История становления и развития авиационной и космической медицины. Ключ к успеху: регуляция организма, благодаря удалённой диагностике и дистанционной терапии

КОСМИЧЕСКАЯ МЕДИЦИНА,

Космонавтика и медицина…Казалось бы – понятия несовместимые. Нужна ли космонавтам медицина? Конечно, нужна, но медицина особенная - космическая. Она является частью космической биологии и изучает влияние различных внеземных факторов на абсолютно здоровый организм. Цель ее – сделать так, чтобы космос не был враждебен человеку, а скорее стал обитаемым.

Космическая медицина – уникальная наука! Она родилась из достижений авиационной медицины и сформировалась еще до первого полета человека в космос. Первые работы начались в 1933г. под руководством профессора Владимира Владимировича Стрельцова, одного из организаторов Института авиационной медицины. Его называют «отцом» космической медицины. На подопытных собаках исследовались действия ускорений и невесомости, испытывались системы жизнеобеспечения и средства спасения при аварийных ситуациях.

В 1957г. был запущен первый искусственный спутник Земли. В подготовке второго искусственного спутника, запущенного 4 ноября 1957г., активно участвовали сотрудники Института авиационной и космической медицины. На борту находилась собака Лайка. Во время этого полета проводилось исследование влияния условий космоса на живой организм.

С 1959г. начался отбор и подготовка первого отряда космонавтов. К началу пилотируемых полетов космическая медицина уже стала самостоятельным разделом медицинских знаний, и это способствовало успеху первого полета человека. За время, прошедшее с тех пор, накопились и огромный опыт полетов космонавтов, и различные данные об изменениях в организме человека в условиях длительной невесомости. И велика роль врачей-космонавтов, которые были с экипажем в космических полетах! Космос-110", по организации медицинского обеспечения орбитальных станций "Салют".

Атьков проводил обследования всех космонавтов, выполнивших длительные космические полеты. Именно он впервые применил ультразвуковую диагностику для обследования сердечно-сосудистой системы космонавтов. В 1984г. Атьков принял участие в космическом полете на орбитальную стацию "Салют-7" в качестве врача-космонавта-исследователя. Продолжительность полета составила рекордный в то время срок - 236 суток 22 часа 49 минут. Во время экспедиции Атьковым было проведено большое количество исследований и экспериментов, открывших новую страницу в космической физиологии и медицине. Впервые врач осуществил заборы крови из вены, проводил биохимические анализы в космосе.

С 8 января 1994г. до 22 марта 1995 года в космосе работал врач-космонавт Валерий Владимирович Поляков. Его научная программа полета включала исследование механизмов адаптации организма человека к условиям длительного полёта. Это было действительно важное и необходимое исследование, ведь нагрузки, действующие на космонавта в течение всего полета, похожи на психологические воздействия на человека в условиях стресса. Космонавты испытывают постоянную тревогу из-за возможности возникновения аварийных ситуаций. Человек должен в будущем иметь возможность восстанавливать функции своего организма. Одним из главных итогов длительного пребывания Полякова на орбите стало быстрое привыкание к земной тяжести. После двух полетов продолжительностью 8 и 14,5 месяцев ему самостоятельно удавалось выйти из корабля и сделать первые шаги по земле.

Но космическая медицина нужна не только в космосе. Космонавты, выполняя рекомендации медиков, носят специальные нагрузочные костюмы для быстрого восстановления после возвращения к земным условиям жизни. На основе костюма для космонавтов «Пингвин» разработан лечебный костюм «Адели». Этот костюм применяется в лечении больных с тяжелыми заболеваниями, например, при детском церебральном параличе. «Космический» костюм уменьшает избыточное напряжение мышц, и у детей появляется возможность ходить самостоятельно, улучшается речь.

Мы живем в XXI веке - веке космических технологий. Недалек день, когда реальностью станут космические путешествия. И всегда на страже здоровья космонавта будет стоять медицина. Космическая медицина!

МЕДИЦИНА КОСМИЧЕСКАЯ - область медицины, изучающая особенности жизнедеятельности организма человека при действии факторов космического полета и космического пространства с целью разработки средств и методов сохранения здоровья и работоспособности членов экипажей космических кораблей и станций. Основными проблемами М. к. являются: исследование влияния на организм человека факторов космического полета (см.), разработка соответствующих профилактических мер и способов защиты от вредных влияний таких факторов; физиол, и гиг. обоснование требований к системам жизнеобеспечения (см.), управления и к оборудованию космических летательных аппаратов (см. Кабины летательных аппаратов), а также средствам спасения экипажей при возникновении каких-либо аварийных ситуаций; разработка клин, и психофизиол, методов и критериев отбора и подготовки космонавтов к полету; разработка методов и средств мед. контроля за экипажами в полете, исследование вопросов профилактики и лечения заболеваний в полете. В связи с этим М. к. является единым комплексом различных разделов теоретической и клин, медицины, таких, как космическая физиология и психофизиология, космическая гигиена, космическая радиобиология, врачебная экспертиза.

Развитие М. к. тесно связано с достижениями теоретической и практической космонавтики как в нашей стране (К. Э. Циолковский, Ф. А. Цандер, С. П. Королев и др.), так и за рубежом [Оберт (Н. Oberth), Годдард (R. Goddard), Эно-Пельтри (R. Esnault-Pelterie) и др.]. Так, создание ракетно-космических летательных аппаратов позволило провести ряд важных исследований на животных в условиях космического полета (см. Космическая биология). Результаты этих исследований в совокупности с результатами наземных исследований в области М. к. позволили обосновать возможность безопасного полета человека в космическое пространство. Первым полетом, оказавшим в свою очередь большое влияние на развитие М. к., явился полет Ю. А. Гагарина на космическом корабле «Восток» 12 апреля 1961 г. Важными этапами в освоении космоса, представляющими собой и практические достижения М. к., явились: первый выход человека в открытый космос (А. А. Леонов, полет на космическом корабле «Восход-2» 18-19 марта 1965 г.); высадка американских астронавтов на поверхность Луны [Армстронг (N. Armstrong), Олдрин (E. Aldrin), полет на космическом корабле «Аполлон-II 20-24 июля 1969 г.]; космические полеты с длительным пребыванием на орбитальных станциях [В. А. Ляхов, В. В. Рюмин, орбитальная станция «Салют-6», 25 февраля - 19 августа 1979 г.; Л. И. Попов и В. В. Рюмин, «Союз-35» и орбитальная станция «Салют-6», 9 апреля 1980 г. - 11 октября 1980 г.; Ю. В. Романенко, Г. М. Гречко, орбитальная станция «Салют-6», 10 декабря 1977 г. -16 марта 1978 г.; В. В. Коваленок, А. С. Иванченков, орбитальная станция «Салют-6», 15 июня 1978 г. - 2 ноября 1978 г.; Поуг (W. Pogue), Гибсон (E. Gibson), Карр (J. Carr), орбитальная станция «Скайлэб», 16 ноября 1973 г. - 8 февраля 1974 г.].

В космическом полете на организм человека могут оказывать влияние три основные группы факторов. Первая группа таких факторов характеризует космическое пространство как среду обитания: это высокая степень разрежения газовой среды (см. Высота), ионизирующее космическое излучение (см.), особенности теплопроводности, наличие метеорного вещества и т. д.

