Формирование воздушной струи. Пограничный слой Граница воздушной струи

1.Введение ...................................................................................................................2

1.1. Обзор литературы ..........................................................................................3

1.1.1. Общие сведения ...........................................................................................3

1.1.2. Воздушные струи в сносящем потоке .....................................................5

1.1.3. Воздушные струи, развивающиеся при перепаде давлений ............16

1.1.4. Современные методы расчета воздушных завес различного назначения ..................................................................................................16

1.2. Цели и задачи работы ..................................................................................23

2. Постановка задачи ..............................................................................................25

2.1. Постановка задачи .......................................................................................25

2.2. Граничные условия для решения задачи ................................................28

2.3 Начальные условия решения задачи .........................................................28

3. Конечно-разностный метод решения задачи течения газа .........................29

3.1 Общие замечания о возможных методах решения задач газовой динамики .........................................................................................................29

3.2. Дискретизация частных производных .....................................................30

3.3. Дискретизация уравнений описывающих течение газа .......................31

3.4. Сходимость и точность разностных схем. Обоснование выбора величины шагов расчета по пространству и времени .........................33

3.5. Создание программы расчета ВТЗ ............................................................34

4. Экспериментальное исследование течения воздуха в проеме оборудованном ВТЗ .............................................................................................36

4.1 Методика проведения эксперимента. Экспериментальный стенд ......36

4.1.1 Методика проведения эксперимента ......................................................36

4.1.2 Экспериментальный стенд .......................................................................37

5. Анадиз полученных результатов ......................................................................42

6.Список использованной литературы ...............................................................48

Введение.

Современный мир невозможно представить себе без огромного количества полезных и удобных устройств, позволяющих человеку обустраивать свою жизнь с комфортом. Тепло–зимой и прохладный и чистый воздух летом – одно из обязательных требований в жизни обычного цивилизованного человека.

Тепловые завесы приобретают всё большую популярность в наше время. Основным предназначением таких устройств является защита от холодного воздуха помещений, которые отапливаются. Поток воздуха, который создается тепловой завесой, осуществляет преграду воздух, который попадает в помещение через открытые двери, окна и т.п., тем самым сохраняя теплый воздух внутри помещения.

Воздушные завесы предназначены для разделения внешней среды в помещении. Разделение достигается элиминацией естественной конвекции и нагревом входящего холодного воздуха естественной или принудительной вентиляции. Воздушно-тепловые завесы (ВТЗ) используются для защиты рабочих мест от загрязнения или для уменьшения распространения сигаретного дыма в ресторанах. Первая вертикальная воздушная завеса предположительно была введена в США в 1916 году.

Воздушные завесы представляют собой устройства вентиляции локализирующего типа, с помощью которых можно снизить или полностью устранить перемещение воздушных масс через проем, что позволяет уменьшить их вредоносное воздействие на здоровье человека.

Воздушная завеса образует плоскую строго направленную струю воздуха, которая помогает избежать потерь тепла, уходящего через проемы открытого типа. Тем самым, воздушные завесы способствуют повышению комфортабельности атмосферы внутри помещения.

Для того чтобы системы кондиционирования, вентиляции и отопления могли выполнять поставленные перед ними задачи в полном объеме, поддерживая необходимый микроклимат в помещении, необходимо максимально уменьшить теплопотери путем защиты ограждающих конструкций, в число которых входят открытые дверные и оконные проемы. Дело в том, что при непосредственном контакте окружающей среды с атмосферой помещения неизбежно происходит теплообмен, который оказывает существенное влияние на работу систем вентиляции и кондиционирования, уменьшая экономичность их использования, одновременно повышая энергопотребление. Таким образом тепловой баланс помещения нарушается, как в отдельных тепловых участках, так и по всей кондиционируемой площади. За этот процесс отвечают открытые, свободные или регулярно открываемые окна и двери. Через проем в помещение поступает наружный воздух, имеющий более низкую температуру, нежели внутри помещения. Одновременно с этим, теплый воздух помещения выходит через верхнюю часть открытого проема.

Воздушные завесы являются самым эффективным методом борьбы с теплопотерями. Климатическое устройство монтируется над необходимыми проемами горизонтально, либо сбоку проемов вертикально. Плоская направленная струя воздуха помогает разделить внешнее и внутреннее пространство на разные зоны. Таким образом, воздушная завеса превращается в воздушный экран или виртуальную дверь, создавая защиту помещения от внешнего воздействия.

Правильно подобранные и установленные завесы сокращают потери тепла в помещениях до 90%, препятствуя возникновению сквозняков и попаданию снега зимой, а также пыли, пуха, насекомых летом. Завесы с нагревательными элементами позволяют компенсировать потери тепла и поддерживать комфортную температуру в помещениях в холодное время года. Эффективность работы завес определяется:

Скоростью воздушной струи по всей высоте защищаемого проема при установке завесы над проемом или по всей ширине проема при боко вом монтаже;

Мощностью нагрева приточной струи, компенсирующей теплопотери через открытый проем.

Подбираются данные тепловые завесы соответственно по высоте и ширине дверного проема, который будет защищен от холодного воздуха. Считается, что основными параметрами завесы является ее длина и производительность теплого воздуха. Например, длина воздушной завесы должна быть одинакова или немного больше ширины дверного проема, потому что только в этом случае теплый поток воздуха будет полностью перекрывать поток холодного, тем самым защищая его проникновение вовнутрь.

Например, в случае, когда дверной проем составляет в ширину больше, чем 3 метра, то лучше установить несколько тепловых завес. Следует помнить, что чем выше дверной проем, тем мощнее должна быть завеса, и производить больше воздуха. Рекомендуется для защиты маленьких окон киосков, касс использовать завесы производительностью 300 м 3 /час.

Очень важно правильно выбрать тип завесы для создания оптимальной эффективности и комфорта. Воздушная завеса с малой прокачкой воздуха не отсекает сквозняки у пола. Чрезмерно мощная завеса установленная над низкими дверными проемами вызывает чувство дискомфорта у людей под нею и создает повышенную шумность работы. Наилучший результат достигается при перекрытии всей протяженности дверного проема мощным устойчивым потоком воздуха. Завесы могут быть с воздухонагревательной секцией и без нее. Завесы без подогрева устраняют теплопотери так же эффективно, как и завесы с подогревом, однако в некоторых случаях следует учитывать, что не подогретый воздушный поток может вызвать ощущение сквозняка. Дополнительный подогрев воздуха придает комфорт в ощущениях и удовлетворяет потребность в дополнительном тепле к существующему обогреву помещения, осушает пространство, примыкающее к входным дверям.
Необходимое дополнительное тепло определяется исходя из оценки факторов, является ли тепловая завеса единственным источником обогрева в помещении, разницей температур воздуха между холодной и теплой воздушными зонами и затратами.

