График функции х в квадрате. Построение графика квадратичной функции. Визуальный гид (2019)

Учебник:

  • Макарычев Ю. Н., Миндюк Н. Р. Математика. 7 класс

Цели:

  • формировать графическую грамотность при построении графиков,
  • формировать навык исследовательской работы,
  • воспитывать четкость при ответе, аккуратность, ответственность.
  • I. Опрос учащихся

    1. Что называется функцией?
    2. (Функцией называется зависимость одной переменной от другой, при которой каждому значению независимой переменной соответствует единственное значение зависимой переменной )

    3. Что называется областью определения функции?
    4. (Все значения, которые принимает независимая переменная (аргумент), .образуют область определения функции)

    5. Что называется областью значений функции?
    6. (Все значения, которые принимает зависимая переменная, называются значениями функции)

    7. С какими функциями мы с вами познакомились?
    8. а) с линейной функцией вида у = кх + b ,

      прямой пропорциональностью вида у = кх

      б) с функциями вида у = х 2 , у = х 3

    9. Что представляет из себя график линейной функции? (прямая ). Сколько точек необходимо для построения данного графика?

    Не выполняя построения, определите взаимное расположение графиков функций, заданных следующими формулами:

    а) у = Зх + 2; у = 1,2х + 5;

    b) y = 1,5х + 4; у = -0,2х + 4; у = х + 4;

    с) у = 2х + 5; у = 2х - 7; у = 2х

    Рисунок 1

    На рисунке изображены графики линейных функций (каждому ученику на парту выдается листок с построенными графиками ). Напишите формулу для каждого графика

    С графиками каких функций мы с вами ещё знакомы? (у = х 2 ; у = х 3 )

    1. Что является графиком функции у = х 2 (парабола ).
    2. Сколько точек нам необходимо построить для изображения параболы? (7, одна из которых является вершиной параболы ).

    Давайте построим параболу, заданную формулой у = х 2

    x -3 -2 -1 0 1 2 3
    у = х 2 9 4 1 0 1 4 9
    у = х 2 + 2 11 6 3 2 3 6 11

    Рисунок 2

    Какими свойствами обладает график функции у = х 3 ?

    1. Если х = 0 , то у = 0 - вершина параболы (0;0)
    2. Область определения: х - любое число, Д(у) = (- ?; ?) Д(у) = R
    3. Область значений у ? 0
    4. E(y) =
    5. Функция возрастает на промежутке

      Функция возрастает на промежутке

      Проиллюстрируем тот факт, что одно и то же значение функции может достигаться при нескольких значениях аргумента.

      «Натуральный логарифм» - 0,1. Натуральные логарифмы. 4. «Логарифмический дартс». 0,04. 7. 121.

      «Степенная функция 9 класс» - У. Кубическая парабола. У = х3. 9 класс учитель Ладошкина И.А. У = х2. Гипербола. 0. У = хn, у = х-n где n – заданное натуральное число. Х. Показатель – четное натуральное число (2n).

      «Квадратичная функция» - 1 Определение квадратичной функции 2 Свойства функции 3 Графики функции 4 Квадратичные неравенства 5 Вывод. Свойства: Неравенства: Подготовил ученик 8А класса Герлиц Андрей. План: График: -Промежутки монотонности при а > 0 при а < 0. Квадратичная функция. Квадратичные функции используются уже много лет.

      «Квадратичная функция и её график» - Решение.у=4x А(0,5:1) 1=1 А-принадлежит. При а=1 формула у=аx принимает вид.

      «8 класс квадратичная функция» - 1) Построить вершину параболы. Построение графика квадратичной функции. x. -7. Построить график функции. Алгебра 8 класс Учитель 496 школы Бовина Т. В. -1. План построения. 2) Построить ось симметрии x=-1. y.

      Как построить параболу? Существует несколько способов построения графика квадратичной функции. Каждый из них имеет свои плюсы и минусы. Рассмотрим два способа.

      Начнём с построения графика квадратичной функции вида y=x²+bx+c и y= -x²+bx+c.

      Пример.

      Построить график функции y=x²+2x-3.

      Решение:

      y=x²+2x-3 — квадратичная функция. График — парабола ветвями вверх. Координаты вершины параболы

      От вершины (-1;-4) строим график параболы y=x²(как от начала координат. Вместо (0;0) — вершина (-1;-4). От (-1;-4) идём вправо на 1 единицу и вверх на 1 единицу, затем влево на 1 и вверх на 1; далее: 2 — вправо, 4 — вверх, 2- влево, 4 — вверх; 3 — вправо, 9 — вверх, 3 — влево, 9 — вверх. Если этих 7 точек недостаточно, далее — 4 вправо, 16 — вверх и т. д.).

