо заземленными и считать, что через них проходит полный ток молнии iM = v. Основные параметры молнии и интенсивность грозовой деятельности Молнии с большими токами возникают крайне редко. Так, молнии с токами 200 кА возникают в 0,7...1,0% случаев от общего числа наблюдавшихся разрядов.

Число случаев ударов молний с величиной тока 20 кА составляет порядка 50%. Поэтому принято значения амплитуд токов молний представлять в виде кривых вероятностей (функций распределения), для которых по оси ординат откладывается вероятность появления токов молнии с максимальным значением. Основной количественной характеристикой молнии является ток, протекающий через пораженный объект, который характеризуется максимальным значением iM, средней крутизной фронта и длительностью импульса tи, которая равна времени уменьшения тока до половины максимального значения. В настоящее время наибольшее количество данных имеется по максимальным значениям тока молнии, измерение которой осуществляется простейшими измерительными приборами - магниторегистраторами, которые представляют собой цилиндрические стерженьки, изготовленные из стальных опилок или проволочек, запрессованных в пластмассу. Магниторегистраторы укрепляются вблизи возвышающихся объектов (молниеотводы, опоры линий передач) и располагаются вдоль силовых линий магнитного поля, которое возникает при прохождении тока молнии через объект. Так как для изготовления регистраторов применяются материалы, обладающие большой коэрцитивной силой, они сохраняют большую остаточную намагниченность.

Измеряя эту намагниченность, можно с помощью градуировочных кривых определить максимальное значение на магничивающего тока. Измерения магниторегистраторами не обеспечивают большой точности, однако этот недостаток частично компенсируется огромным количеством измерений, которые к настоящему времени исчисляются десятками тысяч. Располагая вблизи от поражаемого объекта рамку, замкнутую на индуктивную катушку, можно измерить крутизну тока молнии с помощью магниторегистратора, помещенного внутри катушки. Измерения показали, что токи молнии изменяются в широких пределах от нескольких килоампер до сотен килоампер, поэтому результаты измерения представляются в виде кривых вероятностей (функций распределения) токов молнии, на которых по оси абсцисс откладывается вероятность появления токов молнии с максимальным значением, превышающим значение, указываемое ординатой.

В Украине при расчетах грозозащиты используется кривая Для горных местностей ординаты кривой уменьшаются в 2 раза, так как при малых расстояниях от земли до облаков молния возникает при меньшей плотности зарядов в скоплениях, т. е. вероятность больших токов уменьшается. Значительно большие трудности представляет экспериментальное определение крутизны и длительности импульса тока молнии, поэтому количество экспериментальных данных по этим параметрам относительно невелико. Длительность импульса тока молнии в основном определяется временем распространения обратного разряда от земли до облака и в связи с этим изменяется в относительно узких пределах от 20 до 80-100 мкс. Средняя длительность импульса тока молнии близка к 50 мкс, что и определило выбор стандартного импульса.

Наиболее важными с точки зрения оценок грозовой стойкости РЭС являются: величина переносимого молнией заряда, ток в канале молнии, число повторных ударов по одному каналу и интенсивность грозовой деятельности. Все эти параметры определяются не однозначно и носят вероятностный характер. Заряд, переносимый молнией, колеблется в процессе разряда в пределах от долей кулона до нескольких десятков кулон. Средний заряд, опускаемый в землю многократной молнией, равен 15 - 25 Кл. Учитывая, что в среднем разряд молнии содержит три компоненты, следовательно, во время одной компоненты в землю переносится около 5 - 8 Кл. Из них в канал лидера стекает около 60% всего данного скопления зарядов, что составляет 3 - 5 Кл. Удар молнии в равнинные участки поверхности земли несет заряд 10 - 50 Кл (в среднем 25 Кл), при ударах молнии в горах - заряд 30 - 100 Кл (в среднем 60 Кл), при разрядах в телевизионные башни заряд достигает 160 Кл.

При разрядах молнии в землю в подавляющем большинстве (85 - 90%) в землю переносится отрицательный заряд. Заряд, стекающий в землю во время многократной молнии, изменяется в пределах от долей кулона до 100 Кл и более. Среднее значение этого заряда близко к 20 Кл. Заряд, спускаемый в землю во время гроз, по-видимому, играет существенную роль в поддержании отрицательного заряда земли. Интенсивность грозовой деятельности в различных климатических районах различается очень сильно. Как правило, количество гроз в течение года минимально в северных районах и постепенно увеличивается к югу, где повышенная влажность воздуха и высокая температура способствуют образованию грозовых облаков. Однако эта тенденция соблюдается не всегда. Существуют очаги грозовой деятельности и в средних широтах (например, в районе Киева), где создаются благоприятные условия для формирования местных гроз.

Интенсивность грозовой деятельности принято характеризовать числом грозовых дней в году или общей годовой продолжительностью гроз в часах. Последняя характеристика более правильна, так как число ударов молнии в землю зависит не от числа гроз, а от их общей продолжительности. Число грозовых дней или часов в году определяется на основании многолетних наблюдений метеорологических станций, обобщение которых позволяет составить карты грозовой деятельности, на которые наносятся линии равной продолжительности гроз - изокеранические линии. Средняя продолжительность гроз за один грозовой день для территории европейской части России и Украины 1,5-2 ч.

Молния - одно из тех природных явлений, которые издавна внушали страх человеческому роду. Понять её сущность стремились величайшие умы, такие как Аристотель или Лукреций. Они считали, что это шар, состоящий из огня и зажатый в водяных парах туч, и, увеличиваясь в размере, он прорывает их и стремительной искрой падает на землю.