Производительность по воздуху является основным параметром любой завесы. От производительности зависит скорость воздушного потока и, соответственно, оптимальная высота установки завесы. Например, для защиты стандартного дверного проема шириной 0,8-1,0 метр и высотой 2,0-2,2 метра требуется завеса с производительностью 700-900 м 3 /ч. В этом случае скорость воздушного потока на выходе завесы составит 6-8 м/с, а на уровне пола - 1,5 - 2,0 м/с. Если установить завесу меньшей производительности через нижнюю часть дверного проема будет проникать холодный воздух, и желаемый эффект от тепловой завесы будет достигнут лишь частично. Заметим, что при наличии тамбура применение завесы с низкой производительностью может быть вполне оправдано – двойные двери создают дополнительную преграду холодному воздуху и позволяют использовать менее дорогую завесу.

Тепловые завесы имеют длину от 600 до 2000 мм. Наибольшее распространение получили аппараты длиной 800-1000 мм, предназначенные для установки над стандартными дверными проемами. Длина подобранной завесы должна быть равна или немного больше ширины проема, так как только в этом случае поток воздуха будет целиком его перекрывать и не даст холодному воздуху попасть внутрь. Если проем очень широкий (более 2 метров), то следует устанавливать несколько аппаратов вплотную друг к другу.

Помимо отсечения наружного воздуха, тепловая завеса может так же нагревать воздух в помещении. Для ориентировочных расчетов можно принять, что для обогрева 10 м2 не отапливаемого помещения, при высоте потолков 2,8 - 3,0 м необходим 1 кВт мощности. При этом считается, что стены и потолок помещения имеют хорошую теплоизоляцию (капитальное здание), поскольку обогреть временное сооружение (железный ларек, ангар) практически невозможно - тепло будет уходить через тонкие стенки. Если же завесу предполагается устанавливать в хорошо отапливаемом помещении, то функция нагрева не обязательна, и можно выбрать модель с минимальной мощностью или, так называемую, воздушную завесу - без функции обогрева. Заметим, что защитные свойства воздушного потока определяются только скоростью воздуха и никак не связаны с его температурой, поэтому мощность завесы является дополнительной, а не основной характеристикой.

У всех завес с функцией обогрева есть одна особенность – на выходе даже очень мощной завесы воздух будет только теплым и никогда – горячим. Это объясняется высокой скоростью обдува нагревательных элементов, поэтому тепловую завесу нельзя сравнивать с тепловой пушкой или тепловентилятором, где скорость обдува в несколько раз ниже, а температура воздуха соответственно, выше.

Большинство тепловых завес предназначено для горизонтальной установки сверху открытого проема. Однако бывает, что такая установка невозможна или нецелесообразна. В этих случаях применяется вертикальная тепловая завеса, которая устанавливается сбоку от проема. Соответственно, воздушный поток от вертикальной завесы будет направлен горизонтально. Высота (длина) вертикальной завесы должна быть не менее 3/4 высоты защищаемого проема. В остальном, вертикальная тепловая завеса ничем не отличаются от горизонтальной.

Любая тепловая завеса имеет, как минимум, два переключателя - один включает вентилятор, второй - нагревательные элементы. В дополнении к этому, некоторые завесы имеют двух- или трехступенчатые регуляторы мощности нагрева и двухскоростные вентиляторы. Пульт управления может быть как встроенным, так и выносным (проводным). Встроенные пульты используются только на небольших завесах для стандартных дверных и оконных проемов, иначе до кнопок будет трудно достать. Выносные пульты используются с полупромышленными и промышленными завесами - такой пульт можно установить в любом удобном месте.

В дополнении к пульту можно установить термостат, который будет отключать нагревательные элементы (или всю завесу) при достижении заданной температуры в помещении.

Помимо моделей с электрическим подогревом, существуют завесы с подводом воды - водяные тепловые завесы. Как следует из названия, источником тепла в таких завесах является горячая вода, которая подается из системы центрального отопления. Повышенная сложность монтажа водяных завес компенсируется низкими накладными расходами при эксплуатации и высокой мощностью. Такие завесы обычно применяют в промышленных зданиях с большими открытыми проемами.

Глава 1.

1.1. Обзор литературы.

1.1.1. Общие сведения.

Методы расчета воздушных завес разрабатывались российскими учеными начиная с 1936 года. Первоначально расчет воздушных завес базировался на определении траектории оси струи воздушной завесы, этот метод совершенствовался Г. Н. Абрамовичем, И. А. Шепелевым, В. В. Батуриным, С. Е. Бутаковым. Во всех этих методах не учитывались характеристики герметичности здания. Кроме того, критерием шиберирующих свойств завесы являлось условие пересечения осью струи завесы плоскости ворот на расстоянии от выхода из щели завесы, равном ширине перекрываемого проема. Наибольшее распространение получил метод расчета воздушных завес, в котором расход воздуха завесы определяется с учетом ветровой нагрузки и степени герметичности защищаемого помещения. Этот метод представлен в "Справочнике проектировщика. Ч. 3. Вентиляция и кондиционирование воздуха" .

Размеры воздушной завесы базируется на балансе между сносящим потоком струи и разницей давления в дверном проеме. Есть также некоторые факты, которые должны быть соблюдены, например, расположения рабочих мест по отношению к дверному проему, распространение пыли, допустимый уровень шума, максимальный расход и пространство установки. Давление в проемах зависит от разницы температур между внутренним и наружным воздухом, герметичность оболочки здания, расположение и размер пути утечки. Разница температур создает распределение давления по всему фасаду здания .

По предложению Ф.Г. Проскуры ВТЗ начали использоваться в угольной промышленности для борьбы с пылью, образующейся при загрузке угля в скипы. В вентиляционной практике воздушно-струйные укрытия начали применяться для локализации вредных выделений от технологического оборудования (передувки над промышленными ваннами, завесы у проемов термических печей, у сушилок и т.п.). Однако наибольшее распространение воздушные завесы нашли для борьбы с холодным воздухом, проникающим через проемы ворот и дверей в зимний период года. Поэтому большинство теоретических и экспериментальных работ посвящено изучению данного типа завес.

Струя воздушной завесы развивается в поперечном потоке газов или воздуха. Развитие струи в сносящем потоке давно привлекает к себе внимание исследователей. Такого рода течения широко известны в тех­нике: различные завесы, камеры сгорания газовых турбин, дутье в топках паровых котлов, распространение дыма из труб, газовые горелки и т.д. В основе изучения всех этих явлений лежат теории струйных течений - свободной затопленной струи, изотермических струй, струи воздуха, рас­пространяющейся в сносящем потоке.

Наиболее изученным видом турбулентных струй является свободная, затопленная струя . В настоящее время известно несколько теорий свободной турбулентности: теория Прандтля, теория Тейлора, новая теория Прандтля, теория Рейхарда, Маттиоли и других авторов. На основе существующих теорий свободной турбулентности и с их помощью профессор Г. Н. Абрамович разработал теорию свободных струй.