Вторая группа объединяет факторы, связанные с динамикой полета летательных аппаратов: ускорение (см.), вибрация (см.), шум (см.), невесомость (см.) и др. Наконец, третью группу составляют факторы, связанные с пребыванием в герметическом помещении малого объема с искусственной средой обитания: своеобразный газовый состав и температурный режим в помещении, гипокинезия (см.), изоляция, эмоциональное напряжение (см. Стресс), изменение биологических ритмов (см.) и т. п. Перечисленные факторы оказывают комплексное влияние на организм человека, в связи с чем несомненный теоретический и практический интерес представляет изучение модифицирующего влияния каждого из указанных факторов на переносимость остальных факторов космического полета.

Среди всех факторов космического полета уникальным и практически не воспроизводимым в лабораторных экспериментах является невесомость. Значение проблемы невесомости возросло в связи с увеличением продолжительности полетов. Экспериментальные исследования при моделировании некоторых физиол, эффектов невесомости в земных условиях (гипокинезия, водная иммерсия), опыт длительных космических полетов позволили разработать общебиол. представления о генезе изменений в организме, обусловленных влиянием невесомости, и пути их преодоления. Т. о., было доказано, что человек может существовать и активно функционировать в условиях невесомости. Однако, вследствие длительного пребывания в условиях невесомости у человека развивается нек-рая детренированность сердечно-сосудистой системы. Установленные при этом фазовые изменения частоты пульса, уменьшение показателей ударного объема, сдвиги в ЭКГ носят функциональный, приспособительный характер. Длительная невесомость обусловливает нек-рую потерю организмом солей кальция, фосфора, азота, натрия, калия и магния. Эти потери относят за счет уменьшения массы некоторых тканей вследствие их атрофии от бездействия и частичной дегидратации организма. Обусловленные невесомостью биофизические и биохим, сдвиги в организме (изменения гемодинамики, водно-солевого обмена, опорно-двигательного аппарата и др.)» включая изменения на молекулярном уровне, направлены на приспособление организма к новым экологическим условиям. Мед. последствия таких сдвигов изучены еще недостаточно. Поэтому исследования, направленные на выяснение корреляционных зависимостей между наблюдаемыми сдвигами, с одной стороны, и здоровьем и работоспособностью космонавтов - с другой, имеют большое значение. В частности, важно установить взаимосвязь между характером и степенью функциональной перестройки организма в невесомости, направленностью и выраженностью процессов реадаптации после возвращения на Землю.

Для предупреждения неблагоприятных реакций организма человека в период невесомости и реадаптации применяется широкий комплекс профилактических мероприятий и средств (вакуумная емкость, велоэргометр, бегущая дорожка, тренировочно-нагрузочные костюмы и т. д.). Эффективность их использования убедительно продемонстрировал, в частности, 140-суточный полет космонавтов В. В. Коваленка и А. С. Иванченкова на орбитальной станции «Салют-6», 175-суточный полет космонавтов В. А. Ляхова и В. В. Рюмина, а также самый длительный в истории космонавтики орбитальный пилотируемый полет (185-суточный) космонавтов Л. И. Попова и В. В. Рюмина.

За разработку эффективных средств и методов профилактики последствий неблагоприятного влияния невесомости и их внедрение в практику космонавтики группе специалистов в области М. к. присуждена Государственная премия СССР.

Высокая биол, активность различных видов космического излучения определяет опасность их поражающего действия. С учетом этого проводятся исследования по определению допустимых доз лучевого воздействия, разрабатываются средства и методы профилактики и защиты космонавтов от космической радиации (см. Противолучевая защита).

Важным является также определение радиочувствительности организма при длительном пребывании в условиях космического полета (см. Критический орган), оценка реакции облученного организма на действие других факторов космического полета. Перспектива использования ядерных источников энергии на космических кораблях и орбитальных станциях определяет необходимость создания надежной защиты человека посредством создания радиационных убежищ, средств электромагнитной и электростатической защиты, экранирования наиболее чувствительных органов и систем организма и т. д. Предметом специальных исследований является определение биол, эффекта воздействия радиоизлучений, магнитных и электрических полей, возникающих в среде обитания в результате функционирования бортовой аппаратуры. Обеспечение радиационной безопасности приобретает особое значение с увеличением дальности и продолжительности полетов. Очевидно, что в длительных полетах обеспечение безопасности экипажа с помощью лишь пассивной защиты обитаемых отсеков корабля невозможно. Поэтому изыскание биол, методов защиты человека от проникающих излучений является важным направлением исследований в этой области. Исследования, связанные с разработкой искусственной газовой атмосферы применительно к обитаемым кабинам летательных аппаратов, направлены на изучение физиол. эффектов длительного пребывания в атмосфере с различным газовым составом, как эквивалентным земной атмосфере, так и при замене азота гелием или в условиях моногазовой искусственной атмосферы (см. Атмосфера искусственная).

М. к. изучает также влияние таких факторов, как перепады барометрического давления (см. Высотная болезнь , Декомпрессионная болезнь) и изменения парциального давления кислорода в атмосфере (см. Гипероксия , Гипоксия). Представляют интерес исследования, направленные на использование искусственной газовой атмосферы в качестве средства, стимулирующего формирование адаптивных реакций организма к различным неблагоприятным условиям полета. Такая атмосфера получила название активной.

Формирование газовой среды кабин летательных аппаратов в процессе полета непосредственно связано с проблемой ее загрязнения. Источниками загрязнения могут быть конструкционные материалы, технол. процессы, а также продукты жизнедеятельности человека. В этой связи изучение биол. действия загрязнений атмосферы космического корабля представляет важную проблему в общем комплексе физиол.-гиг. исследований. Практическим воплощением этих работ является установление предельно допустимых концентраций широкого круга загрязняющих (токсических) веществ, изыскание технических решений очистки от них атмосферы летательного аппарата.

Решение вопросов обеспечения пилотируемых полетов базируется на результатах предварительных исследований в наземных условиях (стендовые и модельные исследования на животных, эксперименты с участием человека в макетах космических объектов). Решающее значение имеют исследования непосредственно на космических летательных аппаратах. Обеспечение жизнедеятельности человека на пилотируемых космических кораблях и орбитальных станциях создается комплексом оборудования и бортовых запасов, предназначаемых для поддержания постоянного состава газовой среды, снабжения человека питьевой водой, продуктами питания, сан.-техн, средствами. Так, система регенерации и кондиционирования воздуха на кораблях типа «Союз» осуществляется путем создания на борту запасов химически связанного кислорода в виде надперекиси щелочных металлов и сорбентов, поглощающих водяные пары и углекислый газ.

Для обеспечения жизнедеятельности экипажа в случае аварийного приземления спускаемого аппарата в безлюдную местность в состав носимого аварийного запаса (НАЗ) включается рацион питания, обладающий максимальной энергетической и биол, ценностью при минимальном весе и объеме.