Понятие молнии и ее зарождение

Чаще всего молния образуется в которые имеют достаточно большой размер. Верхняя часть может располагаться на высоте 7 километров, а нижняя - всего лишь в 500 метрах над поверхностью земли. Учитывая атмосферную температуру воздуха, можно прийти к выводу, что на уровне 3-4 км вода замерзает и превращается в льдинки, которые, сталкиваясь между собой, электризуются. Те, что обладают наибольшим размером, получают отрицательный заряд, а наименьшие - положительный. Исходя из своего веса, они равномерно распределяются в облаке по слоям. Сближаясь между собой, они образуют плазменный канал, из которого и получается электрическая искра, именуемая молнией. Свою ломаную форму она получила из-за того, что на пути к земле часто встречаются различные воздушные частицы, которые образуют преграды. И чтобы их обойти, приходится менять траекторию.

Физическое описание молнии

Разряд молнии выделяет от 109 до 1010 джоулей энергии. Такое колоссальное количество электричества в большей степени расходуется на создание световой вспышки и которая иначе называется громом. Но даже маленькой части молнии хватит, чтобы творить немыслимые вещи, например, ее разряд может убить человека или разрушить здание. Еще один интересный факт говорит о том, что это природное явление способно плавить песок, образуя полые цилиндры. Такой эффект достигается из-за высокой температуры внутри молнии, она может достигать 2000 градусов. Время удара о землю также различно, оно не может быть больше секунды. Что же касается мощности, то амплитуда импульса может достичь сотни киловатт. Соединяя все эти факторы, получается наисильнейший природный разряд тока, который несет в себе гибель всему тому, к чему прикоснется. Все существующие виды молний очень опасны, и встреча с ними крайне нежелательна для человека.

Образование грома

Все виды молний невозможно представить себе без раската грома, который не несет в себе такой же опасности, но в некоторых случаях может привести к сбою работы сети и к другим техническим неполадкам. Он возникает из-за того, что теплая волна воздуха, нагретая молнией до температуры горячее, чем солнце, сталкивается с холодной. Звук, получающийся при этом, - не что иное, как волна, вызванная колебаниями воздуха. В большинстве случаев громкость увеличивается к концу раската. Это происходит из-за отражения звука от облаков.

Какие бывают молнии

Оказывается, все они разные.

1. Линейные молнии - наиболее часто встречающаяся разновидность. Электрический раскат выглядит как перевернутое вверх тормашками, разросшееся дерево. От главного канала отходит несколько более тонких и коротких "отростков". Длина такого разряда может достигать 20 километров, а сила тока - 20 000 ампер. Скорость движения составляет 150 километров в секунду. Температура плазмы, наполняющей канал молнии, доходит до 10 000 градусов.

2. Внутриоблачные молнии - происхождение данного вида сопровождается изменением электрических и магнитных полей, также излучаются радиоволны. Такой раскат с наибольшей вероятностью можно встретить ближе к экватору. В умеренных широтах он появляется крайне редко. Если в облаке находится молния, то побудить ее выбраться наружу может и посторонний объект, нарушающий целостность оболочки, например наэлектризованный самолет или металлический трос. По длине может колебаться от 1 до 150 километров.

3. Наземные молнии - данный вид проходит несколько стадий. На первой из них начинается ударная ионизация, которая создается в начале свободными электронами, они всегда присутствует в воздухе. Под действием электрического поля элементарные частицы приобретают высокие скорости и направляются к земле, сталкиваясь с молекулами, составляющими воздух. Таким образом, возникают электронные лавины, по-другому называющиеся стримеры. Они представляют собой каналы, которые, сливаясь между собой, служат причиной яркой, термоизолированной молнии. Она достигает земли в форме небольшой лестницы, потому что на ее пути встречаются преграды, и чтобы их обойти, она меняет направление. Скорость движения составляет примерно 50000 километров в секунду.

После того как молния пройдет свой путь, она заканчивает движение на несколько десятков микросекунд, при этом свет ослабевает. После этого начинается следующая стадия: повторение пройденного пути. Самый последний разряд превосходит по яркости все предыдущие, сила тока в нем может достигать сотен тысяч ампер. Температура же внутри канала колеблется в районе 25 000 градусов. Такой вид молний самый продолжительный, поэтому последствия могут быть разрушительными.

Жемчужные молнии

Отвечая на вопрос о том, какие бывают молнии, нельзя упустить из виду такое редкое природное явление. Чаще всего разряд проходит после линейного и полностью повторяет его траекторию. Только вот на вид он представляет собой шары, находящиеся на расстоянии друг от друга и напоминающие собой бусы из драгоценного материала. Такая молния сопровождается самыми громкими и раскатистыми звуками.

Шаровая молния

Природное явление, когда молния принимает форму шара. В этом случае траектория ее полета становится непредсказуемой, что делает ее еще опаснее для человека. В большинстве случаев такой электрический ком возникает совместно с другими видами, но зафиксирован факт его появления даже в солнечную погоду.

Как образуется Именно этим вопросом чаще всего задаются люди, столкнувшиеся с этим феноменом. Как всем известно, некоторые вещи являются прекрасными проводниками электричества, так вот именно в них, накапливая свой заряд, и начинает зарождаться шар. Также он может появиться из основной молнии. Очевидцы же утверждают, что она возникает просто из ниоткуда.

Диаметр молнии колеблется от нескольких сантиметров до метра. Что же касается цвета, то существует несколько вариантов: от белого и желтого до ярко-зеленого, крайне редко можно встретить черный электрический шар. После стремительного спуска он движется горизонтально, примерно в метре от поверхности земли. Такая молния может неожиданно менять траекторию и так же неожиданно исчезнуть, высвободив при этом огромную энергию, из-за которой происходит плавление или же вовсе разрушение различных предметов. Живет она от десяти секунд до нескольких часов.

Спрайт-молния

Совсем недавно, в 1989 году, ученые обнаружили еще один вид молнии, который получил название спрайт . Открытие произошло совершенно случайно, потому что феномен наблюдается крайне редко и длится лишь десятые доли секунды. От других их отличает высота, на которой они появляются - примерно 50-130 километров, в то время как другие подвиды не преодолевают 15-километровый рубеж. Также спрайт-молния отличается огромным диаметром, который достигает 100 км. Они выглядят как вертикальные и вспыхивают группами. Их цвет различается в зависимости от состава воздуха: ближе к земле, где больше кислорода, они зеленые, желтые или белые, а вот под влиянием азота, на высоте более 70 км, они приобретают ярко-красный оттенок.