Е. И. Поляков высказал предположение, что начальная турбулент­ность не влияет на характер распространения свободной струи и установил, что в основном участке наблюдается один и тот же угол расширения струи, независимо от конструкции насадки, из которой происходит истечение. На характер изменения скорости свободной струи непосредственно влияет только кинематический импульс струи, который зависит от формы начального профиля поля скоростей. Экспериментальные данные подтвердили предположение о том, что абсолютные значения кинематических и энергетических характеристик струи зависят только от количества движения струи при выходе ее из насадки. Это положение учтено в новой теории свободных турбулентных струй Г. Н. Абрамовича и в работах В. Н. Талиева .

Решение многих задач вентиляции (воздушное отопление, аэрация и др.) связано с закономерностями развития неизотермических струй. Первая попытка определения траектории неизотермической струи была сделана В. В. Батуриным и И.А. Шепелевым . В их работе установлено, что искривление неизотермической струи зависит от критерия Архимеда. Для определения траектории оси струи использовались кинематические решения. В результате графического сложения векторов скоростей потока ветра, входящего в ворота и векторов средних скоростей вдоль оси струи воздушной завесы В. В. Батурин и И. А. Шепелев получили уравнение изогнутой оси струи воздушной завесы.

С. С. Сыркин и Д. H. Ляховский экспериментально исследовали формы струи подогретого воздуха, вытекающего в воздух нормальной температуры. Результаты опытов дали значительное отклонение от теоретического решения В. В. Батурина и И.А. Шепелева.

Г. Н. Абрамович, используя экспериментальные данные , разработал теоретический метод расчета формы искривленной струи для горизонтального истечения, позже уравнение траектории струи в более общем виде было дано И. А. Шепелевым . Затем И. А. Шепелев аналитически получил основные расчетные зависимости для свободных неизотермических струй различной формы: осесимметричной, плоской и веерной. Теория И. А. Шепелева дает хорошую сходимость для фонтанов, в тоже время значения осевой скорости и избыточной температуры в ряде случаев значительно отличаются от опытных данных.

Аналитические формулы для расчета траектории неизометрической струи получены также В. Н. Талиевым и В. С. Омельчуком и дают близкие результаты.

Теоретические и экспериментальные исследования по воздушным завесам можно подразделить на две группы:

· работы, где изучается траектория воздушной струи;

· работы, рассматривающие завесу как шибер, уменьшающий количество проходящего через проем воздуха.


1.1.2. Воздушные струи в сносящем потоке

Взаимодействие струи со сносящим потоком весьма сложно. При истечении струи в сносящий поток под некоторым углом к последнему, ось струи под действием сносящего потока искривляется в сторону движения воздуха. Г. С. Шандоров непосредственным измерением установил, что перед газовой струей в сносящем потоке и в лобовой части самой струи имеется зона повышенного статического давления, а в кормовой части струи и за струёй - зона разрежения. Разница давлений по обе стороны струи является физической причиной искривления ее траектории. Форма поперечного сече­ния круглой струи под действием сносящего потока деформируется и стано­вится подковообразной. Это объясняется тем, что периферийные слои струи, имеющие малую скорость и интенсивно сдуваемые воздухом, имеют боль­шую кривизну траектории, чем основная масса струи.

Характер взаимодействия между струей и сносящим потоком таков, что за струей и в самой струе имеются вторичные вихревые течения. В результате процесс перемешивания газа с воздухом в такой струе должен про­исходить значительно интенсивнее, чем в струе, вытекающей в неподвижную среду. Однако в на основе измерений в нескольких нормальных сечениях струи установлено, что масса струи, развивающейся в поперечном потоке, изменяется примерно так же, как и у свободной.

Траектории распространения струй в сносящем потоке наиболее полно исследованы в работах Ю. В. Иванова . Им исследованы траектории одиночной круглой, плоской и прямоугольной струй в свободном поперечном и ограниченном потоке, а также траектории круглых и прямоугольных струй, размещенных в ряд, в поперечном ограниченном поле.

Для создания плоской струи использовались сопла с шириной 0,9; 2,7; 4,0 мм. Опыты проводились при двух значениях отношения абсолютных температур Т2/ T1=1 и 2. При этом отношения кинети­ческих энергий струи и сносящего потока изменялись в широких пределах от 400 до 12,5. Опыты проводились с соплами, ориентированными под углом а=0° и а=30°. Схема развития струи дана на рис. 1.1.

Рис. 1.1. Схема развития струи в поперечном потоке

В результате обработки опытных данных Ю. Б. Ивановым предложено уравнение для расчета плоской струи в сносящем потоке:

где в о - полуширина сопла;

у - расстояние от оси сопла по нормали к сносящему потоку;

х - расстояние от оси сопла по направлению сносящего потока;

v, w o - скорости истечения газа и сносящего потока;

p, р о - плотности газа и сносящего потока;

а - коэффициент структуры струи;

q - гидродинамический параметр, равный отношению кинетических энергий струи и потока.

В качестве оси струи Ю. В. Иванов принимал линию, соединяющую точки с максимальными значениями скоростей.

В 1965 г. С. Е. Бутаков и В. Д. Столер поставили специальный эксперимент для проверки принимаемого многими авторами допущения о постоянстве количества движения в поперечных сечениях турбулентных струй. Результаты показали, что количество движения в струе, истекающей из круглого отверстия в сносящий поток, остается постоянным, но всегда составляет величину меньшую, чем при отсутствии сносящего потока, и тем меньше, чем больше угол наклона струи к потоку и скорость сносящего потока.

И. Б. Палатник и Д. Ж. Темирбаев провели подробное исследование закономерностей распространения осесимметричной воздушной струи в сносящем потоке. В аналитическом решении траектория струи определена путем составления баланса сил на выделенный элемент струи. Окончательное уравнение траектории струи имеет сложный вид и вычисления ее проводились численным методом. Экспериментальное изучение структуры течения, особенностей данного вида струйного движения, закономерностей поля сил, действующих на струю как при изотермическом, так и при не изотермическом течении, отражено в работе . Для d= 20 мм, а = 90° и q = 0,17*0,04 получена следующая формула для траектории струи:

Траекторией струи авторы работы считали геометрическое место то­чек, являющихся центрами импульсов в каждом сечения струи. В этих экспериментах установлено, что массовый расход в струе в сносящем потоке рас­тет в несколько раз быстрее, чем в струе, вытекающей в неподвижную среду. Достоверность такого результата подкрепляется тем, что проведенные изме­рения показали постоянство избыточного теплосодержания в разных попе­речных сечениях струи. Уровень турбулентности в такой струе оказался значительно выше, чем в свободной затопленной струе и в месте наибольшей кривизны траектории достигал 35%.

Всякая турбулентная струя, истекающая вблизи какой-либо поверхности, будет испытывать влияние этой поверхности. Это явление, вошедшее техническую литературу под названием "эффект Коанда" играет важную роль при изучении искривления струй газа.