Увеличение продолжительности пилотируемых космических полетов требует изыскания новых надежных путей обеспечения сан.-гиг. условий в кабине корабля, личной гигиены космонавта и тщательного контроля за состоянием кожных покровов, их микрофлорой, загрязнением, а также совершенствования способов и средств полной и локальной обработки покровов тела. Особое внимание уделяется одежде космонавтов (полетный костюм, нательное белье, теплозащитный костюм, головной убор, обувь). Специальное значение имеют вопросы сбора, хранения и удаления отбросов, образующихся в процессе жизнедеятельности человека (экскременты, остатки пищи, упаковочная тара), а также в процессе функционирования бортового оборудования и аппаратуры.

Особое место занимают исследования, направленные на выяснение условий и характера взаимообмена микробами между членами экипажа, путей возможных аутоинфекций и инфекций, что особенно важно в условиях герметических кабин ограниченного объема в сочетании со снижением иммунорезистентности в результате воздействия факторов космического полета.

Важное значение для разработки перспективных систем жизнеобеспечения имел медико-технический эксперимент, который был проведен в Советском Союзе в 1967- 1968 гг. с участием трех испытателей. В нем решалась возможность длительного (до 1 года) поддержания нормальной работоспособности человека в условиях изоляции в герметической камере ограниченного объема с использованием воды и кислорода, регенерируемых из отходов, и практически полностью обезвоженных продуктов питания. Изучались особенности взаимодействия человека и окружающей среды в этих условиях, методы мед. контроля, технол, режимы конструкций отдельных блоков и другие вопросы. Во время эксперимента испытатели жили в гермокабине, состоящей из соединенных между собой жилого отсека и экспериментальной оранжереи. Испытание перспективной системы жизнеобеспечения в этом эксперименте показало возможность длительного существования и работы экипажа в системах с замкнутыми циклами, необходимыми для поддержания жизнедеятельности человека.

Для обеспечения возможности выполнения работ вне корабля в открытом космосе или на поверхности планет, а также для сохранения жизни в случае разгерметизации кабины космического корабля предназначены космические скафандры (см.), являющиеся индивидуальными средствами обеспечения жизнедеятельности космонавтов.

Деятельность космонавта при подготовке и осуществлении полета сопровождается выраженным нервно-эмоциональным напряжением. Считают, что космические полеты практически всегда будут содержать в себе элементы риска и вероятность непредвиденных ситуаций. В связи с этим осуществление динамического контроля за состоянием человека, разработка мер профилактики и устранения неблагоприятных влияний являются предметом исследований космической психофизиологии. Исследования в этой области охватывают изучение характера влияния факторов космического полета на нервно-эмоциональную сферу космонавтов, выяснение психофизиол, механизмов эмоционального напряжения и его влияния на профессиональную деятельность, исследование вопросов психологической совместимости членов экипажа, особенно в длительных космических полетах.

Увеличение продолжительности полетов связано со смещением времени и его влиянием на биол, ритмы. Наряду с исследованием процессов адаптации к этому неблагоприятному воздействию осуществляется научно обоснованная разработка режимов труда и отдыха в космических полетах. При этом исходят из представления, что изменения суточных режимов могут привести к десинхронизации физиол, процессов.

Специальным вопросом мед. обеспечения полетов человека в космос является отбор и подготовка космонавтов. Опыт космических полетов свидетельствует о том, что система отбора космонавтов, основанная на практике врачебной экспертизы летного состава, полностью себя оправдывает (см. Экспертиза, врачебно-летная). Наиболее высокие требования к физическому состоянию и здоровью предъявляются к кандидатам, отбираемым для длительных космических полетов, что обусловлено большой продолжительностью действия факторов полета на организм, расширением круга обязанностей членов экипажа и необходимостью взаимозаменяемости в полете. В ходе становления системы отбора космонавтов произошло нек-рое снижение требований к состоянию здоровья космонавтов-исследователей. Более широкое привлечение специалистов различных профессий (геофизиков, астрономов, врачей, биологов и др.) к космическим полетам требует разработки новых мед. и психол, критериев отбора. Отбор членов экипажа в соответствии с результатами мед. контроля продолжается во время тренировок и подготовки к полету. При формировании специальных программ подготовки принимаются во внимание цели и задачи космических экспериментов, а также исходное состояние членов экипажа.

Цель мед.-биол, подготовки космонавтов - ознакомить их с факторами космического полета и повысить устойчивость их организма к ним. Помимо этого, космонавтов обучают методикам проведения мед.-биол, исследований в полете и оказанию доврачебной медпомощи.

В СССР координация работ в области М. к. осуществляется АН СССР и М3 СССР. В составе Всесоюзного общества физиологов им. И. П. Павлова при АН СССР функционирует секция авиационной и космической медицины. Проводятся всесоюзные конференции по космической биологии и медицине, ежегодные чтения, посвященные разработке научного наследия и развитию идей К. Э. Циолковского, а также чтения, посвященные всемирному Дню космонавтики (Гагаринские чтения). Широкое участие в разработке вопросов М. к. принимают научные учреждения АН и АМН СССР. Ведущую позицию в изучении проблем космической медицины занимает Институт медико-биологических проблем М3 СССР. Все более важную роль играет международная интеграция в организации сотрудничества СССР с другими странами по космическим исследованиям - «Интеркосмос».

В США координацией работ по проблемам космической медицины занимается Национальное управление но аэронавтике и исследованию космического пространства (НАСА). Ведущими учреждениями по этим проблемам являются Космический центр им. Л. Джонсона (г. Хьюстон) и Эймсский исследовательский центр (г. Моффит Филд).

Библиография: Газенко O.Г. Космическая биология и медицина, в кн.: Успехи СССР в исслед. космич. пространства, под ред. А. А. Благонравова и др., с. 321, М., 1968; Ковалев E. Е. Радиационный риск на Земле и в космосе, М., 1976; Космические полеты на кораблях «Союз», Биомедицинские исследования, под ред. О. Г. Газенко и др., М., 1976; Лавников А. А. Основы авиационной и космической медицины, М., 1975; Основы космической биологии и медицины, под ред. О. Г. Газенко и М. Кальвина, т. 1 - 3, М., 1975; 60 лет советского здравоохранения, главн. ред. Б. В. Петровский, с. 279, М., 1977; Bioastronautics data book, ed. by J. F. Parker, Washington, 1973.

Допустим, вы летите на Марс. Половина пути уже пройдена, еще три месяца — и вы у цели. Ваш корабль неплохо экранирован от солнечной радиации, и члены экипажа чувствуют себя нормально. Все, кроме одного вашего коллеги, Алекса, который уже несколько недель страдает от боли в животе. У вас нет возможности обследовать его так же хорошо, как это сделали бы врачи на Земле, но вы по крайней мере можете сделать ему УЗИ, и то, что вы видите на экране, вам очень не нравится. Похоже, у него опухоль прямой кишки, и похоже, она уже начала давать метастазы.

Вы понимаете, что земные врачи наверняка спасли бы Алекса — не говоря уже о том, что на Земле этот молодой лось в принципе бы не заболел. А еще вы понимаете, что, если бы даже вы могли развернуть корабль и погубить миссию, которую США, Россия, Европа и Канада готовили последние 15 лет, Алекса это вряд ли спасло бы — ионизирующее излучение, по‑видимому, привело к возникновению опухоли, которая развивается очень быстро. Алекс тоже прекрасно все это понимает и мрачно шутит о том, как именно вам предстоит избавляться от его трупа.