Поведение во время грозы

Все виды молний несут в себе необычайную опасность для здоровья и даже жизни человека. Чтобы избежать электрического удара, на открытой местности следует придерживаться следующих правил:

  1. В данной ситуации в группу риска попадают самые высокие объекты, поэтому стоит избегать открытых местностей. Чтобы стать ниже, лучше всего присесть и положить голову и грудь на колени, в случае поражения эта поза защитит все жизненно важные органы. Ни в коем случае нельзя ложиться плашмя, чтобы не увеличивать площадь возможного попадания.
  2. Также не стоит прятаться под высокими деревьями и Нежелательным укрытием будут и незащищенные конструкции или металлические объекты (например, навес для пикника).
  3. Во время грозы нужно немедленно выйти из воды, потому что она является хорошим проводником. Попадая в нее, разряд молнии может с легкостью распространиться и на человека.
  4. Ни в коем случае нельзя пользоваться мобильным телефоном.
  5. Для оказания первой помощи пострадавшему лучше всего произвести сердечно-легочную реанимацию и немедленно вызвать службу спасения.

Правила поведения в доме

Внутри помещений тоже существует опасность поражения.

  1. Если на улице началась гроза, первым делом нужно закрыть все окна и двери.
  2. Необходимо отключить все электрические приборы.
  3. Не приближаться к проводным телефонам и прочим кабелям, они являются прекрасными проводниками электричества. Таким же эффектом обладают и металлические трубы, поэтому не стоит находиться рядом с сантехникой.
  4. Зная, как образуется шаровая молния и как непредсказуема ее траектория, если она все-таки попала в помещение, необходимо немедленно его покинуть и закрыть все окна и двери. Если же эти действия невозможны, лучше стоять неподвижно.

Природа все еще неподвластна человеку и несет многие опасности. Все виды молний - это, по своей сути, мощнейшие электрические разряды, которые в несколько раз превышают по мощности все искусственно созданные человеком источники тока.

Доктор биологических наук, кандидат физико-математических наук К. БОГДАНОВ.

В каждый момент времени в разных точках Земли сверкают молнии более 2000 гроз. В каждую секунду около 50 молний ударяются в поверхность земли, и в среднем каждый ее квадратный километр молния поражает шесть раз за год. Еще Б. Франклин показал, что молнии, бьющие по земле из грозовых облаков, - это электрические разряды, переносящие на нее отрицательный заряд величиной несколько десятков кулон, а амплитуда тока при ударе молнии составляет от 20 до 100 кА. Скоростная фотосъемка показала, что разряд молнии длится несколько десятых долей секунды и состоит из нескольких еще более коротких разрядов. Молнии издавна интересуют ученых, но и в наше время об их природе мы знаем лишь немного больше, чем 250 лет тому назад, хотя смогли их обнаружить даже на других планетах.

Наука и жизнь // Иллюстрации

Способность электризации трением различных материалов. Материал из трущейся пары, находящийся выше в таблице, заряжается положительно, а ниже - отрицательно.

Отрицательно заряженный низ облака поляризует поверхность Земли под собой так, что она заряжается положительно, и, кода появляются условия для электрического пробоя, возникает разряд молнии.

Распределение частоты гроз по поверхности суши и океанов. Самые темные места на карте соответствуют частотам не более 0,1 грозы в год на квадратный километр, а самые светлые - более 50.

Зонт с громоотводом. Модель продавалась в XIX веке и пользовалась спросом.

Выстрел жидкостью или лазером по грозовой туче, нависшей над стадионом, уводит разряд молнии в сторону.

Несколько разрядов молний, вызванных пуском ракеты в грозовую тучу. Левая вертикальная прямая - след ракеты.

Крупный «ветвистый» фульгурит весом 7,3 кг, найденный автором на окраине Москвы.

Полые цилиндрические фрагменты фульгурита, образованные из оплавленного песка.

Белый фульгурит из Техаса.

Молния - вечный источник подзарядки электрического поля Земли . В начале XX века с помощью атмосферных зондов измерили электрическое поле Земли. Его напряженность у поверхности оказалась равной примерно 100 В/м, что соответствует суммарному заряду планеты около 400 000 Кл. Переносчиком зарядов в атмосфере Земли служат ионы, концентрация которых увеличивается с высотой и достигает максимума на высоте 50 км, где под действием космического излучения образовался электропроводящий слой - ионосфера. Поэтому электрическое поле Земли - это поле сферического конденсатора с приложенным напряжением около 400 кВ. Под действием этого напряжения из верхних слоев в нижние все время течет ток силой 2-4 кА, плотность которого составляет 1-2 . 10 -12 А/м 2 , и выделяется энергия до 1,5 ГВт. И это электрическое поле исчезло бы, если бы не было молний! Поэтому в хорошую погоду электрический конденсатор - Земля - разряжается, а при грозе заряжается.

Человек не чувствует электрического поля Земли, так как его тело - хороший проводник. Поэтому заряд Земли находится и на поверхности тела человека, локально искажая электрическое поле. Под грозовым облаком плотность наведенных на земле положительных зарядов может значительно возрастать, а напряженность электрического поля - превышать 100 кВ/м, в 1000 раз больше ее значения в хорошую погоду. В результате во столько же раз увеличивается положительный заряд каждого волоска на голове человека, стоящего под грозовой тучей, и они, отталкиваясь друг от друга, встают дыбом.

Электризация - удаление "заряженной" пыли. Чтобы понять, как облако разделяет электрические заряды, вспомним, что такое электризация. Легче всего зарядить тело, потерев его о другое. Электризация трением - самый старый способ получения электрических зарядов. Само слово "электрон" в переводе с греческого на русский означает янтарь, так как янтарь всегда заряжался отрицательно при трении о шерсть или шелк. Величина заряда и его знак зависят от материалов трущихся тел.