Первые попытки теоретического обоснования этого явления были сделаны в 1960 г. С. Буркви и В. Ньюманом. В основу расчета были положены следующие предпосылки: давление внутри циркуляционной зоны распределяется равномерно, осевая линии струи изгибается по дуге окружности радиусом R, ширина струи мала по сравнению с радиусом R, распределение скоростей в изогнутой струе происходит по аналогии со свободной струей, количество движения в струе сохраняется постоянным.

В результате авторы исследования получили уравнение для определения основных параметров струи, развивающейся вблизи плоской поверхно­сти. Так, расстояние вдоль плоской струи до точки деления потока на прямой и обратный определяется по следующей зависимости:

Угол наклона струи при встрече с плоской поверхностью:

Где - постоянная величина

Г. Н. Абрамович получил уравнение оси струи, основанное на сло­жении вектора скорости потока с вектором средней скорости в данном сече­нии струи.

Работа Г. Н. Уфимцева, Ж Б. Белотелова сводилась к определению изогнутой оси струи с помощью теории В. В. Батурина и И. А. Шепелева. Позднее И. А. Шепелев предложил новый метод расчета завес, также основанный на использовании принципа наложения потоков. В этом методе для нахождения уравнения траектории оси складывались функции тока струи и сносящего потока, при этом считалось, что статическое давление в струе остается постоянным. И. А. Шепелевым были получены формулы, с помощью которых можно определить количество воздуха, поступающего в помещение при действии завесы. Однако, вышеуказанный метод решения справедлив для идеальных жидкостей, т.е. тогда когда при взаимодействии потоков не учитывается влияние вязкости воздуха. Поэтому, предлагаемые аналитические выражения имеют значительную погрешность по сравнению экспериментальными данными.

В дальнейшем большое распространение получили динамические методы решения.

Г. Н. Абрамович использовал схему, предложенную М. С. Волынским , по которой кривизна струи определялась из условия уравновешивания силы, вызываемой разностью давлений на передней и задней стенке струи, центробежной силой. Приняв форму струи в виде эллипса, а коэффициент расширения струи таким же, как прямоугольной струи, Г. С. Абрамович получил следующее уравнение для оси струи:

Где:

Сn - коэффициент силы, зависящей от формы крыла.

Для определения оси плоской струи в сносящем потоке им предложено

выражение:

Экспериментальные исследования показали, что на величину ко­эффициента сопротивления Сп при обтекании струи воздушным потоком ока­зывает влияние перепад статического давления вокруг струи.

Вахламов получил уравнение оси струи, используя уравнение ко­личества движения при взаимодействии струй с потоком в проекциях на оси координат. Хотя в процессе решения принимаются довольно грубые допущения, теоретические данные хорошо согласуются с опытными для осесимметричной струи.

Т.А. Гиршович удалось найти теоретически не только форму оси плоской струи, но также ее границы и профиля скоростей в различных поперечных сечениях. Задача решалась в криволинейной системе координат, ось абсцисс которой совмещена с осью струи, а ось ординат - нормаль к ней. В этой системе координат записаны уравнения пограничного слоя для зоны смешения с учетом поля давлений, создаваемого центробежными силами и переменной скорости. Для определения внешней границы струи (со стороны набегающего потока) последняя рассматривалась условно как гра­ничная поверхность тока, полученная от сложения набегающего потенциального потока с системой источников, расположенной на линии, параллельной набегающему потоку и проходящей через начало струи. Причем, распределе­ние источников подбиралось из дополнительного условия, сводящегося к то­му, чтобы давление на границе струи набегающего потока были одинаковыми.

Т. А. Гиршович было проведено также экспериментальное исследо­вание основного и начального участка струи в сносящем потоке. При изуче­нии основного участка рассматривалась струя, выходящая из сопла шириной 1,5 мм. и длиной 300 мм. Сносящий поток создавался аэродинамической трубой диаметром 44 мм. Сравнение Т. А. Гиршович теоретического решения с экспериментальным показало, что ось струи, рассчитанная аналитически, не совпадает с опытными данными. В работе также предложены теоретиче­ские зависимости для расчета развивающейся в попутном потоке веерной струи. В 1973 г. Т. А. Гиршович предложила при расчете параметров плоской турбулентной струи в сносящем потеке учитывать величину разряжения за струёй как некоторую эмпирическую константу. На основе экспериментальных данных она установила, что величина разряжения в сносящем потоке за струей постоянна и равна:

Е. В. Ржевский и В. А. Костерин провели исследо­вание распространения веерных и парных плоских струй в поперечном пото­ке, основанное на взаимодействии сил, воздействующих на элементарный участок струи. Они экспериментально подтвердили, что форма оси веерной и парных плоских струй в сносящем потоке зависит от гидродинамического параметра. Для веерной струи при β = 90° и q = 14-65 было получено:

Опыты показали, что веерная струя отклоняется сильнее, чем одиночная плоская.

Н. И. Акатнов предложил ещё один способ теоретического решения задачи о развитии круглой турбулентной струи в поперечном потоке. Он на­ходил изменение количества движения, которое происходит под действием профильного сопротивления и сопротивления «стока», возникающего вслед­ствие того, что условная граница струи является проницаемой. Полученные им уравнения оси струи и распределение максимальных скоростей вдоль оси струи дают удовлетворительной совпадение с опытами Иванова.

Я. М. Визель и Й. Д. Мостинский , по аналогии с работой Г. Н. Аб­рамовича, рассматривали в своих аналитических решениях струю как крыло, на которое действует сила набегающего потока. Авторы определили форму оси плоской струи исходя из величины лобового сопротивления, которое струя оказывает потоку:

где; Сх - коэффициент лобового сопротивления струи сносящему потоку.

Сравнение с опытными данными показало, что при Сх = 5 и β = П/2

отклонение опытов от теоретической кривой достигает ± 20% (рис. 1.2). Такое расхождение получено и для круглой струи в сносящем потоке.

Рис. 1.2. Траектории струи.

И. А. Шепелев сделал попытку определить форму оси струи неза­висимо от формы приточного отверстия, вычислив величину действующих сил в направлении координатных осей. Он связал их с приращением расстояния dx и dy. Полученное им уравнение оси струи, вытекающей из отверстия произвольной формы под произвольным углом к сносящему потоку, имеет вид:

где: в, l - размеры сопла вдоль, и поперек сносящего потека (ось х на­правлена навстречу сносящему потоку, ось z- вертикально вверх).

Коэффициент аэродинамического сопротивления струи С И. А, Шепелев рекомендует принимать равным 5.