Говоря о факторах, влияющих на состояние здоровья человека на борту космического аппарата, мы порой забываем, что человек бывает двух разных полов, а мужчины и женщины имеют между собой значительные психофизиологические различия. Многие из этих различий проявляются в обычной земной обстановке, другие выявляются после пребывания на орбите. Схема описывает некоторые из них.

Выдыхайте. Сейчас 2016 год, а не 2035-й. Еще никто никуда не летит. Точнее, наоборот, все летают на МКС, и там проводится множество биологических и медицинских экспериментов. Еще больше экспериментов проходит на Земле — с расчетом на то, что их результаты пригодятся для дальних космических полетов. Например, именно на Земле Камаль Датта и его коллеги подвергали мышей воздействию ионизирующего излучения, чтобы затем исследовать те молекулярные поломки, которые, как выяснилось, в первую очередь повышают вероятность именно рака прямой кишки.

Почему покидать Землю опасно?

Ключевых проблем две: радиация и невесомость. При этом на МКС, которая летает в пределах воздействия магнитного поля Земли, космонавты подвержены облучению меньше, чем если бы они летали на Луну или на Марс, но зато они месяцами живут в условиях микрогравитации. В далеких полетах, возможно, будет применяться искусственная сила тяжести, но вот радиация будет воздействовать на космонавтов гораздо сильнее.


Мы эволюционировали в условиях земного притяжения, и его исчезновение сразу отражается на самочувствии человека — это называется синдромом космической адаптации. Нарушается работа вестибулярного аппарата. Человек может испытывать тошноту. Возникают нарушения зрения или даже галлюцинации. Кровь приливает к верхней части тела, что заметно даже на фотографиях — лица космонавтов становятся припухлыми. В долгосрочной перспективе отсутствие силы тяжести вызывает физиологические перестройки, которые впоследствии помешают хорошо чувствовать себя на Земле. Прежде всего происходит атрофия мышц. Работа физиологов из Университета Болл в Индиане, включавшая биопсию икроножных и камбаловидных мышц девяти космонавтов МКС с последующим микроскопическим исследованием фибрилл, показала, что, несмотря на интенсивные физические упражнения во время полета, толщина мышечных волокон снижается в среднем на 20%, а сила сокращения — вплоть до 55%.


Эта проблема начинает выглядеть особенно угрожающей, если мы вспомним, что сердце — это тоже мышца, и от него тоже требуется меньше усилий, чтобы перекачивать кровь в невесомости. В самом деле, и эксперименты на животных, и наблюдения за людьми показывают, что отсутствие силы тяжести приводит к снижению частоты сердечных сокращений, снижению диастолического давления, к аритмии. Кроме того, длительное пребывание в невесомости снижает плотность костей, а значит — вместе с необходимостью заново учиться управлять движениями! — повышает риск возникновения переломов после возвращения на Землю.


Роботизированная хирургическая система, предназначенная для операций на мозге, — прямой наследник роботизированной руки, первоначально разработанной Канадским космическим агентством для перемещения грузов в космосе.

Пребывание в космосе влияет на организм и на клеточном уровне. Например, эксперименты на животных позволили установить, что нарушаются процессы миграции клеток при заживлении ран. Также установлено, что снижается количество Т-лимфоцитов в иммунной системе — впрочем, это скорее результат не отсутствия силы тяжести, а воздействия космического излучения.

По оценке NASA, за шесть месяцев на МКС астронавт получает дозу облучения, эквивалентную 160 миллизивертам — в 66 раз больше, чем среднестатистический землянин в течение года. За трехлетний полет на Марс и обратно астронавт получит по крайней мере 1200 миллизивертов — несмотря на все меры по экранированию корабля и только в том случае, если экипаж будет своевременно узнавать о всплесках солнечной активности и отсиживаться в специально защищенном убежище.


На фото два астронавта — Скотт Келли и Майкл Келли. А еще они — братья-близнецы. В прошлом году Скотт отправился в долговременную экспедицию на МКС, а брат остался на Земле. Смысл эксперимента, который завершился с возвращением Скотта после 12 месяцев на орбите, состоит в том, чтобы тщательно отследить все изменения, возникшие в организме Скотта в ходе полета, сравнив их с процессами, протекавшими в то же время в генетически идентичном организме брата.

Врач-радиолог Френсис Кукинотта в 2006 году писал в журнале Lancet Oncology, что во время полета на Марс протоны, электроны и высокоэнергетические ионы тяжелых элементов будут бомбардировать корабль с такой интенсивностью, что ядро каждой клетки тела космонавта будет сталкиваться с протоном или электроном раз в несколько дней, а с ионом тяжелого элемента — по крайней мере раз в месяц. Эти события ведут к повреждению ДНК и многократно увеличивают риск злокачественного перерождения клеток. Лейкемия, рак груди, щитовидной железы, легких и кишечника будут настолько обыденным событием на космических кораблях, что, по оценке автора, риск смерти от рака в ходе полета к Марсу будет составлять порядка 5%.

56 000 000 километров до ближайшей больницы

Пять лет назад человечество бурно отмечало юбилей полета Юрия Гагарина. Не остались в стороне и канадские специалисты по космической медицине Дэвид Уильямс и Мэтью Тюрнок. Они опубликовали обзорную статью с амбициозным названием «Исследование космоса человеком в следующие 50 лет», посвященную именно вопросу о том, в какой степени мы можем надеяться летать в космос сами, а не только отправлять туда роботов, несмотря на нашу хрупкую и ненадежную биологическую природу.

Из космоса с любовью

Земные исследования помогают развивать медицину в космосе, но верно и обратное: исследования в космосе помогают развивать медицину и здравоохранение на Земле.
В космосе важен каждый грамм и каждый вольт, и поэтому за десятилетия полетов инженеры разработали множество высокоэффективных систем очистки воды на борту станций. Некоторые их принципы, например обеззараживание с помощью йодосодержащих смол, сегодня активно внедряются в засушливых регионах Африки.
Для мониторинга здоровья космонавтов был разработан компактный прибор, позволяющий оценивать содержание оксида азота в выдыхаемом воздухе (его повышение может сигнализировать о ранней стадии воспаления дыхательных путей). Такие измерения важны и на Земле — для контроля за состоянием легких у больных астмой.
У людей, переболевших ветряной оспой, в условиях снижения иммунитета возможна новая вспышка активности вируса — на этот раз в виде опоясывающего лишая. Заболевание сначала вызывает сильную боль по ходу пораженного нерва, и лишь через несколько дней проявляется в виде характерных кожных высыпаний. Именно для космонавтов был разработан простой тест, позволяющий определить активацию вируса по его присутствию в слюне, а значит, раньше поставить диагноз, начать лечение и серьезно сократить продолжительность болезни и вероятность осложнений.

До недавнего времени, пишут исследователи, самой важной задачей в космической медицине было предотвращение тяжелых ситуаций. На МКС отправляют только абсолютно здоровых людей, а в случае возникновения каких-либо серьезных проблем их можно оттуда эвакуировать. Тем не менее с увеличением численности экипажа МКС пропорционально вырастает и вероятность того, что кто-нибудь из космонавтов заболеет на орбите. Еще выше она становится благодаря появлению космических туристов — хотя они тоже проходят медицинское обследование, но все же в мире не так много людей, которые одновременно готовы и заплатить за свой отпуск $20 млн, и при этом безукоризненно здоровы. Но самое главное — возможность отправить заболевшего человека на Землю существует, пока мы говорим об орбитальных полетах, и начисто исчезает, как только речь заходит об экспедиции на Марс.