Считается, что тело, до того как его стали тереть о другое, электронейтрально. Действительно, если оставить заряженное тело в воздухе, то к нему начнут прилипать противоположно заряженные частицы пыли и ионы. Таким образом, на поверхности любого тела находится слой "заряженной" пыли, нейтрализующий заряд тела. Поэтому электризация трением - это процесс частичного снятия "заряженной" пыли с обоих тел. При этом результат будет зависеть от того, на сколько лучше или хуже снимается "заряженная" пыль с трущихся тел.

Облако - фабрика по производству электрических зарядов. Трудно представить, что в облаке находится пара материалов из перечисленных в таблице. Однако на телах может оказаться различная "заряженная" пыль, даже если они сделаны из одного того же материала, - достаточно, чтобы микроструктура поверхности отличалась. Например, при трении гладкого тела о шероховатое оба будут электризовываться.

Грозовое облако - это огромное количество пара, часть которого конденсировалось в виде мельчайших капелек или льдинок. Верх грозового облака может находиться на высоте 6-7 км, а низ нависать над землей на высоте 0,5-1 км. Выше 3-4 км облака состоят из льдинок разного размера, так как температура там всегда ниже нуля. Эти льдинки находятся в постоянном движении, вызванном восходящими потоками теплого воздуха от нагретой поверхности земли. Мелкие льдинки легче, чем крупные, увлекаются восходящими потоками воздуха. Поэтому "шустрые" мелкие льдинки, двигаясь в верхнюю часть облака, все время сталкиваются с крупными. При каждом таком столкновении происходит электризация, при которой крупные льдинки заряжаются отрицательно, а мелкие - положительно. Со временем положительно заряженные мелкие льдинки оказываются в верхней части облака, а отрицательно заряженные крупные - внизу. Другими словами, верхушка грозы заряжена положительно, а низ - отрицательно. Все готово для разряда молнии, при котором происходит пробой воздуха и отрицательный заряд с нижней части грозовой тучи перетекает на Землю.

Молния - привет из космоса и источник рентгеновского излучения. Однако само облако не в состоянии так наэлектризовать себя, чтобы вызвать разряд между своей нижней частью и землей. Напряженность электрического поля в грозовом облаке никогда не превышает 400 кВ/м, а электрический пробой в воздухе происходит при напряженности больше 2500 кВ/м. Поэтому для возникновения молнии необходимо что-то еще кроме электрического поля. В 1992 году российский ученый А. Гуревич из Физического института им. П. Н. Лебедева РАН (ФИАН) предположил, что своеобразным зажиганием для молнии могут быть космические лучи - частицы высоких энергий, обрушивающиеся на Землю из космоса с околосветовыми скоростями. Тысячи таких частиц каждую секунду бомбардируют каждый квадратный метр земной атмосферы.

Согласно теории Гуревича, частица космического излучения, сталкиваясь с молекулой воздуха, ионизирует ее, в результате чего образуется огромное число электронов, обладающих высокой энергией. Попав в электрическое поле между облаком и землей, электроны ускоряются до околосветовых скоростей, ионизируя путь своего движения и, таким образом, вызывая лавину электронов, движущихся вместе с ними к земле. Ионизированный канал, созданный этой лавиной электронов, используется молнией для разряда (см. "Наука и жизнь" № 7, 1993 г.).

Каждый, кто видел молнию, заметил, что это не ярко светящаяся прямая, соединяющая облако и землю, а ломаная линия. Поэтому процесс образования проводящего канала для разряда молнии называют ее "ступенчатым лидером". Каждая из таких "ступенек" - это место, где разогнавшиеся до околосветовых скоростей электроны остановились из-за столкновений с молекулами воздуха и изменили направление движения. Доказательство для такой интерпретации ступенчатого характера молнии - вспышки рентгеновского излучения, совпадающие с моментами, когда молния, как бы спотыкаясь, изменяет свою траекторию. Недавние исследования показали, что молния служит довольно мощным источником рентгеновского излучения, интенсивность которого может составлять до 250 000 электронвольт, что примерно в два раза превышает ту, которую используют при рентгене грудной клетки.

Как вызвать разряд молнии? Изучать то, что произойдет непонятно где и когда, очень сложно. А именно так в течение долгих лет работали ученые, исследующие природу молний. Считается, что грозой на небе руководит Илья-пророк и нам не дано знать его планы. Однако ученые очень давно пытались заменить Илью-пророка, создавая проводящий канал между грозовой тучей и землей. Б. Франклин для этого во время грозы запускал воздушный змей, оканчивающийся проволокой и связкой металлических ключей. Этим он вызывал слабые разряды, стекающие вниз по проволоке, и первым доказал, что молния - это отрицательный электрический разряд, стекающий с облаков на землю. Опыты Франклина были чрезвычайно опасными, и один из тех, кто их пытался повторить, - российский академик Г. В. Рихман - в 1753 году погиб от удара молнии.

В 1990-х годах исследователи научились вызывать молнии, не подвергая опасности свою жизнь. Один из способов вызвать молнию - запустить с земли небольшую ракету прямо в грозовую тучу. Вдоль всей траектории ракета ионизирует воздух и создает таким образом проводящий канал между тучей и землей. И если отрицательный заряд низа тучи достаточно велик, то вдоль созданного канала происходит разряд молнии, все параметры которого регистрируют приборы, расположенные рядом со стартовой площадкой ракеты. Чтобы создать еще лучшие условия для разряда молнии, к ракете присоединяют металлический провод, соединяющий ее с землей.

Молния: подарившая жизнь и двигатель эволюции . В 1953 году биохимики С. Миллер (Stanley Miller) и Г. Юри (Harold Urey) показали, что одни из "кирпичиков" жизни - аминокислоты могут быть получены путем пропускания электрического разряда через воду, в которой растворены газы "первобытной" атмосферы Земли (метан, аммиак и водород). Спустя 50 лет другие исследователи повторили эти опыты и получили те же результаты. Таким образом, научная теория зарождения жизни на Земле отводит удару молнии основополагающую роль.