В работе Н. М. Соколовой посвященной исследованию вертикальных воздушных фонтанов, распространяющихся в сносящем потоке, ис­пользуется схема решения И. А. Шепелева. Для установления связи между силами, воздействующими на воздушный фонтан, и перемещениями, Н. М. Соколова рассматривала уравнения количества движения, составленные в проекциях на оси координат. Получены общие формулы, определяющие ко­ординаты оси сносимого компактного плоского воздушного фонтанов.

Для сносимой изотермической струи, истекающей из щелевидного от­верстия, формула имеет вид:

где: Кn – постоянный множитель;

Подобное уравнение получено также Я. М. Визелем, И, Л. Мостинским

Значение численного множителя Кn = 2,85.

Г. С. Шандоров , приняв за основу условие равновесия между аэро­динамической силой, изгибающей струю и центробежной силой, действующей на элемент струи, вывел уравнение, связывающее координаты оси струи:

Проведенные им эксперименты со струёй, втекающей в поток под уг­лом 60°, с отношением динамического давления потока и струи q = 0,0403 - 0,4 и постоянной Сn = 4,7, показали удовлетворительное совпадение с урав­нением .

А. М. Эпштейн , пользуясь теоретическими разработками Г. Н. Абрамовича , получил уравнение оси сносимой неизотермической струи:

где: п - экспериментальная постоянная;

Ач - критерий Архимеда.

И. В. Календайте и М. Я. Залишаускас получили уравнение траектории плоской свободней струи при разных давлениях с двух сторон :

где: k - безразмерный коэффициент.

Метод расчета деформации осей двойных плоскопараллельных струй с учетом перепада статического давления на участке сближения был предло­жен в 1966 г. Б. Г. Худенко .

Также как и в Б. Г. Худенко предполагал, что турбулентные пуль­сации не проникают в пространство между струями, движение воздуха в этой области носит потенциальный характер и происходит без потерь полного давления. Для аналитического выражения профиля скоростей им была принята формула Г. Шлихтинга. Коэффициент разряжения между струями вы­ражается для начального участка:

для основного: участка:

где: А2 - теоретическая константа;

ао - экспериментальная константа;

- относительной расстояние сечения от полюса струи.

Согласно , значения остальных констант могут быть приняты φ1 = 0,981; φ2 = -2,04; А1=0,45; φгр = 2,412.

Координаты оси изогнутой газовой струи

Влиянием эжекции воздуха из межструйного пространства пренебрегалось и считалось, что оси смешивающихся струй распространяются прямолинейно. Повышение статического давления на участке смешения струй в рас­четах не учитывалось.

В 1968 г. К. Форстер, А. К. Мисро и Д. Г. Митчел при расчете налипающей на плоскую поверхность струи предложили учитывать влияние зоны повышенного статического давления, возникающей в месте столкновения струи с поверхностью.

В отличие от известной работы, они предложили в уравнение ко­личества движения изогнутой струи, на участке приближения ее к поверхно­сти, вместо величины атмосферного давления учитывать среднюю величину повышенного статического давления.

В 1970 г. В. А. Арутюнов и Ю. М. Перепелкин., используя теоретические разработки , и применив для описания распределения скоро­стей в плоской налипающей на поверхность струе формулу Г. Шлихтинга для слоя конечной толщины, получили уравнение длины зоны циркуляции, образующейся при налипании плоской струи на поверхность.

Формирование воздушной струи в процессе преодоления нарушений звукопроизношения является основным направлением логопедической коррекции, без которого невозможно достигнуть желаемого результата.

Основным назначением дыхательного аппарата является осуществление газового обмена т. е доставка в ткани организма кислорода и выведение из них углекислого газа. И этот обмен совершается благодаря периодическому обновлению воздуха в лёгких, которое происходит при попеременном чередовании дыхательных фаз – вдоха и выдоха.

Различают три основных типа дыхания:

  • ключичный
  • рёберный (грудной)
  • диафрагмальный (брюшной)

При ключичном дыхании поднимается плечевой пояс и верхние рёбра, происходит расширение преимущественно верхней части грудной клетки.

При рёберном (грудном) грудная клетка расширяется вперёд и в стороны.

В диафрагмальном дыхании – диафрагма опускается и увеличивается главным образом нижняя часть грудной клетки; брюшная стенка при этом выпячивается.

Чистых типов дыхания в действительности не наблюдается. В любом типе дыхания в большей или меньшей степени активно действует диафрагма. Поэтому практически можно говорить лишь о преимущественно ключевом, преимущественно брюшном, или ключичном дыхании.

Типы дыхания зависят от пола, возраста, профессии.

Так, у женщин чаще наблюдается грудной тип дыхания, у мужчин- брюшной, у работников физического труда превалирует брюшной тип дыхания, у лиц, занятых канцелярской и вообще сидячей работой- грудной тип.

У детей обычно бывает смешанный тип дыхания т. е средний между брюшным и грудным.

При глубоком, или полном дыхании сочетаются три типа дыхания – ключичный, грудной, брюшной.

В течение 1минуты происходит 16-20 полных дыхательных движений (вдохов и выдохов). Длительность вдоха почти равна длительности выдоха (отношение времени вдоха ко времени выдоха равно приблизительно 1: 1, 25).

Это физиологическое дыхание, необходимое для жизнедеятельности.

Но чтобы ребёнок начал говорить, он должен освоить особый вид дыхания – речевое дыхание. Под этим термином понимается способность человека в процессе высказывания своевременно производить достаточно глубокий вдох и рационально расходовать воздух при выдохе. Речевое дыхание – основа звучащей речи, источник образования звуков, голоса. Оно обеспечивает нормальное голосообразование, помогает верно соблюдать паузы, сохранять плавность речи, менять громкость, использовать речевую мелодику.

Развитие речевого дыхания у ребёнка начинается уже в возрасте 6 месяцев идёт подготовка дыхательной системы к реализации голосовых реакций, и завершается к 10 годам.

Формирование речевого дыхания предполагает, в том числе, и выработку воздушной струи. Выработка воздушной струи считается одним из необходимых и значимых условий постановки звуков. Работа по воспитанию воздушной струи начинается на подготовительном этапе формирования правильного звукопроизношения, наряду с развитием фонематического слуха и артикуляционной моторики.

Известно, что звуки произносятся в фазе выдоха. Как правило, смычные взрывные и смычно – щелевые согласные звуки произносятся коротко, воздушная струя слабая. Сонорные звуки и щелевые требуют сильной длительной воздушной струи.

Произнесение большинства звуков позднего онтогенеза требует направленной воздушной струи. Рассмотрим на примере характеристики воздушной струи необходимой при произнесении шипящих и свистящих звуков.

Существуют три основных направления воздушной струи:

  1. воздушная струя направлена прямо по центру языка. Это характерно для произнесения большинства звуков; губно-губных (В, В, Ф, Ф, заднеязычных (К, К. Г, Г. Х, Х, переднеязычных (Т, Т, Д, Д, свистящих (С, С, З, З, Ц)
  2. воздушная струя направлена по центру языка вверх. Это характерно для произнесения шипящих (Ш, Ж, Щ, Ч) звуков и вибрантов (Р, Р).
  3. воздушная струя направлена по боковым краям языка Это характерно для произнесения смычно-проходных (Л, Л) звуков.