Что можно сделать, если космонавту требуется серьезное хирургическое вмешательство? Основные надежды исследователи возлагают на телемедицину, в том числе удаленное управление манипуляторами робота-хирурга. Этот подход уже положительно зарекомендовал себя на полярных станциях и потенциально позволяет провести любую операцию. К сожалению, не факт, что Алекс перенесет ее благополучно — просто из-за непреодолимых проблем со связью. При максимальном сближении Земли и Марса расстояние между ними составляет 56 млн километров. Электромагнитная волна способна преодолеть эту дистанцию примерно за три минуты, и столько же ей понадобится, чтобы вернуться обратно. Неплохо, чтобы получить консультацию от коллег, но слишком долго для выполнения операции в реальном времени.

Получается, в команде должен быть невероятно высококвалифицированный хирург, способный манипулировать инструментами робота на месте, без серьезной помощи с Земли, независимо от того, какую именно операцию придется делать — на позвоночнике, на печени или на мозге. И да, желательно, чтобы это был не сам Алекс. Кроме того, стоит надеяться на то, что за предстоящие двадцать лет принципиально расширятся и возможности фармакологического лечения, и большинство болезней, требующих сегодня хирургического вмешательства, будет несложно остановить с помощью лекарств, в том числе созданных специально для Алекса прямо в корабельной лаборатории. Во всяком случае, выдуманная история его болезни показывает, что для покорения космоса требуются исследователи самых разных специальностей, и памятники за покорение Марса будут ставить не только физикам и астронавтам, но и — может быть, прежде всего — фармакологам и врачам, чья работа сделает дальнейшее освоение мира в принципе возможным.

Отрасль медицины, которая призвана обеспечить здоровье космонавтов, может улучшить благосостояние людей и на Земле.

Космическая медицина как отдельная дисциплина берет начало в 50-х годах прошлого века. Когда люди только начали покорять космос - среду, не предназначенную для жизни человека, она была призвана справляться с непосредственным воздействием микрогравитации на физиологию человека. Постепенно космическая медицина столкнулась и с отдаленными последствиями влияния почти полной невесомости, радиации и длительной изоляции участников экспедиций от остального мира.

Первыми космонавтами, конечно, стали военные летчики-испытатели, однако было очевидно, что в космос необходимо отправить и врачей, чтобы те могли на месте изучить реакцию организма на факторы космического полета. Первым врачом-космонавтом стал Борис Егоров - в октябре 1964 года он провел более суток на борту корабля “Восход-1” и собрал значительный материал по действию перегрузок и микрогравитации на вестибулярный аппарат.

NASA подключила врачей к разработке космических программ и оборудования (в том числе систем жизнеобеспечения, скафандров, шлюзов и т.д) в 1967 году. Первым из них стал Стори Масгрейв, который позже сам принял участие в шести полетах по программе “Спейс Шаттл”.

Хотя космическая медицина с тех пор значительно шагнула вперед, она по-прежнему в большой мере опирается на возможность вернуть космонавта на Землю в том случае, если ему требуется серьезная врачебная помощь. Однако в свете планируемых долгосрочных миссий в космос (в частности, полет на Марс), разрабатываются новые способы диагностики и лечения в условиях невесомости.

Диагностика, операции и восстановление в космосе

При возникновении той или иной медицинской ситуации на борту космического корабля или станции, для постановки диагноза может потребоваться специальное оборудование. Рентген и КТ отпадают, поскольку используют излучение, недопустимое в условиях космической среды. Самым оптимальным вариантом становится УЗИ, поскольку позволяет делать снимки различных органов и тканей и не требует тяжелой габаритной аппаратуры. Небольшие, размером с лэптоп, аппараты УЗИ уже используются NASA для проверки состояния глаз и зрительного нерва у астронавтов, которые проводят длительное время на орбите.

Сканер МРТ дает большие, чем УЗИ, возможности для диагностики, но он очень тяжел и дорог. Однако недавно сотрудники Университета Саскачевана (Канада) разработали компактный аппарат МРТ, который весит менее тонны (вес среднестатистического сканера - 11 тонн), стоит около 200 тысяч долларов и не влияет на работу электронного оборудования на борту.

Для проведения абдоминальных лапароскопических телеопераций в космосе американская компания Virtual Incision совместно с NASA разработала хирургический робот размером с кулак человека. Управлять им будет врач на Земле. Чтобы в условиях микрогравитации биологические жидкости при проведении оперативного вмешательства не распространялись по всему модулю, исследователи из Университета Карнеги-Меллона и Луисвиллского университета создали специальную хирургическую систему, AISS (Aqueous Immersion Surgical System). Она представляет собой прозрачную коробку, которая накладывается на рану и заполняется стерильным физиологическим раствором - он не позволяет крови вытекать наружу. Система позволяет хирургам работать с раной, а также, при изменении давления в ней, проводить забор крови, чтобы потом, при необходимости, ее можно было вернуть в систему кровообращения.

Космос воздействует на вирусы и бактерии так же, как на людей. Согласно проведенным исследованиям, условия микрогравитации увеличивают вирулентность таких организмов; они начинают активнее размножаться, быстрее мутируют, лучше сопротивляются антибиотикам. В качестве альтернативы последним для уничтожения вирусов и бактерий может использоваться холодная плазма. В лабораторных условиях было установлено, что она убивает большинство микроорганизмов и увеличивает скорость затягивания раны.

Общие проблемы здоровья в космосе

Врачам и космонавтам приходится столкнуться с целым рядом разнообразных проблем. Среди них - “космическая болезнь” (головокружения и потеря равновесия при выходе из земной гравитации и возвращении в нее), “космическая остеопения” (потеря костной массы во время пребывания в условиях микрогравитации, в среднем 1% в месяц), потеря мышечной массы, поскольку мускулам не требуется преодолевать гравитацию, ухудшение зрения из-за повышенного внутричерепного давления и многие другие.

Из зафиксированных на данный момент заболеваний и состояний, от которых страдали участники различных космических экспедиций, - инфекции верхних дыхательных путей, вирусный гастроэнтерит, дерматит, бессонница, “морская болезнь”, аритмия, почечная колика, однако очевидно, что во время продолжительных миссий на далекие расстояния людям придется столкнуться и с другими проблемами медицинского характера.

Каждая из них, в особенности серьезное заболевание или травма, может потенциально негативно повлиять на ход экспедиции, привести к ее провалу и потере членов экипажа. Возвращение на Землю будет либо невозможным, либо очень сложным, в зависимости от уже пройденного пути, поэтому оказание врачебной помощи (включая неотложную и психологическую) должно быть полностью или максимально автономным.

Медицина земная и космическая

Разработки, сделанные для космических экспедиций, могут пригодиться и для Земли. Некоторые из них уже стали реальностью. Например, технологии цифровой обработки изображений, которые разрабатывались в NASA для получения более качественных снимков Луны, нашли применение в аппаратах МРТ и КТ. Пеноматериал с эффектом памяти, который сегодня применяется в ортопедических матрасах и подушках, также был изначально создан для обеспечения удобства и безопасности пилотов.