При пропускании коротких импульсов тока через бактерии в их оболочке (мембране) появляются поры, через которые внутрь могут проходить фрагменты ДНК других бактерий, запуская один из механизмов эволюции.

Почему зимой грозы очень редки? Ф. И. Тютчев, написав "Люблю грозу в начале мая, когда весенний первый гром…", знал, что зимой гроз почти не бывает. Чтобы образовалось грозовое облако, необходимы восходящие потоки влажного воздуха. Концентрация насыщенных паров растет с повышением температуры и максимальна летом. Разница температур, от которой зависят восходящие потоки воздуха, тем больше, чем выше его температура у поверхности земли, так как на высоте нескольких километров его температура не зависит от времени года. Значит, интенсивность восходящих потоков максимальна тоже летом. Поэтому и грозы у нас чаще всего летом, а на севере, где и летом холодно, грозы довольно редки.

Почему грозы чаще над сушей, чем над морем? Чтобы облако разрядилось, в воздухе под ним должно быть достаточное число ионов. Воздух, состоящий только из молекул азота и кислорода, не содержит ионов, и его очень тяжело ионизировать даже в электрическом поле. А вот если в воздухе много инородных частиц, например пыли, то и ионов тоже много. Ионы образуются при движении частиц в воздухе аналогично тому, как электризуются при трении друг о друга различные материалы. Очевидно, что пыли в воздухе гораздо больше над сушей, чем над океанами. Поэтому-то грозы и гремят над сушей чаще. Замечено также, что прежде всего молнии бьют по тем местам, где в воздухе особенно велика концентрация аэрозолей - дымов и выбросов предприятий нефтеперерабатывающей промышленности.

Как Франклин отклонил молнию. К счастью, большинство разрядов молнии происходят между облаками и поэтому угрозы не представляют. Однако считается, что каждый год молнии убивают более тысячи людей по всему миру. По крайней мере, в США, где ведется такая статистика, каждый год от удара молнии страдают около 1000 человек и более ста из них погибают. Ученые давно пытались защитить людей от этой "кары божьей". Например, изобретатель первого электрического конденсатора (лейденской банки) Питер ван Мушенбрук (1692-1761) в статье об электричестве, написанной для знаменитой французской Энциклопедии, защищал традиционные способы предотвращения молнии - колокольный звон и стрельбу из пушек, которые, как он считал, оказываются довольно эффективными.

Бенджамин Франклин, пытаясь защитить Капитолий столицы штата Мериленд, в 1775 году прикрепил к зданию толстый железный стержень, который возвышался над куполом на несколько метров и был соединен с землей. Ученый отказался патентовать свое изобретение, желая, чтобы оно как можно скорее начало служить людям.

Весть о громоотводе Франклина быстро разнеслась по Европе, и его выбрали во все академии, включая и Российскую. Однако в некоторых странах набожное население встретило это изобретение с возмущением. Сама мысль, что человек так легко и просто может укротить главное оружие "божьего гнева", казалась кощунственной. Поэтому в разных местах люди из благочестивых соображений ломали громоотводы. Любопытный случай произошел в 1780 году в небольшом городке Сент-Омер на севере Франции, где горожане потребовали снести железную мачту громоотвода, и дело дошло до судебного разбирательства. Молодой адвокат, защищавший громоотвод от нападок мракобесов, построил защиту на том, что и разум человека, и его способность покорять силы природы имеют божественное происхождение. Все, что помогает спасти жизнь, во благо - доказывал молодой адвокат. Он выиграл процесс и снискал большую известность. Адвоката звали Максимилиан Робеспьер. Ну а сейчас портрет изобретателя громоотвода - самая желанная репродукция в мире, ведь она украшает известную всем стодолларовую купюру.

Как можно защититься от молнии с помощью водяной струи и лазера . Недавно был предложен принципиально новый способ борьбы с молниями. Громоотвод создадут из... струи жидкости, которой будут стрелять с земли непосредственно в грозовые облака. Громоотводная жидкость представляет собой солевой раствор, в который добавлены жидкие полимеры: соль предназначена для увеличения электропроводности, а полимер препятствует "распаду" струи на отдельные капельки. Диаметр струи составит около сантиметра, а максимальная высота - 300 метров. Когда жидкий громоотвод доработают, им оснастят спортивные и детские площадки, где фонтан включится автоматически, когда напряженность электрического поля станет достаточно высокой, а вероятность удара молнии - максимальной. По струе жидкости с грозового облака будет стекать заряд, делая молнию безопасной для окружающих. Аналогичную защиту от разряда молнии можно сделать и с помощью лазера, луч которого, ионизируя воздух, создаст канал для электрического разряда вдали от скопления людей.

Может ли молния сбить нас с пути? Да, если вы пользуетесь компасом. В известном романе Г. Мелвила "Моби Дик" описан именно такой случай, когда разряд молнии, создавший сильное магнитное поле, перемагнитил стрелку компаса. Однако капитан судна взял швейную иглу, ударил по ней, чтобы намагнитить, и поставил ее вместо испорченной стрелки компаса.

Может ли вас поразить молния внутри дома или самолета? К сожалению, да! Ток грозового разряда может войти в дом по телефонному проводу от рядом стоящего столба. Поэтому при грозе старайтесь не пользоваться обычным телефоном. Считается, что говорить по радиотелефону или по мобильному безопасней. Не следует во время грозы касаться труб центрального отопления и водопровода, которые соединяют дом с землей. Из этих же соображений специалисты советуют при грозе выключать все электрические приборы, в том числе компьютеры и телевизоры.

Что касается самолетов, то, вообще говоря, они стараются облетать районы с грозовой активностью. И все-таки в среднем раз в год в один из самолетов попадает молния. Ее ток поразить пассажиров не может, он стекает по внешней поверхности самолета, но способен вывести из строя радиосвязь, навигационное оборудование и электронику.