В соответствии с перечисленными направлениями прохождения воздушной струи в полости рта в логопедической работе используются следующие упражнения:

  1. «Сдуй снежинки с горки».(используйте кусочки ватки или паралоновые шарики) «Наказать непослушный язык». «Желобок».
  2. «Фокусы».
  3. «Идёт охотник по болоту»

Выработка воздушной струи может проводиться до артикуляционной гимнастики или одновременно с артикуляционной гимнастикой. Поскольку в формировании воздушной струи активное участие принимают щёки, губы, язык.

Артикуляционные упражнения, выполняемые на выдохе:

  • «Индюшата». На выдохе произносится «Бл-бл-бл».
  • «Наказать непослушный язычок». На выдохе произносится «Пя-пя-пя».
  • «Пулемёт» На выдохе произносится «Т-т-т».
  • «Моторчик». На выдохе произносится «Р-р-р».
  • «Жук» На выдохе произносится «Ж-ж-ж».

В системе логопедической работы по воспитанию воздушной струи можно выделить основные направления:

  1. Дутьё при сомкнутых губах.
  2. Дутьё сквозь губы, вытянутые трубочкой.
  3. Дутьё сквозь растянутые в улыбке губы.
  4. Дутьё на язык.

Рассмотрим подробнее каждое направление.

  1. Дутьё при сомкнутых губах. Для укрепления мышц щёк подготовительными могут считаться следующие упражнения:
    • «Надуть два шарика» Надувать щёки и удерживать в них воздух.
    • «Перекатывание шаров» Щёки надуваются поочерёдно.
    • «Худышки». Втягивать щёки при сомкнутых губах и при приоткрытом рте.
    • «Дутьё сквозь губы, вытянутые трубочкой». Напряжение круговой мышцы рта.
  2. Дутьё сквозь губы, вытянутые трубочкой.
    • Не надувая щёк, дуть сквозь сближенные и слегка выдвинутые вперёд губы, образующие посередине круглое «окошечко».
    • Сдувать с поднесённой ко рту ладони любой мягкий предмет (ватный шарик, бумажную снежинку и т. д).
    • Дуть на кусочек ваты, привязанные на нитки. Можно дуть снизу вверх на пушинки одуванчика, стараться, чтобы они дольше продержались в воздухе.
    • Дутьё на парусник, салфетку, лист, флюгер и т. п.
    • Дуть на карандаш, лежащий на столе так, чтобы тот покатился (на шестигранные)
    • Задувание свечи.
    • Надувание воздушных шаров, резиновых игрушек.
    • Пускание мыльных пузырей.
    • Дутьё с использованием свистков. Гудков, трубочек, губной гармошки.
    • Гонки по воде бумажных корабликов, целлулоидных игрушек, например, поддувание «рыбок».
    • Детям предлагают поочерёдно дуть на лёгкие игрушки, находящиеся в тазу с водой.
    • Сильно дуть на воду до образования брызг.
    • Можно натянуть горизонтально нитки и к вертикально висящим на ней ниткам привязать лёгких бумажных птичек, бабочек, стрекоз.
    • Дутьё – катание по жёлобку лёгких деревянных или целлулоидных шариков.
  3. Дутьё сквозь растянутые в улыбке губы.
    • «Пропеллер» Образовать узкую щель между растянутыми в лёгкой улыбке сближенными губами. Углы рта прижаты к зубам. Струю воздуха, направленную в эту щель, ребёнок рассекает движениями указательного пальца из стороны в сторону. Если щель образована правильно и струя достаточно сильная, звук от рассекаемого пальцем воздуха хорошо слышен.
    • Образовать узкую щель между растянутыми в лёгкой улыбке сближенными губами. Ребёнку предлагают положить между губами широкий кончик языка. Подуть на кончик языка.
    • Образовать узкую щель между растянутыми в лёгкой улыбке сближенными губами. «Пошлёпывать» язык губами, произнеся на выдохе звуки пя-пя-пя.
  4. Дутьё на язык.
    • Посередине языка вдоль его переднего края «сделать дорожку» - положить спичку со срезанной головкой и пустить ветерок, сдувая бумажные листочки.
    • Удержав язык широким за верхними зубами, нужно подуть на его кончик. Инструкция: «Улыбнись. Покажи зубы. Держи язык широким наверху. Чувствуешь ветерок? Подуй так ещё раз. Почувствуй, как подую я! » Можно использовать зеркало, чтобы ребёнок видел положение своего языка.
    • Широкий язык положить на нижнюю губу. Края языка свернуть так, чтобы образовался желобок. Легко подуть сквозь желобок.
    • «Сдуй снежинки с горки» Улыбнись. Покажи зубы. Приоткрой рот. Кончик языка удержи за нижними зубами. Приподними язык горкой. Подуй на язык.

В процессе коррекционной работы по формированию воздушной струи важно придерживаться следующих методических рекомендаций.

  • Упражнения проводятся в хорошо проветренном помещении.
  • Лучше выполнять упражнения стоя, при свободном положении тела в пространстве. Грудная клетка расправлена. Следить за осанкой.
  • Обращается внимание на то, чтобы ребёнок производил вдох глубоко и спокойно, через нос. Выдох через рот должен быть лёгким, плавным, без напряжения.
  • Следить за точностью направления воздушной струи.
  • Кратковременность упражнений (от 30секунд до 1, 5 минут). Гипервентиляция лёгких ведёт к обильному снабжению коры головного мозга кислородом, вследствие чего может возникнуть головокружение.
  • Дозированность количества и темпа упражнений. Интенсивное дутьё проводиться не более 5 раз за 1 приём, в течение нескольких секунд.
  • Нельзя надувать щёки.
  • Выдыхаемый воздух не задерживать. Можно придерживать щёки руками для использования тактильного контроля.
  • На начальных этапах можно использовать зеркало для привлечения зрительного контроля.
  • Контроль, за выдыхаемой струёй воздуха, осуществляется с помощью ватки, поднесённой ко рту ребёнка: если упражнение выполняется правильно. Ватка будет отклоняться.
  • Упражнения могут выполняться под счёт.

Желаем успехов Вам!

У твердых тел расстояния между молекулами очень малы и силы взаимного притяжения молекул велики. Молекулы совершают незначительные колебательные движения.

У газообразных веществ расстояния между молекулами значительно больше самих молекул, взаимное притяжение очень мало, молекулы движутся в различных направлениях и с различной скоростью. Энергия всех молекул вместе рассматривается как внутренняя энергия вещества.

Воздух рассматривается как совокупность большого количества молекул, как сплошная среда, в которой отдельные частицы соприкасаются друг с другом. Представление о сплошности среды позволяет существенно упростить исследование жидкости и газа.