И это - лишь малая часть подобных “ответвлений” космических исследований. Космическая медицина, развиваясь, может не только привести человека к звездам, но и сделать лучше его жизнь дома - на Земле.

Космическая биология и медицина, как и космонавтика вообще, могла появиться лишь тогда, когда научный и экономический потенциал страны достиг мировых вершин.

Один из ведущих специалистов в космической биологии и медицине — академик Олег Георгиевич Газенко. В 1956 году его включили в группу ученых, которым было поручено медицинское обеспечение будущих космических полетов. С 1969 года Олег Георгиевич возглавляет Институт медико-биологических проблем Министерства здравоохранения СССР.

О. Газенко рассказывает о развитии космической биологии и космической медицины, о проблемах, которые решают ее специалисты.

Космическая медицина

Иногда спрашивают: с чего началась космическая биология и космическая медицина? И в ответ можно порой услышать и прочитать, что начиналась она с опасений, с вопросов типа: сможет ли человек в невесомости дышать, есть, спать и т. д.?

Конечно, эти вопросы возникали. Но все- таки дело обстояло иначе, чем, скажем, в эпоху великих географических открытий, когда мореплаватели и путешественники отправлялись в путь, не имея ни малейшего представления о том, что их ждет. Мы же в основном знали, что ждет человека в космосе, и это знание было достаточно обоснованным.

Космическая биология и космическая медицина начинались не на пустом месте. Они выросли из общей биологии, вобрали в себя опыт экологии, климатологии и других дисциплин, в том числе и технических. Теоретический анализ, который предшествовал полету Юрия Гагарина, основывался на данных авиационной, морской, подводной медицины. Имелись и экспериментальные данные.

Еще в 1934 году, сначала у нас и чуть позже в США, были предприняты попытки исследовать влияния верхних слоев атмосферы на живые организмы, в частности, на механизм наследственности мух-дрозофил. К 1949 году относятся первые полеты животных — мышей, кроликов, собак — на геофизических ракетах. В этих опытах исследовалось влияние на живой организм не только условий верхней атмосферы, но и самого полета на ракете.

Рождение науки

Всегда трудно определить дату рождения какой-либо науки: вчера, мол, ее еще не было, а сегодня появилась. Но вместе с тем в истории любой отрасли знания есть событие, знаменующее ее становление.

И как, скажем, работы Галилея можно считать началом экспериментальной физики, так и орбитальные полеты животных ознаменовали рождение космической биологии — все, вероятно, помнят собаку Лайку, отправленную в космос на втором советском искусственном спутнике Земли в 1957 году.

Потом была организована еще серия биологических испытаний на кораблях-спутниках, давшая возможность исследовать реакцию животных на условия космического полета, наблюдать за ними после полета, изучать отдаленные генетические последствия.

Итак, к весне 1961 года мы знали, что человек сможет совершить космический полет — предварительный анализ показывал, что все должно быть благополучно. И, тем не менее, поскольку речь шла о человеке, всем хотелось иметь известные гарантии на случай непредвиденных обстоятельств.

Поэтому первые полеты готовились с подстраховкой и даже, если угодно, с перестраховкой. И здесь просто нельзя не вспомнить Сергея Павловича Королева. Можно представить себе, сколько дел и забот было у Главного конструктора, готовящего первый полет человека в космос.

И, тем не менее, он вникал во все детали медико-биологической службы полета, заботясь о максимальной ее надежности. Так, Юрию Алексеевичу Гагарину, полет которого должен был длиться полтора часа и который вообще мог обойтись без еды и воды, дали пищи и других необходимых запасов на несколько суток. И правильно поступили.

Причина тут в том, что нам тогда просто недоставало информации. Знали, например, что в невесомости могут возникнуть расстройства вестибулярного аппарата, но такими ли они будут, как мы их представляем, было неясно.

Другой пример — космическая радиация. Знали, что она существует, но насколько она опасна, определить на первых порах было трудно. В тот начальный период изучение самого космического пространства и освоение его человеком шли параллельно: еще не все свойства космоса были изучены, а полеты уже начались.

Поэтому и защита от радиации на кораблях была мощнее, чем требовали реальные условия. Тут мне хочется подчеркнуть, что научные работы в космической биологии с самого начала были поставлены на солидную, академическую основу, подход к разработке этих, казалось бы, прикладных проблем был весьма фундаментальным.

Развитие космической биологии

Академик В. А. Энгельгардт, будучи в то время академиком-секретарем отделения общей биологии АН СССР, много сил и внимания уделил тому, чтобы дать космической биологии и космической медицине хороший старт.

Много помогал расширению исследований и созданию новых коллективов и лабораторий академик Н. М. Сисакян: по его инициативе уже в начале 60-х годов 14 лабораторий различных академических институтов вели работу в области космической биологии и космической медицины, в них были сосредоточены сильные научные кадры.

Большой вклад внес в развитие космической биологии и космической медицины академик В. Н. Черниговский. Как вице-президент Академии медицинских наук СССР, он привлекал к разработке этих проблем многих ученых своей академии.

Непосредственными руководителями первых экспериментов по космической биологии были академик В. В. Парин, который специально исследовал проблемы космической физиологии, и профессор В. И. Яздовский. Необходимо вспомнить и первого директора Института медико-биологических проблем профессора А. В. Лебединского.

С самого начала дело возглавили крупные ученые, и это обеспечило и хорошую постановку исследований и — как следствие — глубину и точность теоретического предвидения, которое прекрасно подтвердила практика космических полетов.

Три из них следует отметить особо.

— Это биологический эксперимент на втором искусственном спутнике, показавший, что живое существо в космическом летательном аппарате может без вреда для себя находиться в космическом пространстве.

— Это полет Юрия Гагарина, показавший, что космос не оказывает негативного влияния на эмоционально-психическую сферу человека (а такие опасения были), что человек, как и на Земле, может мыслить и работать в космическом полете.

— И, наконец, это выход в открытый космос Алексея Леонова: человек в специальном скафандре находился и работал вне корабля и — главное, что интересовало ученых,- уверенно ориентировался в пространстве.

В этот ряд следует поставить и высадку американских астронавтов на поверхность Луны. Программа «Аполлон» также подтвердила некоторые положения, теоретически разработанные на Земле.

Подтвердился, например, характер движений человека на Луне, где сила тяготения значительно меньше, чем на Земле. Практика подтвердила и теоретический вывод о том, что быстрый пролет через радиационные пояса, окружающие Землю, неопасен для человека.

Под словом «практика» я имею в виду не только полеты людей. Им предшествовали полеты наших автоматических станций типа «Луна» и «Зонд» и американских «Сервейеров», которые основательно разведали обстановку и на трассе и на самой Луне.

На «Зондах», кстати, Луну облетели живые существа и благополучно возвратились на Землю. Так что полет людей на наше ночное светило был подготовлен очень фундаментально.

Как видно из приведенных примеров, самой характерной чертой первого периода космической биологии был поиск ответов на принципиальные вопросы. Сегодня, когда эти ответы, причем довольно подробные, в основном получены, поиск ушел как бы вглубь.