Фульгурит - окаменевшая молния. При разряде молнии выделяется 10 9 -10 10 джоулей энергии. Большая ее часть тратится на создание ударной волны (гром), нагрев воздуха, световую вспышку и другие электромагнитные волны, и только маленькая часть выделяется в том месте, где молния входит в землю. Однако и этой "маленькой" части вполне достаточно, чтобы вызвать пожар, убить человека и разрушить здание. Молния может разогреть канал, по которому она движется, до 30 000° С, в пять раз выше температуры на поверхности Солнца. Температура внутри молнии гораздо больше температуры плавления песка (1600-2000°C), но расплавится песок или нет, зависит еще и от длительности молнии, которая может составлять от десятков микросекунд до десятых долей секунды. Амплитуда импульса тока молнии обычно равна нескольким десяткам килоампер, но иногда может превышать и 100 кА. Самые мощные молнии и вызывают рождение фульгуритов - полых цилиндров из оплавленного песка.

Слово "фульгурит" происходит от латинского fulgur, что означает молния. Самые длинные из раскопанных фульгуритов уходили под землю на глубину более пяти метров. Фульгуритами также называют оплавленности твердых горных пород, образованные ударом молнии; они иногда в большом количестве встречаются на скалистых вершинах гор. Фульгуриты, состоящие из переплавленного кремнезема, обыкновенно представляют собой конусообразные трубочки толщиной с карандаш или с палец. Их внутренняя поверхность гладкая и оплавленная, а наружная образована приставшими к оплавленной массе песчинками. Цвет фульгуритов зависит от примесей минералов в песчаной почве. Большинство из них имеют рыжевато-коричневый, серый или черный цвет, однако встречаются зеленоватые, белые или даже полупрозрачные фульгуриты.

По-видимому, первое описание фульгуритов и их связи с ударами молнии было сделано в 1706 году пастором Д. Германом (David Hermann). Впоследствии многие находили фульгуриты вблизи людей, пораженных разрядом молнии. Чарльз Дарвин во время кругосветного путешествия на корабле "Бигль", обнаружил на песчаном берегу вблизи Мальдонадо (Уругвай) несколько стеклянных трубочек, уходящих в песок вертикально вниз более чем на метр. Он описал их размеры и связал их образование с разрядами молний. Известный американский физик Роберт Вуд получил "автограф" молнии, которая чуть не убила его:

"Прошла сильная гроза, и небо над нами уже прояснилось. Я пошел через поле, которое отделяет наш дом от дома моей свояченицы. Я прошел ярдов десять по тропинке, как вдруг меня позвала моя дочь Маргарет. Я остановился секунд на десять и едва лишь двинулся дальше, как вдруг небо прорезала яркая голубая линия, с грохотом двенадцатидюймового орудия ударив в тропинку в двадцати шагах передо мной и подняв огромный столб пара. Я пошел дальше, чтобы посмотреть, какой след оставила молния. В том месте, где ударила молния, было пятно обожженного клевера дюймов в пять диаметром, с дырой посередине в полдюйма…. Я возвратился в лабораторию, расплавил восемь фунтов олова и залил в отверстие… То, что я выкопал, когда олово затвердело, было похоже на огромный, слегка изогнутый собачий арапник, тяжелый, как и полагается, в рукоятке и постепенно сходящийся к концу. Он был немного длиннее трех футов" (цитируется по В. Сибрук. Роберт Вуд. - М.: Наука, 1985, с. 285).

Появление стеклянной трубочки в песке при разряде молнии связано с тем, что между песчинками всегда находятся воздух и влага. Электрический ток молнии за доли секунд раскаляет воздух и водяные пары до огромных температур, вызывая взрывообразный рост давления воздуха между песчинками и его расширение, что слышал и видел Вуд, чудом не ставший жертвой молнии. Расширяющийся воздух образует цилиндрическую полость внутри расплавленного песка. Последующее быстрое охлаждение фиксирует фульгурит - стеклянную трубочку в песке.

Часто аккуратно выкопанный из песка фульгурит по форме напоминает корень дерева или ветвь с многочисленными отростками. Такие ветвистые фульгуриты образуются, когда разряд молнии попадает во влажный песок, который, как известно, имеет бo"льшую электропроводность, чем сухой. В этих случаях ток молнии, входя в почву, сразу начинает растекаться в стороны, образуя структуру, похожую на корень дерева, а рождающийся при этом фульгурит лишь повторяет эту форму. Фульгурит очень хрупок, и попытки очистить от прилипшего песка нередко приводят к его разрушению. Особенно это относится к ветвистым фульгуритам, образовавшимся во влажном песке.

Задумывались ли вы когда-то почему птицы сидят на высоковольтных проводах, а человек, коснувшись проводов, погибает? Все очень просто - они сидят на проводе, но ток через птицу не течет, но если птичка взмахнет крылом, одновременно касаясь двух фаз - умрет. Обычно так погибают большие птицы типа аистов, орлов, соколов.

Так и человек может коснуться фазы и ему ничего не будет, если через него ток не потечет, для этого нужно одевать прорезиненные ботинки и не дай Бог коснуться стены или металла.

Электрический ток способен убить человека в долю секунды, он поражает без предупрежденья. Молния ударяет в землю сто раз в секунду и свыше восьми миллионов раз в день. Эта сила природы в пять раз горячее, чем поверхность солнца. Электрический разряд бьёт с силой в 300`000 ампер и миллион вольт в долю секунды. В повседневной жизни мы думаем, что можем контролировать электричество, которое питает наши дома, наружное освещение, а теперь и автомобили. Но электричество в его первозданной форме не поддаётся контролю. А молния - это электричество в громадных масштабах. И всё же молния остаётся большой загадкой. Она может ударить неожиданно, и её путь может быть непредсказуемым.

Молния в небе не приносит вреда, но одна из десяти молний обрушивается на поверхность земли. Молния разделяется на множество ветвей, каждая из которых способна поразить человека находящегося в эпицентре. При ударе человека молнией, разряд тока может переходить от одного человека к другому, если они соприкасаются.

Существует правило тридцати и тридцати: если вы видите молнию, а менее чем через тридцать секунд услышали гром, то надо искать убежище, а затем требуется подождать тридцать минут с последнего раската грома, прежде чем выходить на улицу. Но молния не всегда подчиняется строгому порядку.