Кроме этого в аэродинамике широкое применение нашел принцип обратимости движения. Согласно этому принципу вместо того, чтобы рассматривать движение тела в неподвижной среде, можно рассматривать движение среды относительно неподвижного тела.

Скорость набегающего невозмущенного потока в обращенном движении равна скорости самого тела в неподвижном воздухе.

Аэродинамические силы будут одинаковыми как для тела, движущегося в неподвижном воздухе, так и для неподвижного тела, обтекаемого воздухом, если скорость движения тела относительно воздуха будет одна и та же.

Обращение движения широко применяется при проведении опытов в аэродинамических трубах, а также в теоретических исследованиях, где используется понятие воздушного потока.

Воздушным потоком называется направленное движение хаотически движущихся частиц.

Если в любой точке пространства, занимаемой потоком жидкости или газа, давление, плотность, величина и направление скорости потока с течением времени не изменяются, движение этого потока называется установившимся . Если эти параметры в данной точке пространства с течением времени изменяются, то движение называется неустановившимся .

Существуют различные методы изучения движения жидкостей и газов. Один из них заключается в том, что движение отдельных частиц рассматривают в каждой точке пространства в данной момент времени. При этом исследуются так называемые линии тока.

Линией тока называется линия, касательная в каждой точке которой совпадает с вектором скорости в этой точке. Совокупность линий тока заключена в некоторой трубкетока и образует элементарную струйку тока . Каждую выделенную струйку можно представить текущей изолированно от общей массы газа.

Разделение потока на струйки дает наглядное представление о сложном течении газа в пространстве. К отдельной струйке можно применить основные законы движения – сохранения массы и сохранения энергии. При помощи уравнений, выражающих эти законы, можно проводить физический анализ взаимодействия твердого тела с газом (воздухом).

По характеру течения воздушный поток может быть ламинарным и турбулентным.

Ламинарный - это воздушный поток, в котором струйки воздуха движутся в одном направлении и параллельны друг другу.

При увеличении скорости частицы воздуха кроме поступательной скорости приобретают быстро меняющиеся скорости, перпендикулярные к направлению поступательного движения. Образуется поток, который называется турбулентным , т. е. беспорядочным.

Пограничный слой

Пограничным слоем называется тонкий слой заторможенного газа, образующийся на поверхности тел, обтекаемых потоком. Вязкость газа в пограничном слое является основной причиной образования силы лобового сопротивления.

При обтекании какого-либо тела частицы газа, проходящие очень близко от его поверхности, будут испытывать сильное торможение. Начиная от некоторой точки вблизи поверхности скорость потока при приближении к телу уменьшается и на самой поверхности становится равной нулю. Распределение скоростей в других сечениях поверхности аналогично(рис.2.1).

Расстояние R , на котором происходит уменьшение скорости, называется толщиной пограничного слоя, а изменение скорости по толщине пограничного слоя – градиентом скорости.

Рис.2.1 Изменение скорости течения воздуха в пограничном слое

Толщина пограничного слоя измеряется в миллиметрах и зависит от вязкости и давления воздуха, от формы тела, состояния его поверхности и положения тела в воздушном потоке. Толщина пограничного слоя постепенно увеличивается от передней части тела, к задней.

На границе пограничного слоя скорость частиц становится равной скорости набегающего потока. Выше этой границы градиента скорости нет, поэтому вязкость газа практически не проявляется.

Таким образом, в пограничном слое скорости частиц изменяются от скорости внешнего потока на “границе” пограничного слоя до нуля на поверхности тела.

Из-за градиента скорости характер движения частиц газа в пограничном слое отличается от их движения в потенциальном слое. В пограничном слое вследствие разности скоростей U 1 -U 2 частицы приходят во вращательное движение (см. рис.2.2).

Вращение тем интенсивнее, чем ближе к поверхности тела находится частица. Пограничный слой всегда завихрен и поэтому его называют слоем поверхностного завихрения.

Рис. 2.2 Обтекание тела воздушным потоком - торможение потока в пограничном слое

Частицы газа из пограничного слоя уносятся потоком в область, распложенную позади обтекаемого тела, называемую спутной струей. Скорости частиц в спутной струе всегда меньше скорости внешнего потока, т.к. частицы попадают из пограничного слоя уже приторможенными.

Виды течения пограничного слоя . При небольшой скорости набегающего потока газ в пограничном слое течет спокойно в виде отдельных слоев. Такой пограничный слой называется ламинарным (рис.2.3,а). Пограничный слой завихрен, но движение газа упорядочено, слои не смешиваются, частицы вращаются в пределах одного и того же тонкого слоя.

Если в пограничном слое происходит энергичное перемешивание частиц в поперечном направлении и весь пограничный слой беспорядочно завихрен, такой пограничный слой называется турбулентным (рис.2,б).

В турбулентном пограничном слое наблюдается непрерывное перемещение струек воздуха во всех направлениях, что требует большего количества энергии. Сопротивление воздушного потока увеличивается.

с)

Рис. 2.3 Ламинарное и турбулентное течение

У передней части обтекаемого тела образуется ламинарный пограничный слой, которой затем переходит в турбулентный. Такой пограничный слой называется смешанным (рис.2.3,с).

При смешанном течении в определенной точке происходит переход пограничного слоя из ламинарного в турбулентный. Расположение ее на поверхности тела зависит от скорости струек, формы тела и его положения в воздушном потоке, а также от шероховатости поверхности. Положение точки определяется координатой Х с (Рис.2.3,) .

У гладких крыльевых профилей точка перехода обычно лежит на расстоянии, примерно равном 35% от длины хорды.

При создании профилей крыльев конструкторы стремятся отнести эту точку как можно дальше от передней кромки,увеличивая тем самым протяженность ламинарной части пограничного слоя Для этой цели применяют специальные ламиниризированные профили, а также увеличивают гладкость поверхности крыла и ряд других мероприятий.

Отрыв пограничного слоя. При обтекании тела с криволинейной поверхностью давление и скорости в разных точках поверхности будут неодинаковыми (рис. 2.4).При движении потока от точки А к точке Б происходит диффузорное расширение потока.

А Б

Рис. 2.4 Течение в пограничном слое вблизи точки отрыва

Поэтому давление растет а скорость уменьшается, так как у самой поверхности тела скорости частиц очень малы, под влиянием разности давлений между точками А и В на этом участке происходит движение газа в обратном направлении. При этом внешний поток продолжает двигаться вперед.

Из-за обратного течения газа внешний поток оттесняется от поверхности тела. Пограничный слой набухает и отрывается от поверхности тела. Точка на поверхности тела, в которой происходит отрыв пограничного слоя, называется точкой отрыва .