Цена полета в космос

Современный этап характерен более тщательным и тонким изучением глубинных, фундаментальных биологических, биофизических, биохимических процессов, идущих в живом организме в условиях космического полета. И не просто изучением, но и попытками управлять этими процессами.

Чем это объяснить?

Полет человека в космос на ракетном аппарате небезразличен для состояния организма. Конечно, его приспособительные возможности необычайно велики и пластичны, но не беспредельны.

Притом за всякое приспособление всегда надо чем-то платить. Скажем, самочувствие в полете стабилизируется, но эффективность работы снизится.

Приспособишься в невесомости к «легкости необыкновенной», но потеряешь силу мышц и крепость костей… Эти примеры лежат на поверхности. Но, очевидно, и глубинные жизненные процессы подчиняются этому закону (и тому есть подтверждения). Их приспособление не столь заметно, в кратковременных полетах может вообще не проявиться, но ведь полеты становятся все длительнее.

Какова же плата за такое приспособление? Можно с ней согласиться или она нежелательна? Известно, например, что в крови космонавтов во время полета уменьшается число эритроцитов — красных кровяных телец, переносящих кислород. Уменьшение незначительное, неопасное, но это в недолгом полете. А как этот процесс пойдет в полете длительном?

Все это необходимо знать, чтобы построить профилактическую защитную систему и тем расширить возможности человека жить и работать в космосе. И не только для космонавтов — специально отобранных и подготовленных людей, но и для ученых, инженеров, рабочих, может быть, деятелей искусств.

Происходит углубление самого понятия «космическая медицина и биология». По замыслу, это прикладная наука, вырабатывающая на основе данных общей биологии свои рекомендации, свои методы и приемы поведения человека в космосе. Поначалу так оно и было. Но теперь стало ясно, что космическая биология и космическая медицина не производное от общей биологии, а вся биология в целом, только изучающая организмы в особых условиях существования.

Взаимные интересы науки

Ведь все, что делает человек на Земле, он начинает делать и в космосе: ест, спит, работает, отдыхает, в очень далеких полетах люди будут рождаться и умирать — словом, человек начинает в полном биологическом смысле жить в космосе. И поэтому мы теперь не найдем, наверное, ни одного раздела биологических и медицинских знаний, которые были бы нам безразличны.

Вследствие этого возрос масштаб исследований: если в первых шагах космической биологии и космической медицины принимал участие буквально десяток ученых, то сейчас на ее орбиту вышли уже сотни учреждений и тысячи специалистов самого различного и подчас неожиданного, на первый взгляд, профиля.

Вот пример: Институт трансплантации органов и тканей, которым руководит известный хирург профессор В. И. Шумаков. Казалось бы, что может быть общего между изучением здорового организма в особых условиях космического полета и такой крайней мерой спасения безнадежных больных, как пересадка органов? Но общее есть.

Область взаимных интересов относится к проблемам иммунитета — природной защиты организма от воздействия бактерий, микробов и других чужеродных тел. Установлено, что в условиях космического полета иммунологическая защита организма слабеет. Тому есть ряд причин, одна из них заключается в следующем.

В обычной жизни мы везде и всегда встречаемся с микробами. В замкнутом пространстве космического корабля атмосфера почти стерильна, микрофлора значительно беднее. Иммунитет становится практически «безработным» и «теряет форму», как теряет ее спортсмен, если долго не тренируется.

Но и при пересадке органов, чтобы организм не отторгнул их, приходится уже искусственно снижать уровень действия иммунитета. Вот тут и возникают наши общие вопросы: как ведет себя организм в этих условиях, как уберечь его от инфекционных заболеваний?..

Есть и другая область взаимных интересов. Мы полагаем, что со временем люди будут очень долго летать и жить в космосе. Значит, могут и заболеть. Поэтому возникает необходимость, во-первых, представить себе, какие это могут быть заболевания, а во-вторых, обеспечить людей в полете диагностической аппаратурой и, конечно, средствами лечения.

Это могут быть лекарства, но может быть и искусственная почка — нельзя исключить вероятность того, что в дальних экспедициях понадобятся и такие средства. Вот и думаем вместе со специалистами Института трансплантации органов и тканей над тем, как снабдить участников будущих космических экспедиций «запчастями» и какова должна быть «технология ремонта».

Впрочем, операция в космосе — это, конечно, крайний случай. Основную роль будет играть профилактика, предупреждение заболеваний. И тут не последнюю роль может сыграть питание как средство управления обменом веществ и его изменениями, если они возникнут, а также как средство снижения нервно-эмоционального напряжения.

Определенным образом составленная диета с включением в пищу соответствующих препаратов сделает свое дело незаметно для человека, процедура не будет носить характера приема лекарства. Соответствующие исследования мы проводили в течение ряда лет с Институтом питания АМН СССР под руководством академика АМН СССР А. А. Покровского.

Еще пример: Центральный институт травматологии и ортопедии имени Н. Н. Приорова (ЦИТО), который возглавляет академик АМН СССР М. В. Волков. Сфера интересов института — костно-опорный аппарат человека. Причем исследуются не только методы лечения переломов и ушибов, способы протезирования, но и всякого рода изменения костной ткани.

Последнее интересует и нас, ибо в космосе тоже происходят определенные изменения костной ткани. Методы же воздействия на эти процессы, применяемые и в космосе и в клинике, в основе — своей очень близки.

Распространенная в наше время гипокинезия — малая подвижность — в еще большей степени проявляется в космосе. Состояние человека, вставшего с постели после двухмесячной болезни, сравнимо с состоянием космонавта, вернувшегося из полета: обоим надо заново учиться ходить по земле.

Дело в том, что в невесомости часть крови перемещается из нижней части тела в верхнюю, приливает к голове. Кроме того, мышцы, не получая привычной нагрузки, слабеют. Примерно тоже самое происходит при долгом лежании в постели. Когда же человек возвращается на Землю (или встает после долгой болезни), происходит обратный процесс — кровь быстро оттекает сверху вниз, что сопровождается головокружениями и может даже вызвать обморок.

Чтобы избежать подобных явлений, космонавты в полете нагружают мышцы на специальном тренажере, используют так называемую вакуумную систему, которая способствует перемещению части крови в нижнюю половину тела. Вернувшись же из полета, они носят некоторое время послеполетные профилактические костюмы, которые, наоборот, препятствуют быстрому оттоку крови из верхней половины тела.

Теперь подобные средства используются и в лечебных учреждениях. В ЦИТО тренажеры типа космических позволяют больным «гулять», не вставая с постели. А послеполетные костюмы с успехом прошли испытание в Институте хирургии имени А. В. Вишневского — с их помощью пациенты быстрее встают на ноги в буквальном смысле.

Перераспределение крови в организме не просто механический процесс, оно влияет и на физиологические функции и поэтому представляет немалый интерес как для космической биологии и медицины, так и для клинической кардиологии. Тем более что вопросы регуляции кровообращения при изменении пространственного положения тела недостаточно еще исследованы на здоровых людях.

И вот в совместных исследованиях с Институтом кардиологии имени А. Л. Мясникова и Институтом трансплантации органов и тканей мы получили первые интересные данные о том, например, как меняется давление в различных сосудах и полостях сердца при изменении положения тела в пространстве. О том, как и в каком темпе меняется при физической нагрузке биохимический состав крови, оттекающей от мозга, или от печени, или от мышц, то есть отдельно от каждого органа.