Существует такое атмосферное явление, как гром среди ясного неба. Часто молния, выходя из облака, проходит до шестнадцати километров, прежде чем ударить в землю. Другими словами, молния может появиться ниоткуда. Молнии нужен ветер и вода. Когда сильные ветра поднимают влажный воздух, возникают условия для появления разрушительных гроз.

Невозможно разложить на составляющие то, что укладывается в миллионную долю секунды. Одно из ложных убеждений состоит в том, что мы видим молнию, когда она устремляется в землю, на самом деле мы видим обратный путь молнии в небо. Молния - это не однонаправленный удар в землю, а это на самом деле кольцо, путь в две стороны. Вспышка молнии, которую мы видим, так называемый обратный удар, завершающая фаза цикла. И когда обратный удар молнии раскаляет воздух, появляется её визитная карточка - гром. Обратный путь молнии - это та часть молнии, которую мы видим как вспышку и слышим как гром. Обратный ток силой в тысячи ампер и миллионы вольт устремляются от земли к облаку.

Молния регулярно поражает электрическим током человека в помещении. Она может проникнуть в строение разными путями, по водосточным трубам и водопроводу. Молния может проникать в электропроводку, сила тока которой в обычном доме не достигает двухсот ампер и перегружает электропроводку скачками от двадцати тысяч до двухсот тысяч ампер. Возможно, наиболее опасная тропа в вашем доме ведёт прямо к вашей руке через телефон. Почти две трети ударов электрическим током в помещениях приходятся на людей, взявшие в свои руки трубку стационарного телефона во время молнии. Беспроводные телефоны более безопасны во время грозы, но молния может ударить человека электрическим током, который стоит рядом с базой телефона. Даже громоотвод не может защитить вас от всех молний, так как он не способен ловить молнию в небе.

О природе молнии

Существует несколько различных теорий, объясняющих происхождение молний.

Обычно нижняя часть облака несёт отрицательный заряд, а верхняя - положительный, что делает систему облако-земля подобной гигантскому конденсатору.

Когда разность электрических потенциалов становится достаточно большой, между землёй и облаком или между двумя частями облака происходит разряд, известный под названием молнии.

Опасно ли находиться в автомобиле во время молнии?

В одном из этих опы-тов искусственная смертельная молния в метр длиной была на-правлена на стальную крышу автомобиля, в котором находился человек. Молния прошла по обшивке, не нанеся вреда человеку. Как же так получилось? Поскольку заряды на заряженном пред-мете взаимно отталкиваются, они стремятся разойтись как можно дальше друг от друга.

В случае полого механического шара пи цилиндра заряды распределяются по внешней поверхности предмета Аналогично, если молния л дарит в металлическую крышу автомобиля, то отталкивающиеся электроны чрезвычайно быстро разойдутся по поверхности автомашины и уйдут через ее корпус в землю. Поэтому молния по поверхности металлической машины уходит в землю и не попадает внутрь автомобиля. По той же причине совершенной защитой от молнии является металличе-ская клеть. В результате ударов в автомашину искусственных молний напряжением 3 млн. вольт потенциал автомобиля и тела, находящегося в нём человека, повышается почти до 200 тыс. вольт. Человек при этом не испытывает ни малейшего признака удара электрического тока, поскольку между любыми точками его тела нет никакой разности потенциалов.

Значит, почти полностью защищает от молнии пребывание в хорошо заземленном здании с металлическим каркасом, а та-ковых много в современных городах.


Чем объяснить, что птицы совершенно спокойно и безнаказанно сидят на проводах?

Тело сидящей птицы представляет собой как бы ответвление цепи (параллельное соединение). Сопротивление этой ветви с птицей много больше, чем сопротивление провода между ногами птицы. Поэтому сила тока в теле птицы ничтожна. Если бы птица, сидя на проводе, коснулась бы крылом или хвостом столба или как-то ещё соединилась бы с землёй, она мгновенно была бы убита током, который устремился бы через неё в землю.


Интересные факты о молниях

Средняя длина молнии 2,5 км. Некоторые разряды простираются в атмосфере на расстояние до 20 км.

Молнии приносят пользу: они успевают выхватить из воздуха млн тн азота, связать его и направить в землю, удобряя почву.

Молнии Сатурна в миллион раз сильнее земных.

Разряд молнии обычно состоит из трех или более повторных разрядов - импульсов, следующих по одному и тому же пути. Интервалы между последовательными импульсами очень коротки, от 1/100 до 1/10 с (этим обусловлено мерцание молнии).

Ежесекундно на Земле вспыхивает около 700 молний. Мировые очаги гроз: остров Ява - 220, экваториальная Африка - 150, южная Мексика - 142, Панама - 132, центральная Бразилия - 106 грозовых дней в году. Россия: Мурманск - 5, Архангельск - 10, С-Петербург - 15, Москва - 20 грозовых дней в году.

Воздух в зоне канала молнии практически мгновенно разогревается до температуры 30 000-33 000° С. От удара молнии в мире в среднем ежегодно погибает около 3 000 человек

Статистика показывает, что на 5000-10000 летных часов приходится один удар молнии в самолет, к счастью, почти все поврежденные самолеты продолжают полет.

Несмотря на сокрушительную мощь молнии, уберечься от нее довольно просто. Во время грозы следует немедленно уходить с открытых мест, ни в коем случае нельзя прятаться под отдельно стоящими деревьями, а также находиться вблизи высоких мачт и ЛЭП. Не следует держать в руках стальные предметы. Также во время гроз нельзя пользоваться средствами радиосвязи, мобильными телефонами. В помещении нужно отключить телевизоры, радиоприемники и электроприборы.


Молниеотводы защищают здания от поражения молнией по двум причинам: они дают возможность стекать в воздух наве-денному на здании заряду, а при ударе молнии в здание уводят её в землю.

Попав в грозу, следует избегать укрываться возле одиноч-ных деревьев, изгородей, возвышенных мест и находиться на от-крытых пространствах.