      График квадратичной функции y= -x²+bx+c — парабола, ветви которой направлены вниз. Для построения графика ищем координаты вершины и от неё строим параболу y= -x².

      Пример.

      Построить график функции y= -x²+2x+8.

      Решение:

      y= -x²+2x+8 — квадратичная функция. График — парабола ветвями вниз. Координаты вершины параболы

      От вершины строим параболу y= -x² (1 — вправо, 1- вниз; 1 — влево, 1 — вниз; 2 — вправо, 4 — вниз; 2 — влево, 4 — вниз и т. д.):

      Этот способ позволяет построить параболу быстро и не вызывает затруднений, если вы умеете строить графики функций y=x² и y= -x². Недостаток: если координаты вершины — дробные числа, строить график не очень удобно. Если требуется знать точные значения точек пересечения графика с осью Ох, придется дополнительно решить уравнение x²+bx+c=0 (или —x²+bx+c=0), даже если эти точки непосредственно можно определить по рисунку.

      Другой способ построения параболы — по точкам, то есть можно найти несколько точек графика и через них провести параболу (с учетом того, что прямая x=хₒ является её осью симметрии). Обычно для этого берут вершину параболы, точки пересечения графика с осями координат и 1-2 дополнительные точки.

      Построить график функции y=x²+5x+4.

      Решение:

      y=x²+5x+4 — квадратичная функция. График — парабола ветвями вверх. Координаты вершины параболы

      то есть вершина параболы — точка (-2,5; -2,25).

      Ищем . В точке пересечения с осью Ох y=0: x²+5x+4=0. Корни квадратного уравнения х1=-1, х2=-4, то есть получили две точки графике (-1; 0) и (-4; 0).

      В точке пересечения графика с осью Оy х=0: y=0²+5∙0+4=4. Получили точку (0; 4).

      Для уточнения графика можно найти дополнительную точку. Возьмем х=1, тогда y=1²+5∙1+4=10, то есть еще одна точка графика — (1; 10). Отмечаем эти точки на координатной плоскости. С учетом симметрии параболы относительно прямой, проходящей через её вершину, отметим еще две точки: (-5; 6) и (-6; 10) и проведем через них параболу:

      Построить график функции y= -x²-3x.

      Решение:

      y= -x²-3x — квадратичная функция. График — парабола ветвями вниз. Координаты вершины параболы

      Вершина (-1,5; 2,25) — первая точка параболы.

      В точках пересечения графика с осью абсцисс y=0, то есть решаем уравнение -x²-3x=0. Его корни — х=0 и х=-3, то есть (0;0) и (-3; 0) — еще две точки графика. Точка (о; 0) является также точкой пересечения параболы с осью ординат.

      При х=1 y=-1²-3∙1=-4, то есть (1; -4) — дополнительная точка для построения графика.

      Построение параболы по точкам — более трудоёмкий, по сравнению с первым, способ. Если парабола не пересекает ось Oх, дополнительных точек потребуется больше.

      Прежде чем продолжить построение графиков квадратичных функций вида y=ax²+bx+c, рассмотрим построение графиков функций с помощью геометрических преобразований. Графики функций вида y=x²+c также удобнее всего строить, используя одно из таких преобразований — параллельный перенос.

      Рубрика: |

      Функция вида , где называется квадратичной функцией .

      График квадратичной функции – парабола .


      Рассмотрим случаи:

      I СЛУЧАЙ, КЛАССИЧЕСКАЯ ПАРАБОЛА

      То есть , ,

      Для построения заполняем таблицу, подставляя значения x в формулу:


      Отмечаем точки (0;0); (1;1); (-1;1) и т.д. на координатной плоскости (чем с меньшим шагом мы берем значения х (в данном случае шаг 1), и чем больше берем значений х, тем плавнее будет кривая), получаем параболу:


      Нетрудно заметить, что если мы возьмем случай , , , то есть , то мы получим параболу, симметричную относительно оси (ох). Убедиться в этом несложно, заполнив аналогичную таблицу:


      II СЛУЧАЙ, «a» ОТЛИЧНО ОТ ЕДИНИЦЫ

      Что же будет, если мы будем брать , , ? Как изменится поведение параболы? При title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;"> парабола изменит форму, она “похудеет” по сравнению с параболой (не верите – заполните соответствующую таблицу – и убедитесь сами):


      На первой картинке (см. выше) хорошо видно, что точки из таблицы для параболы (1;1), (-1;1) трансформировались в точки (1;4), (1;-4), то есть при тех же значениях ордината каждой точки умножилась на 4. Это произойдет со всеми ключевыми точками исходной таблицы. Аналогично рассуждаем в случаях картинок 2 и 3.