Это дает возможность более глубоко судить о его работе и состоянии. Исследования, о которых идет речь, необычайно обогащают наши знания физиологии и биохимии человека, это пример фундаментального изучения биологической сущности человека. И пример не единственный.

Я уже упоминал, что в космосе у человека уменьшается число эритроцитов в крови и что важно разобраться в причинах этого явления. Специальные исследования, в частности на спутнике «Космос-782», показали, что в космосе снижается устойчивость (резистентность) этих клеток, и поэтому они разрушаются чаще, чем в нормальных земных условиях, средняя продолжительность жизни их сокращается.

Теперь, естественно, придется выяснять, каким образом можно было бы поддержать устойчивость эритроцитов. Это важно для космоса, но может оказаться полезным и для борьбы с анемией и другими болезнями крови.

Тот факт, что космическая биология участвует в фундаментальных исследованиях человеческого организма, вполне определенным образом характеризует современный этап ее развития, Фундаментальные исследования закладывают основы дальнейшего развития практической деятельности. В нашем случае закладываются основы дальнейшего продвижения человека в космос.

Кто полетит в космос

Уже сейчас потребности исследования космического пространства заставляют ученых думать о расширении состава специалистов, летающих в космос.

В ближайшие годы можно ожидать появления на орбите ученых — исследователей космоса, инженеров — организаторов внеземного производства различных материалов, которые нельзя получить на Земле, рабочих для сборки космических объектов и обслуживания производств и т. д.

Для этих специалистов придется, по-видимому, расширить довольно узкую сейчас «калитку» медицинского отбора, то есть снизить формальные требования к состоянию здоровья, уменьшить объем подготовительных тренировок.

Вместе с тем, разумеется, должна быть гарантирована и полная безопасность и, я бы сказал, безвредность полета для этих людей.

В орбитальном полете это сделать относительно просто: можно не только наладить постоянный контроль за состоянием экипажа, но и, в крайнем случае, всегда есть возможность за несколько часов вернуть человека на Землю. Другое дело — межпланетные полеты, они будут значительно более автономными.

Экспедиция, скажем, на Марс займет 2,5-3 года. Значит, подход к организации таких экспедиций должен быть иным, чем при полетах на орбите. Здесь, очевидно, нельзя снижать требования к здоровью при отборе кандидатов.

Более того, кандидаты, как мне представляется, должны обладать не только отличным здоровьем, но и некоторыми конкретными свойствами — скажем, способностью легко адаптироваться к меняющимся условиям окружающей среды или же определенным характером реакции на экстремальные воздействия.

Очень важна возможность организма приспосабливаться к изменению биологических ритмов. Дело в том, что свойственные нам ритмы имеют сугубо земное происхождение. Например, самый важный из них — суточный — прямо связан со сменой дня и ночи. Но земные сутки существуют только на Земле, на других планетах сутки, естественно, иные, и к ним придется приспосабливаться.

Что делать во время полета

Очень большое значение приобретают вопросы, связанные с моральным климатом, который установится на борту. И дело тут не только в личных качествах людей, но и в организации их работы, быта — вообще жизни, с учетом потребностей, в том числе и эстетических, каждого члена экипажа. Этот круг вопросов, пожалуй, наиболее сложный.

Например, проблема свободного времени. Считают, что во время перелета к тому же Марсу рабочая нагрузка на каждого члена экипажа составит не более 4 часов в сутки. Отведем 8 часов на сон, останется 12. Чем их занять? В ограниченном пространстве космического корабля, при неизменном составе экипажа сделать это не так просто. Книги? Музыка? Фильмы? Да, но не любые. Музыка, даже любимая, может вызвать излишнее эмоциональное возбуждение, усилить чувство отрыва от дома.

Книги и фильмы драматичного или трагедийного плана тоже способны вызвать негативные реакции, а вот жанр приключений, фантастики, книги путешественников, полярников, спелеологов, в которых есть материал для сравнения, сопереживания, будут, бесспорно, восприняты хорошо. Решать кроссворды, ребусы можно, а играть в шахматы или шашки едва ли будет рекомендовано, ибо в таких играх есть элемент соперничества, нежелательный в подобной ситуации.

Все эти соображения возникли в результате уже ведущихся исследований. Они, на мой взгляд, весьма стимулируют пристальное изучение психологии человека, и я думаю, что со временем, когда названные проблемы будут достаточно разработаны, они принесут большую пользу и земной практике — в организации труда и отдыха людей.

Жизнеобеспечение экспедиций

Особое место в разработке межпланетных полетов занимает жизнеобеспечение экспедиций. Сейчас космонавты все, что им нужно в полете, просто берут с Земли (лишь частично регенерируется атмосфера; в некоторых полетах проводили экспериментальную регенерацию воды).

Но на три года запасов с собой не возьмешь. На межпланетном корабле предстоит создать замкнутую экологическую систему, наподобие земной, но в миниатюре, которая будет снабжать экипаж пищей, водой, свежим воздухом и утилизировать отходы жизнедеятельности.

Задача невероятно сложная! По существу, речь идет о конкуренции с природой: то, что она создавала многие миллионы лет на всей планете, люди пытаются воспроизвести в лаборатории, чтобы потом перенести в космический корабль.

Такие работы ведутся уже много лет в нашем институте, в Красноярском институте физики имени Л. В. Киренского. Кое- что уже сделано, но все-таки еще нельзя говорить о больших здесь успехах. Многие специалисты вообще полагают, что реальный практический успех, может быть, достигнут лишь лет через 15-20. Возможно, конечно, и раньше, но ненамного.

Генетика

Наконец, проблемы генетики, воспроизводства потомства. В нашем институте совместно с МГУ и Институтом биологии развития АН СССР ведутся исследования, цель которых определить влияние невесомости на эмбриогенез и морфогенез.

Эксперименты, в частности на спутнике «Космос-782», показали, что насекомым (дрозофилам) невесомость не мешает давать нормальное потомство, а у более сложных организмов — рыб, лягушек — в ряде случаев были обнаружены нарушения, отклонения от нормы. Это говорит о том, что им для нормального развития на самых первых этапах жизни зародыша нужна сила земного тяготения, и, стало быть, эту силу следует создавать искусственно.

Проблематика длительных космических полетов

Итак, проблематика длительных космических полетов — самое существенное в нашей сегодняшней работе. И тут правомерен вопрос: а насколько длительным может быть пребывание человека в космосе? Точно сейчас ответить нельзя. В организме во время полета происходит ряд процессов, которыми пока не удается управлять. Они не изучены до конца, человек ведь еще не летал долее трех месяцев, и мы не знаем, как пойдут эти процессы при более продолжительных сроках полета.

Необходима объективная, экспериментальная проверка, и вопрос о возможности, скажем, трехлетнего пребывания человека в космосе должен быть решен на околоземной орбите. Только тогда у нас появится гарантия, что такая экспедиция пройдет благополучно.

Но я думаю, что человек не встретит на этом пути неодолимых препятствий. Такой вывод можно сделать на основе уже сегодняшних знаний. Ведь космическая эра человечества только началась, и, образно говоря, мы сейчас только собираемся в ту дальнюю дорогу, которая предстоит человечеству в космосе.