Каждую секунду в атмосфере Земли возникает примерно 700 молний, и каждый год около 3000 человек погибают из-за удара молнии. Физическая природа молнии не объяснена окончательно, а большинство людей имеют лишь приблизительное представление о том, что это такое. Какие-то разряды сталкиваются в облаках, или что-то в этом роде. Сегодня мы обратились к нашим авторам по физике, чтобы узнать о природе молнии больше. Как появляется молния, куда бьет молния, и почему гремит гром. Прочитав статью, вы будете знать ответ на эти и многие другие вопросы.

Что такое молния

Молния – искровой электрический разряд в атмосфере.

Электрический разряд – это процесс протекания тока в среде, связанный с существенным увеличением ее электропроводности относительно нормального состояния. Существуют разные виды электрических разрядов в газе: искровой , дуговой , тлеющий .

Искровой разряд происходит при атмосферном давлении и сопровождается характерным треском искры. Искровой разряд представляет собой совокупность исчезающих и сменяющих друг друга нитевидных искровых каналов. Искровые каналы также называют стримерами . Искровые каналы заполнены ионизированным газом, то есть плазмой. Молния – гигантская искра, а гром – очень громкий треск. Но не все так просто.

Физическая природа молнии

Как объясняют происхождение молнии? Система туча-земля или туча-туча представляет собой своеобразный конденсатор. Воздух играет роль диэлектрика между облаками. Нижняя часть облака имеет отрицательный заряд. При достаточной разности потенциалов между тучей и землей возникают условия, в которых происходит образование молнии в природе.

Ступенчатый лидер

Перед основной вспышкой молнии можно наблюдать небольшое пятно, движущееся от тучи к земле. Это так называемый ступенчатый лидер. Электроны под действием разности потенциалов, начинают двигаться к земле. Двигаясь, они сталкиваются с молекулами воздуха, ионизируя их. От тучи к земле прокладывается как бы ионизированный канал. Из-за ионизации воздуха свободными электронами электропроводность в зоне траектории лидера существенно возрастает. Лидер как бы прокладывает путь для основного разряда, двигаясь от одного электрода (тучи) к другому (земле). Ионизация происходит неравномерно, поэтому лидер может разветвляться.


Обратная вспышка

В момент, когда лидер приближается к земле, напряженность на его конце растет. Из земли или из предметов, выступающих над поверхностью (деревья, крыши зданий) навстречу лидеру выбрасывается ответный стример (канал). Это свойство молний используется для защиты от них путем установки громоотвода. Почему молния бьет в человека или в дерево? На самом деле ей все равно, куда бить. Ведь молния ищет наиболее короткий путь между землей и небом. Именно поэтому во время грозы опасно находиться на равнине или на поверхности воды.

Когда лидер достигает земли, по проложенному каналу начинает течь ток. Именно в этот момент и наблюдается основная вспышка молнии, сопровождаемая резким ростом силы тока и выделением энергии. Здесь уместен вопрос, откуда идет молния? Интересно, что лидер распространяется от тучи к земле, а вот обратная яркая вспышка, которую мы и привыкли наблюдать, распространяется от земли к туче. Правильнее говорить, что молния идет не от неба к земле, а происходит между ними.

Почему молния гремит?

Гром возникает в результате ударной волны, порождаемой быстрым расширением ионизированных каналов. Почему сначала мы видим молнию а потом слышим гром? Все дело в разности скоростей звука (340,29 м/с) и света (299 792 458 м/с). Посчитав секунды между громом и молнией и умножив их на скорость звука, можно узнать, на каком расстоянии от Вас ударила молния.


Нужна работа по физике атмосферы? Для наших читателей сейчас действует скидка 10% на

Виды молний и факты о молниях

Молния между небом и землей – не самая распространенная молния. Чаще всего молнии возникают между облаками и не несут угрозы. Помимо наземных и внутриоблачных молний, существуют молнии, образующиеся в верхних слоях атмосферы. Какие есть разновидности молний в природе?

  • Внутриоблачные молнии;
  • Шаровые молнии;
  • «Эльфы»;
  • Джеты;
  • Спрайты.

Последние три вида молний невозможно наблюдать без специальных приборов, так как они образуются на высоте от 40 километров и выше.


Приведем факты о молниях:

  • Протяженность самой длинной зафиксированной молнии на Земле составила 321 км. Эта молния была замечена в штате Оклахома, 2007 г .
  • Самая долгая молния длилась 7,74 секунды и была зафиксирована в Альпах.
  • Молнии образуются не только на Земле . Точно известно о молниях на Венере , Юпитере , Сатурне и Уране . Молнии Сатурна в миллионы раз мощнее земных.
  • Сила тока в молнии может достигать сотен тысяч Ампер, а напряжение – миллиарда Вольт.
  • Температура канала молнии может достигать 30000 градусов Цельсия – это в 6 раз больше температуры поверхности Солнца.

Шаровая молния

Шаровая молния – отдельный вид молнии, природа которого остается загадкой. Такая молния представляет собой движущийся в воздухе светящийся объект в форме шара. По немногочисленным свидетельствам шаровая молния может двигаться по непредсказуемой траектории, разделяться на более мелкие молнии, может взорваться, а может просто неожиданно исчезнуть. Существует множество гипотез о происхождении шаровой молнии, но ни одна не может быть признана достоверной. Факт - никто не знает, как появляется шаровая молния. Часть гипотез сводят наблюдение этого явления к галлюцинациям. Шаровую молнию ни разу не удалось наблюдать в лабораторных условиях. Все, чем могут довольствоваться ученые – это свидетельства очевидцев.

Напоследок предлагаем Вам посмотреть видео и напоминаем: если курсовая или контрольная свалилась на голову как молния в солнечный день, не нужно отчаиваться. Специалиста студенческого сервиса выручают студентов с 2000 года. Обращайтесь за квалифицированной помощью в любое время. 24 часа в сутки, 7 дней в неделю мы готовы помочь вам.