Отрыв пограничного слоя приводит к образованию вихрей за телом. Положение точки отрыва зависит от характера течения в пограничном слое. При турбулентном течении место отрыва потока лежит значительно дальше по потоку, чем при ламинарном. Вихревая область за телом в этом случае значительно меньше. Это парадоксальное явление объясняется тем, что при турбулентном движении происходит более интенсивное поперечное перемешивание частиц.

Отрыв пограничного слоя наблюдается при обтекании криволинейных поверхностей, например профиля крыла на больших углах атаки. Явление это очень опасно, т.к. приводит к резкому уменьшению подъемной силы, значительному возрастанию сопротивления движению потока, потере устойчивости и управляемости самолета, вибрациям.

Явление срыва потока зависит от формы и состояния поверхности тела, характера течения воздуха в пограничном слое. Тела, имеющие вытянутую форму с плавными очертаниями (удобообтекаемые), не подвержены срыву потока в отличие от неудобообтекаемых тел.

Срыв потока может возникнуть в результате нарушения правил эксплуатации самолета: выхода на критические углы атаки, нарушения центровки. При небрежном техническом обслуживании из-за неплотного прилегания крышек лючков, неполного закрытия створок и других причин возникают местные срывы потока. Возникают опасные вибрации частей самолета.

Пусть круглый цилиндр, способный свободно вращаться на своей оси, вносится в струю воды или в область границы воздушного потока. В некотором интервале погружений, в противоположность упомянутому эффекту Коапда, цилиндр выталкивается из потока и при этом вращается в направлении, обратном ожидаемому, - против «мельничного колеса»! Такой эффект наблюдается только при условии двухстороннего обтекания цилиндра. Если цилиндр заглублен настолько мало, что обтекает лишь с одной стороны, он вращается «правильно». Но величина этого порогового заглубления весьма мала. При продолжении заглубления направление вращения становится «встречным», затем достигается максимум скорости, ее падение и, наконец, полная остановка, когда цилиндр полностью погружается в поток.

Если речь идет о тонкой струе, сравнимой по толщине с диаметром цилиндра, то при аномальном вращении струя сильно отклоняется от цилиндра, который может быть далеко заглублен за геометрическую ось невозмущенной струи. Однако в некоторый момент струя скачком перебрасывается по другую сторону цилиндра, и он начинает вращаться в обратном направлении, так что явление носит гистерезисный характер. Как выяснилось, эффект наблюдается не только для цилиндра, но и для шара и на границе плоских и осесимметричных струй, как водяных, так и воздушных .

Рассматриваемое явление, благодаря сочетанию вращения и выталкивающей силы, внешне напоминает эффект Магнуса, однако имеет совершенно иную природу. Эффект Магнуса состоит в том, что принудительно вращающийся цилиндр или шар испытывает со стороны набегающего потока действие поперечной силы, связанной с принудительной циркуляцией. Если поток однороден, то при нулевой скорости вращения поперечная сила отсутствует. Рассматриваемые здесь эффекты аномального вращения и силового взаимодействия возникают спонтанно, под действием механизма, обусловленного неоднородностью потока. При этом сила действует и на неподвижное обтекаемое тело. Угловая скорость вращения свободного цилиндра оказывается точно пропорциональной скорости натекающего потока. Это позволяет считать обтекание приближенно невязким, но с некоторой циркуляцией, для определения которой необходимо обобщить постулат Жуковского - Чаплыгина о конечности скорости на острой кромке крыла на случай гладкого контура. Такое обобщение предполагает, что вырабатываемая циркуляция минимизирует максимум скорости на контуре обтекаемого тела. Данный минимаксный принцип позволяет качественно и отчасти количественно верно предсказывать направление и величину циркуляции в различных условиях обтекания.

Струйные течения в помещении

Вентиляционный процесс обеспечения микроклимата

Характер распределения примесей вредных веществ в вентилируемом помеще­нии определяется главным образом возникающими воздушными течениями, кото­рые, в свою очередь, зависят от принятого способа организации воздухообмена.

Решающая роль в формировании полей температуры, скорости и концентрации

примесей принадлежит приточным струям и создаваемым ими циркуляционным течениям. При помощи приточных струй можно обеспечивать в определенных зонах помещения заданные параметры воздушной среды, существенно отличающиеся от таковых в окружающем пространстве (воздушные души, воздушные оази­сы); создавать воздушные завесы, препятствующие врыванию в помещение холодно­го воздуха; применять устройства, способствующие сдуву вредных веществ к месту их организованного удаления (местные отсосы с передувками).

Конвективные (тепловые) струи, формирующиеся вблизи стен и поверхностей оборудования, имеющих температуру, которая отличается от температуры окру­жающего воздуха, также могут оказывать определенное влияние на распреде­ление вредных веществ в помещении.

Тепловые струи, возникающие над нагретым оборудованием, способствуют выносу теплоты и вредных примесей в верхнюю зону помещений. Мощные кон­вективные потоки переносят в верхнюю зону помещений газы и пары даже в том слу­чае, если они тяжелее воздуха.

Струей называется поток жидкости или газа с конечными поперечными размера­ми, определяемыми границей струи. В технике вентиляции имеют дело с воздушными струями, которые распространяются в воздухе помещения. Такие струи называются затопленными. Вентиляционные струи являются турбулентными.

В зависимости от температуры истечения струи разделяются на изотермические и неизотермические. У изотермических струй температура во всем ее объеме равна температуре окружающего воздуха, у неизотермических струй температура изменяет­ся по мере ее развития, приближаясь к температуре окружающего воздуха.

В зависимости от конструкции воздухораспределительного устройства струи могут развиваться по разным траекториям. На рис.6.1 изображено развитие изотерми­ческой осесимметричной струи, все поперечные размеры которой симметричны от­носительно ее оси, которая является прямолинейной.

На границе струи, где продольная составляющая скорости равна нулю, имеет место интенсивное подмешивание масс воздуха в струю и уменьшение скорости воздуха. В пределах координатыскорость воздуха по оси струи и в ее поперечном сечении равна скорости истечения. Этот участок называется начальным. В последующем осе­вая скорость уменьшается, как и скорость в поперечном сечении.


Осессиметричные струи вытекают из круглого отверстия и являются компактны­ми. К компактным относятся также струи, вытекающие из квадратных и прямо­угольных насадков.

Плоские струи (рис. 6.2,а) образуются при истечении воздуха из щелевых отвер­стий с соотношением сторон больше 20. Струя рассматривается как плоская на рас­стоянии, гдеразмер большей стороны отверстия; в последующем струя рассматривается как компактная.

Веерные струи (рис. 6.2,б) образуются при принудительном рассеивании воздуха в плоскости на некоторый угол. Различают полные веерные струи с углом принуди­тельного рассеивания 360 град, и неполные веерные с углом менее 360 град/

Рис.6.1.Свободная изотермическая осесимметричная струя

Конические струи (рис.6.2.в) образуются при установке на выходе воздуха из от­верстия рассеивающего конуса с углом при вершине 60 ± 2,5°.