      А при парабола «станет шире» параболы :


      Давайте подытожим:

      1) Знак коэффициента отвечает за направление ветвей. При title="Rendered by QuickLaTeX.com" height="14" width="47" style="vertical-align: 0px;"> ветви направлены вверх, при - вниз.

      2) Абсолютная величина коэффициента (модуля) отвечает за “расширение”, “сжатие” параболы. Чем больше , тем у’же парабола, чем меньше |a|, тем шире парабола.

      III СЛУЧАЙ, ПОЯВЛЯЕТСЯ «С»

      Теперь давайте введем в игру (то есть рассматриваем случай, когда ), будем рассматривать параболы вида . Нетрудно догадаться (вы всегда можете обратиться к таблице), что будет происходить смещение параболы вдоль оси вверх или вниз в зависимости от знака :



      IV СЛУЧАЙ, ПОЯВЛЯЕТСЯ «b»

      Когда же парабола “оторвется” от оси и будет, наконец, “гулять” по всей координатной плоскости? Когда перестанет быть равным .

      Здесь для построения параболы нам понадобится формула для вычисления вершины: , .

      Так вот в этой точке (как в точке (0;0) новой системы координат) мы будем строить параболу , что уже нам по силам. Если имеем дело со случаем , то от вершины откладываем один единичный отрезок вправо, один вверх, – полученная точка – наша (аналогично шаг влево, шаг вверх – наша точка); если имеем дело с , например, то от вершины откладываем один единичный отрезок вправо, два – вверх и т.д.

      Например, вершина параболы :

      Теперь главное уяснить, что в этой вершине мы будем строить параболу по шаблону параболы , ведь в нашем случае.

      При построении параболы после нахождения координат вершины очень удобно учитывать следующие моменты:

      1) парабола обязательно пройдет через точку . Действительно, подставив в формулу x=0, получим, что . То есть ордината точки пересечения параболы с осью (оу), это . В нашем примере (выше), парабола пересекает ось ординат в точке , так как .

      2) осью симметрии параболы является прямая , поэтому все точки параболы будут симметричны относительно нее. В нашем примере, мы сразу берем точку (0; -2) и строим ей симметричную относительно оси симметрии параболы, получим точку (4; -2), через которую будет проходить парабола.

      3) Приравнивая к , мы узнаем точки пересечения параболы с осью (ох). Для этого решаем уравнение . В зависимости от дискриминанта, будем получать одну (, ), две ( title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">, ) или нИсколько () точек пересечения с осью (ох) . В предыдущем примере у нас корень из дискриминанта – не целое число, при построении нам особо нет смысла находить корни, но мы видим четко, что две точки пересечения с осью (ох) у нас будут (так как title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">), хотя, в общем, это видно и без дискриминанта.

      Итак, давайте выработаем

      Алгоритм для построения параболы, если она задана в виде

      1) определяем направление ветвей (а>0 – вверх, a<0 – вниз)

      2) находим координаты вершины параболы по формуле , .

      3) находим точку пересечения параболы с осью (оу) по свободному члену , строим точку, симметричную данной относительно оси симметрии параболы (надо заметить, бывает, что эту точку невыгодно отмечать, например, потому, что значение велико… пропускаем этот пункт…)

      4) В найденной точке – вершине параболы (как в точке (0;0) новой системы координат) строим параболу . Если title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;">, то парабола становится у’же по сравнению с , если , то парабола расширяется по сравнению с

      5) Находим точки пересечения параболы с осью (оу) (если они еще сами “не всплыли”), решая уравнение

      Пример 1


      Пример 2


      Замечание 1. Если же парабола изначально нам задана в виде , где – некоторые числа (например, ), то построить ее будет еще легче, потому что нам уже заданы координаты вершины . Почему?

      Возьмем квадратный трехчлен и выделим в нем полный квадрат: Посмотрите, вот мы и получили, что , . Мы с вами ранее называли вершину параболы , то есть теперь , .

      Например, . Отмечаем на плоскости вершину параболы , понимаем, что ветви направлены вниз, парабола расширена (относительно ). То есть выполняем пункты 1; 3; 4; 5 из алгоритма построения параболы (см. выше).

      Замечание 2. Если парабола задана в виде, подобном этому (то есть представлен в виде произведения двух линейных множителей), то нам сразу видны точки пересечения параболы с осью (ох). В данном случае – (0;0) и (4;0). В остальном же действуем согласно алгоритму, раскрыв скобки.